
HAL Id: lirmm-01620238
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620238

Submitted on 20 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Massively Distributed Environments and Closed Itemset
Mining: The DCIM Approach

Mehdi Zitouni, Reza Akbarinia, Sadok Ben Yahia, Florent Masseglia

To cite this version:
Mehdi Zitouni, Reza Akbarinia, Sadok Ben Yahia, Florent Masseglia. Massively Distributed Environ-
ments and Closed Itemset Mining: The DCIM Approach. CAiSE: Advanced Information Systems En-
gineering, Jun 2017, Essen, Germany. pp.231-246, �10.1007/978-3-319-59536-8_15�. �lirmm-01620238�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620238
https://hal.archives-ouvertes.fr

Massively Distributed Environments and Closed
Itemset Mining: the DCIM Approach

Mehdi Zitouni1,2, Reza Akbarinia1, Sadok Ben Yahia2, and Florent Masseglia1

1 INRIA & LIRMM Montpellier, FRANCE
2 Université de Tunis ElManar, Faculté des Sciences de Tunis, LIPAH-LR 11ES14,

Tunis, TUNISIA
{Mehdi.Zitouni,Reza.Akbarinia,Florent.Masseglia}@inria.fr

Sadok.Benyahia@fst.rnu.tn

Abstract. Data analytics in general, and data mining primitives in par-
ticular, are a major source of bottlenecks in the operation of information
systems. This is mainly due to their high complexity and intensive call to
IO operations, particularly in massively distributed environments. More-
over, an important application of data analytics is to discover key insights
from the running traces of information system in order to improve their
engineering. Mining closed frequent itemsets (CFI) is one of these data
mining techniques, associated with great challenges. It allows discovering
itemsets with better efficiency and result compactness. However, discov-
ering such itemsets in massively distributed data poses a number of issues
that are not addressed by traditional methods. One solution for dealing
with such characteristics is to take advantage of parallel frameworks like,
e.g., MapReduce. We address the problem of distributed CFI mining by
introducing a new parallel algorithm, called DCIM, which uses a prime
number based approach. A key feature of DCIM is the deep combination
of data mining properties with the principles of massive data distribu-
tion. We carried out exhaustive experiments over real world datasets to
illustrate the efficiency of DCIM for large real world datasets with up to
53 million documents.

Keywords: Distributed Information Systems, Data Analytics, Closed
Frequent Itemsets.

1 Introduction

In the past few years, advances in hardware and software technologies have
made it possible for the users of information systems to produce large amounts
of transactional data. Although data mining has become a fairly well established
field now, its applications in massively distributed environment poses a number
of thriving challenges which are a well-known source of bottlenecks for the oper-
ation of distributed information systems. This is particularly the case of frequent
itemset mining (FIM) [1]. FIM allows discovering important correlation for mas-
sive sets of data and reveal key insights for numerous applications, ranging from

marketing, to scientific data analytics, and including the optimization of infor-
mation systems. Actually, discovering the relationship between features in the
running traces of a system, for its optimization, is an active research topic [2,3].

Unfortunately, mining only frequent itemsets generates an overwhelming
number of itemsets. This makes their interpretation almost impossible and af-
fects the reliability of the expected results.

Several studies were conducted to define and generate condensed represen-
tations of frequent itemsets in the past few years. In particular, closed frequent
itemsets (CFI in short) [4] have received much attention with very general pro-
posals. Existing algorithms for mining CFI flag out good performance when
the input dataset is small or the support threshold is high. However, when the
database increases in size or the support threshold turns to be low, both mem-
ory usage and communication costs become hard to bear. Some early efforts
tried to speed up the mining algorithms by running them in parallel [5], using
frameworks such as MapReduce [6] or Spark [7], that allow to make powerful
computing and storage units on top of ordinary machines. In [8], Wang et al.
propose an approach for mining closed itemsets using MapReduce, but it suffers
from the lack of scalability.

In this paper, we propose a new parallel algorithm named Distributed Closed
Itemset Mining (DCIM) for enumerating CFIs using MapReduce. In DCIM, we
develop a new approach based on mathematical techniques. The items from the
database are transformed into prime numbers, and CFIs are generated by using
only division and multiplication operations. When the scale of datasets gets large,
such operations could cause an overwhelming computing and memory utilization.
To overcome this issue, we propose insightful optimization techniques that allow
extracting CFI from even very large datasets. The main contributions of this
paper are as follows :

– We propose a numerical representation of transactional datasets using a new
transformation technique. This transformation is embedded in the algorithm
for a very low additional cost.

– We design an efficient parallel algorithm for CFI mining by deeply combining
MapReduce functionalities with the properties of CFI.

– We exploit the mathematical properties of our numerical representation and
provide optimizations both at the architecture level as well as on the com-
puting nodes.

– We carry out exhaustive experiments on real world databases to evaluate the
performance of DCIM. The results suggest that our algorithm significantly
outperforms the pioneering algorithms in CFI mining over large real world
datasets with up to 53 millions articles.

The rest of this paper is organized as follows. In Section 2, we describe some
related works. In Section 3, we present some preliminary notions they would be
of help for defining the problem. In Section 4, we introduce our DCIM algorithm.
The results of our experimental evaluations are reported in Section 5. Finally,
in Section 6 we conclude.

2 Related Work

Many research efforts [9, 10] have been introduced to design parallel algorithms
capable of working under multiple threads under a shared memory environment.
Unfortunately, these approaches do not address the major problem of heavy
memory requirement when processing large scale databases. To overcome the
latter, MapReduce platform was designed to enable and facilitate the ability
to distribute processing of large scale datasets on large computing clusters. In
[11], the authors propose a parallel FP-Growth algorithm in MapReduce, which
achieves quasi-linear speedups. However, the method presented so far suffers
from either excessive amounts of data that need to be transferred and sorted
and a high demand for main-memory at cluster nodes.

Moreover, having a large amount of transactional data, finding correlation
between them highlights the necessity of discovering a condensed representations
of items. Since the introduction of CFI in [4], numerous algorithms for mining it
were proposed [12, 13]. In fact, these algorithms tried to reduce the problem of
finding frequent itemsets to the problem of mining CFIs by limiting the search
space to only CFIs rather than the the whole powerset lattice. Furthermore,
they have good performance whenever the size of dataset is small or the support
threshold is high. However, as far as the size of the datasets becomes large, both
memory use and communication cost are unacceptable. Thus, parallel solutions
are of a compelling need. But, research works on parallel mining of CFI are
few. In [14] authors proposed a parallel algorithm based on the LCM algorithm
[15]. The proposed algorithm uses the concept of Java Tuple Space allowing a
dynamic sharing of the work. However, large scale experiments over big datasets
are needed to evaluate the scalability of the algorithm. In [8] introduce a new
algorithm based on the parallel FP-Growth algorithm Pfp [11] that divides an
entire mining task into independent parallel subtasks and achieves quasi-linear
speedups. The algorithm mines CFI in four MapReduce jobs and introduces a
redundancy filtering approach to deal with the problem of generating redundant
itemsets. However, we don’t find in the literature a work that scales for CFI
mining on MapReduce with very large databases, as we tackle in this paper.

3 Preliminaries

Definition 1. Let I = {i1, ..., in} be the set of items. A transaction dataset on
I is a set T = {t1, ..., tm} such that each ti is included in I. Each ti is called a
transaction. We denote by ||T || the sum of sizes of all transactions in T , that
is, the size of database T . A set P ⊆ I is called itemset. For an itemset P , a
transaction including P is called an occurrence of P , and T (P) is the set of the
occurrences of P . |T (P)| is called the frequency of P , and denoted by frq(P).
For a given constant θ, called minimum support, the itemset P is frequent if
frq(P) ≥ θ. For any itemsets P and Q such that T (P ∪Q) = T (P) ∩ T (Q), if
P ⊆ Q then T (Q) ⊆ T (P). An itemset P is called closed if no other itemset Q
satisfies T (P) = T (Q) having P ⊆ Q. Given a set S ⊆ T of transactions, let

I(S) be the set of items common to all transactions in S, i.e., I(S) = ∩(T∈S)T .
Then, we define clo(P), the closure of itemset P in T , by I(T (P)) = ∩(t∈T (P))t.

For every pair of itemsets P and Q, the following properties hold [4]:

1. If P ⊆ Q, then clo(P) ⊆ clo(Q).
2. If T (P) = T (Q), then clo(P) = clo(Q).
3. clo(clo(P)) = clo(P).
4. clo(P) is the unique smallest closed itemset including P .
5. An itemset P is a closed itemset if and only if clo(P) = P .

MapReduce is one of the most popular solutions for big data processing, in
particular owe to its automatic management of parallel execution in clusters of
machines. Initially proposed in [6], it has gained increasing popularity, as shown
by the tremendous success of Hadoop3, an open-source implementation.

MapReduce splits the computation in two phases, namely map and reduce,
which in turn are carried out by several tasks that process the data in parallel.
The idea behind MapReduce is simple and elegant. Given an input file, and two
map and reduce functions, each MapReduce job is executed in two main phases.
In the first phase, called map, the input data is divided into a set of splits,
and each split is processed by a map task in a given worker node. These tasks
apply the map function on every key-value pair of their splits and generate a set
of intermediate pairs. In the second phase, called reduce, all the values of each
intermediate key are grouped and assigned to a reduce task. Reduce tasks are
also assigned to worker machines and apply the reduce function on the values of
each key to produce the final results.

4 DCIM Algorithm

Manipulating string operations causes multiple problems when handling large
scale datasets. In fact, when the support threshold turns to be low, both memory
usage and communication costs become unbearable. We overcome this issue by
designing a distributed solution to mine CFI using the MapReduce framework.
In this section, we propose our algorithm, called DCIM, that distributes the
mining process of CFI over a cluster of nodes by using a number of well specified
MapReduce jobs adapted to our mining problem.

4.1 Algorithm Overview

The DCIM algorithm uses two MapReduce phases to mine CFIs in three steps
which are depicted as follows.

– Step 1 : Splitting : Splits T into multiple and successive parts and stores
the parts on N different computers. Each part is called a split.

3 https://hadoop.apache.org/

– Step 2 : Frequency counting : Executing a first MapReduce job, this step
is dedicated to count the support of each item in T and prune non-frequent
ones. The output of this step will be a list of items sorted in descendent
order, and each one is linked with a specific prime number.

– Step 3 : CFI Mining : This is the key step of DCIM that adopts the second
MapReduce pass in which Map phase and Reduce phase perform different
methods. Here, load balancing is a crucial concern and will call for particular
care and a comprehensive approach of distribution principle.

Frequency counting : Using a simple MapReduce count process, in this step,
DCIM scans the database and computes the frequency of each item. In fact,
the input key-value pair would be like (key, value = ti), with ti ⊂ T . For each
item, say ik ∈ ti, the mapper outputs a key-value pair (key = ik, value = 1).
After all mappers instances are completed, the MapReduce infrastructure feeds
the reducers with key-value pairs and the output result is represented as (key =
ik, value2 = Σ(value)). Adding the minimum support θ as an input of the job,
the set of items is pruned by discarding those who are not frequent and sorted in
descending order of their supports in one list, denoted Frequency-List. To proceed
with DCIM algorithm, each item in Frequency-List will receive a specified prime
number.

CFI Mining : After generating the Frequency-List, sorted in descending order
of supports, DCIM starts the second MapReduce job to extract the complete set
of CFI. We detail the Map and Reduce phases below. We assume that the mining
process of the algorithm is going to be on multiple Sub-Datasets. At this point,
we need to deal with our data and well split the dataset, in order to satisfy the
correctness and completeness of our results. To do so, a Sub-Dataset definition
cited in [12] says :

Definition 2. For a given dataset T , let i be a frequent item in T . The i-Sub-
Dataset is the subset of transactions containing i, while all infrequent items,
item i and items following i in the Frequency-List are omitted. And therefore,
having j as a frequent item in P -Sub-Dataset, where P is a frequent itemset, the
jP -Sub-Dataset is the subset of transactions in the P -Sub-Dataset containing j,
while all infrequent items, item j, and items following j in local Frequency-List
are omitted.

Our splitting process is based on item-based partitioning of the dataset. In
fact, the idea is based on the creation of one split Si for every θ-frequent item
i ∈ Frequency-List. Thus, we extract, for each item, its appropriate Sub-Dataset.
In the Map phase, the algorithm loads the Frequency-List of the Dataset. In
each split from the inputs, the algorithm treats each transaction ti from the
split Si. The input pair is like (key, value = ti). For each ti, item i is omitted
from the transaction ti and the rest of items are sorted in descending order of
supports by checking the Frequency-List. Then, DCIM generates a big integer Vti
representing the transaction by multiplying all the primes representing items of

Item frq(Item) Prime Nb.
B 4 2
C 4 3
E 4 5
A 3 7
D 1 11

ti Original Tr. Prime Nb. Vti
1 A,C,D 7, 3, 11 231
2 B,C,E 2, 3, 5 30
3 A,B,C,E 7, 2, 3, 5 210
4 B,E 2, 5 10
5 A,B,C,E 7, 2, 3, 5 210

Fig. 1: (Left) A mapping between items and prime numbers, and (Right) a
dataset T and its transformation.

the transaction. At the end, the Map phase emits the item i and the appropriates
Vti as follows (key = i, value = ti[1], ti[2], ..., ti[n]) where n ≤ ||Si||. Figure 1
illustrates the transformation process of our algorithm. Each item is mapped
to a prime number (left part of Figure 1), while the dataset (on the right) is
transformed by prime number multiplications.

When all mapper instances have completed, reducers read collections cor-
responding to a group of transactions in form of big integers representing the
Sub-Dataset linked to item or itemset in question. Then, the mining process
begins literally. Before describing the Reduce phase, some properties and defi-
nitions are of use in the remainder. Indeed, for every pair of itemsets P and Q
represented respectively as two big integers X and Y , the following properties
hold.

1. P is a Closed itemset extracted from a Sub-Dataset. P is discovered by
concatenating the items having the same support as P (in the Sub-Dataset)

2. It is not necessary to develop a Sub-Dataset of an itemset Q included in a
CFI already discovered P , such that supports of P and Q are equal.

3. P ⊆ Q if the rest of division of Y by X is 0.

In previous works [16], to facilitate the exploration of Sub-Datasets and mine
CFI, authors propose a new technique that defines a header table which is asso-
ciated to each context. This table lists the items contained in the corresponding
Sub-Dataset, sorted in descending order of their supports. However, in this cur-
rent approach, extracting CFI in the reduce phase of DCIM does not need the
use of this header table, and thus avoids additional process. To do so, we adopted
the notion of greatest common divisor (Gcd). Knowing that the Gcd of two or
more integers, when at least one of them is not zero, is the largest positive integer
that divides the numbers without a remainder, we deduce our closure operator
using the following lemma.

Lemma 1. : Let P -Sub-Dataset be the subset of transactions containing P .
The greatest common divisor in P -Sub-Dataset represents the closure between
all transactions.

Proof. The closure of an itemset P is produced from the intersection between
all transactions containing P . Manipulating prime numbers, the Gcd between
primes is unique. Thus, having all Vti from P -Sub-Dataset, extracting the closure
from a set of transactions amounts to calculate the Gcd between them. Hence,
the Gcd in P -Sub-Dataset is the closure between transactions composing P -
Sub-Dataset.

Having the prime number representing the item and its transactions as a
set of Vti as input for reducers, computing the closure from the Sub-Dataset is
straightforward by computing the Gcd of all transactions of the Sub-Dataset.
Doing so, there is no further need to store supports of items contained in the
Sub-Dataset. Indeed, if the closure exists, then it will undoubtedly have the
same support as that of the item. By concatenating the closure to the candidate
item multiplying the prime number of the item and the number representing the
closure, the result of our reduce phase will be a CFI that is represented as a
number which is added to the set of final results.

Load balancing The principles explained above are a strong basis for high per-
formances when mining CFIs. However, a fully parallel data mining algorithms
has to be deeply combined with the intrinsic characteristics of the distributed
framework. We know that, in MapReduce, the reducers cannot start applying
the reduce function before all mappers finish their work. Thus, when approach-

Algorithm 1 DCIM Algorithm

1: function Mapper(i, Si)
2: Load Frequency-List ; Load Primes-List
3: for all Ti ∈ Si do
4: T

′
i ← ORD(Ti) . ORD : sort items from Ti

5: PN(i) = 1

6: if T
′
i 6= ∅ then

7: for all j ∈ T
′
i do

8: PN(i)← PN(i)× Primes-List(j)
9: . Transforms j and generates Vti

10: Emit(Primes-List(j + 1), PN(i))
11: end for
12: end if
13: end for
14: end function
15: function Combiner(i, List-PN(i))
16: List-Gcd(i)← ∅ ; k ← 0
17: for all PN(i)k ∈ List-PN(i), k < ‖List-PN(i)‖ do
18: Gcd(i)← Gcd(PN(i)k) . Computing Gcds
19: k ← k + 1
20: end for
21: List-Gcd(i)← Gcd(i)
22: Emit(i, List-Gcd(i))
23: end function
24: function Reducer(i, List-Gcd(i))
25: Clos(i)← ∅ ; CFI ← ∅
26: for all Gcd(i) ∈ List-Gcd(i) do
27: Clos(i)← Gcd(List-Gcd(i)) . Results shuffling
28: end for
29: CFI ← i ∪ Clos(i) . ∪ : Operation to join items
30: end function

ing the end of Map phase, there are usually nodes that are idle waiting for the
others to finish. It is worth using these nodes for reducing the amount of data
that should be transferred from mappers to reducers. The main issue is to find
the adequate decomposition of the problem, such that one part of the load may
be given to a node that may do some pre-processing and save time to the re-
ducers. This can be done thanks to the nice properties of the Gcd, which may
be divided into parts of any size. In fact, having a unique Gcd for multiple
integers, its computation can be done in a successive manner, while maintain-
ing the correctness of the final results. Let us consider that we have n mappers
{M1, ...,Mn}, and on each mapper i we have Mi,k numbers (Vtk) associated to
key k. Then, we can compute Gcdi,k(Mi) the local Gcd of mapper i for k on
the Mi,k Vtk it contains. Later, instead of receiving

∑n
i=1Mi,kVtk for key k, a re-

ducer will receive a much lower amount of numbers, corresponding to the results
of this pre-computing (n, in the ideal case).

Thus, in DCIM, we anticipate the next step of calculating Gcds, avoiding
heavy synchronization, and significantly reducing the computing time by per-
forming a reduce-type function, called combiner, before starting the reduce phase
of the proposed algorithm. Doing so, we limit the volume of data transfer between
the map and reduce tasks. This function runs on the output key-value pairs of
the map phase which are not immediately written to the output and already
available in memory. Instead, they will be collected in lists, one list per each
key value. Also, in our new algorithm, we set the combiner class as a shuffling
class where all instances of Map’s output are handled as a set of transactions,
represented as a set of Vti . In fact, for each map output key, the combiner func-
tion is called and tries to compute the global Gcd taking Vtis one by one and
applies a series of Gcd calculations between them. It is obvious that, besides the
technical tricks, passing summarized Gcds to the reduce phase of the algorithm
enhances the computation and calculation time.Pseudo-code of Map, Combiner
and Reduce phases to enumerate CFIs is sketched in Algorithm 1. An example
of DCIM running is presented in Figure 2.

Illustrative example : Figure 1 illustrates how DCIM works on a dataset
T . First, having a minimum support θ = 2, the frequency counting pass pro-
vides the Frequency-List containing items of T with their primes linked sorted
in descendent order of frequencies (in case of same frequencies we applied alpha-
betical order on items). Then, the second MapReduce pass of DCIM is sketched
in Figure 2. Starting by the less frequent items from each transaction, DCIM
decompose the Vti to construct Sub-Datasets. In the example, the first mapper
took {CA} as a transaction. Having frq(A) ≤ frq(C), DCIM starts by dividing
Vt1 by ”7” the prime associated to {A}. The mapper provides {C} as a trans-
action for A-Sub-Dataset as a first result. Reciprocally, {A} is provided as a
transaction for C-Sub-Dataset. The same calculations are applied for the rest
of the mappers. Treating {A} as a combine inputs in the second table of the
example, A-Sub-Dataset is delivered as a set of Vts (e.g. {C}=3, {BCE}=30,
{BCE}=30). With a Gcd= 3 which is the prime associated to {C}, {AC} is
a closed frequent itemset. The same calculations are applied to itemset {AB},

Map Inputs (Vti
) Processing Vti

Map Outputs (Sub-DS)

{CA} = {21} 21 = 3× 7 {A} = 7 : {C} = 3

{BCE} = {30} 30 = 2× 3× 5 {E} = 5 : {BC} = 6

6 = 2× 3 {C} = 3 : {B} = 2

{BCEA} = {210} 210 = 2× 3× 5× 7 {A} = 7 : {BCE} = 30

30 = 2× 3× 5 {E} = 5 : {BC} = 6

6 = 2× 3 {C} = 3 : {B} = 2

{BE} = {10} 10 = 2× 5 {E} = 5 : {B} = 2

{BCEA} = {210} 210 = 2× 3× 5× 7 {A} = 7 : {BCE} = 30

30 = 2× 3× 5 {E} = 5 : {BC} = 6

6 = 2× 3 {C} = 3 : {B} = 2

Combine Inputs (Sub-DS) CFI Mining → Reduce Outputs

{A} = 7 : {3, 30, 30} Gcd(3, 30, 30) = 3 ⇒ 3 × 7 = 21

21 = {AC} ⇒ {AC} is CFI

{AB} = 14 : {15, 15} Gcd(15, 15) = 15 ⇒ 14 × 15 = 210

210 = {ABCE} ⇒ {ABCE} is CFI

{AE} ? → {AE} ⊆ {ABCE} Stop

{E} = 5 : {6, 2, 6, 6} Gcd(6, 2, 6, 6) = 2 ⇒ 2 × 5 = 10

10 = {BE} ⇒ {BE} is CFI

{EC} = 15 : {2, 2, 2} Gcd(2, 2, 2) = 2 ⇒ 2 × 15 = 30

30 = {BCE} ⇒ {BCE} is CFI

{C} = 3 : {7, 2, 2, 2} Gcd(7, 2, 2, 2) = 1 ⇒ 1 × 3 = 3

3 = {C} ⇒ {C} is CFI

Fig. 2: Illustrative example: Map, Combiner and Reduce Phases of DCIM

taking into account its Sub-dataset as inheritance from A-Sub-dataset and so
one. The process is stopped in each reducer in two cases. A first case when there
is no other item to treat from mappers outputs and a second phase when there
is an inclusion relation between closed itemset found and those provided before
the latter.

4.2 Optimizing Strategies

The load-balancing technique presented above is a key for high performances.
However, massively distributed data mining applied to very large databases calls
for thorough optimizations. In this section, we provide insightful optimizing
strategies for improving the performance of DCIM in practice.

Document splitting : Collection frequencies of items can be exploited to re-
duce required work by splitting up every document adopting the item-based
partitioning approach. The main idea is to observe the transactional dataset
and fit each mapper with a group of dependent transactions. Thus, assuming
i ∈Frequency-List a frequent item, we can split the document by searching trans-
actions containing i concatenated to other items having the same supports as
i and so on. This allows not only to have fair splits between mappers, but also
reduces the time complexity of each mapper by pruning transactions not needed
to extract the Sub-Dataset of the item in question.

Multiplying Big Integers : In large datasets, transforming data into numer-
ical forms may generate big integers for which we developed special multiply
operator. Before describing this operator, let us recall some definitions about

big integers. A big integer X is handled thanks to its polynomial representation
in a given base B as X = x0 ×B0 + x1 ×B1 + x2 ×B2 + ...+ xn ×Bn, where B
usually depends on the maximal size of the basic data types and the coefficients
xi (also called limbs) are basic number data types (such as long or double in
Java) and fulfill 0 < xi < B.

Due to the format of our final output, we treat the base B as a power of
10. It significantly reduces the memory usage of the DCIM algorithm. Given
two big integers X and Y in their respective canonical forms as follows, X =∑m
i=0(xi × Bi) and Y =

∑n
i=0(yi × Bi), the big integer Z = X × Y can be

obtained thanks to Zi =
∑
k+l=i(xk × yl).

Using these basic definitions, for large integers of size n, all the operations
addition, substraction, product and division have a complexity of O(n). This
means that the number of basic operations on basic data storage type is propor-
tional to n. Interestingly enough, for the classical product and division opera-
tions, the complexity is O(n2) for multiplying and dividing two integers of size
n, when n becomes big, this cost becomes very handicapping. When handling
huge integers, it is then of interest to try to obtain a faster algorithm for multi-
plication and division operations.There are some solutions proposed to overcome
the above-mentioned problem, and we tried most of them. One of them is the
Karatsuba algorithm [17] proposed for an efficient multiplication of big integers.
Karatsuba was the first to observe that multiplication of large integer can be
made faster than O(n2). However, its method is a recursive one. It reduces the
number of multiplications from the four products x0 × y0, x0 × y1, x1 × y0 and
x1× y1 to three by dividing the big integers in two parts. To minimize the com-
plexity caused by Karatsuba, a second algorithm called Toom-Cook algorithm
was implemented [18]. In fact, Toom-Cook algorithm takes X and Y as two big
integers, and splits them into j lower parts each of length i, and operates on
the parts. As j grows, one may mix many of the multiplication sub-processing,
thus reducing the overall complexity of the algorithm. The multiplication sub-
operations can then be computed recursively using Toom–Cook multiplication
again, and so on. Nevertheless, the complexity of Toom-Cook can be further
reduced. Indeed, the product of two large integers of size n can be done in
O(n log(n)) thanks to Fast Fourier Transform techniques detailed in follow. In
fact, two large integers X and Y of size at most n−1 can be written in the form
of X = X(B) and Y = Y (B), where B is the base (B a power of 10) and X

and Y two polynomials as X(z) =
∑n−1
i=0 (xi × zi) and Y (z) =

∑n−1
i=0 (yi × zi).

Denoting by R(z) the polynomial obtained by the product of X(z) and Y (z), we
have XY = R(B) and a final rearrangement on the coefficients of R(z) permits
to obtain the product XY . Thus, we are lead to the problem of multiplying
two polynomials of degree lower than n. A polynomial of degree lower than n is
uniquely defined from its evaluations at n distinct points. Therefore, to obtain
the product R(z) = X(z)Y (z), it is sufficient to compute the values R(wk) at
2× n distinct points of wk, that are computing X(wk) and Y(wk).

The Fast Fourier Transform idea consists in choosing for wk the complex
roots of unity Ω like wk = exp(2iΠk

2n) = Ωk where Ω = exp(2iΠ
2n).

Thus, FFT algorithm proceeds with a transformation technique called the
Fourier Transform. For a given sequence X = (x0, x1, ..., x2n−1) derived from

X(z) =
∑n−1
i=0 (xi × zi), the algorithm computes its Fourier transform F using

Ω from below as follows.
F (X) = (f0, f1, ..., f2n−1) ; fk =

∑2n−1
j=0 (xjΩ

jk)
where the conjugate Fourier transform is :
F (X) = (f0, f1, ..., f2n−1) with fk =

∑2n−1
j=0 (xjΩ

−jk).
Roughly speaking, to compute the coefficients fk of F (X), the transformation
performs the following steps:

1. Define two sub-sequences of size n:
X0=(x0, x2, ..., x2n−2) ; X1=(x1, x3, ..., x2n−1)

2. Compute the Fourrier transform:
F (X0)=(a0, a1, ..., an−1) ; F (X1)=(b0, b1, ..., bn−1)

3. Deduce the Fourier Transform F (X) with the formulas:
fk=ak +Ωkbk ; fn+k=ak −Ωkbk ; 0 ≤ k ≤ n

We now present formally the algorithm to multiply big numbers with FFT
algorithm. Let X and Y be two big integers with less than n coefficients. To
compute Z = X × Y in time O(n log(n)), FFT performs the following steps:

1. Compute the Fourier transform X ′ and Y ′, of size 2n each, of the sequences
xj and yj : X ′ = (x′0, x

′
1, ..., x

′
2n−1) ; Y ′ = (y′0, y

′
1, ..., y

′
2n−1)

2. Compute the product term by term in Z ′: Z ′ = (z′0, z
′
1, ..., z

′
2n−1) ; z′i = x′i×y′i

3. Compute the inverse Fourier transform Z of Z ′ with the conjugate FFT
process: Z = (z0, z1, ..., z2n−1) ≡ 1

2nF (Z)

And finally, after rearrangement of the coefficients zi, the number
Zi =

∑2n−1
0 (ziB

i) is equal to the product of X by Y . The algorithm con-
sists in computing two FFTs of size 2n and one reverse FFT of size 2n. Thus
the product of two large integers with n digits has a complexity asymptotically
equal to 3 FFTs, let’s say O(n log(n)3).

Reducing the Size of Prime Numbers : Dealing with large datasets leads
us to efficiently manipulate large numbers. Thus, in addition to the efficient
multiplication operator, we also tried to reduce the size of generated numbers
as much as possible. In fact, when analyzing our execution logs, we observed
that items with low-frequency are much more numerous than those having high
support values. Thus, for performance enhancements, we tried to attribute the
lower primes to items that have higher frequencies. This idea remarkably reduced
the running time of our algorithm.

5 Experimental Evaluation

Setup and Implementation : To perform our experiments, we used one of the
clusters of Grid50004 which is a large-scale and versatile test-bed for experiment-
driven research on parallel and distributed computing. Our experiments were

4 https://wiki.inria.fr/ClustersSophia/Clusters_Home

performed on a cluster with 32 nodes (384 cores in total), equipped with Hadoop
2.6.0 version. Each machine is equipped with linux operating system, 96 Giga-
bytes of main memory, dual-Xeon X5670 with 2.93GHz 12 core CPUs and 320
Gigabytes SATA hard disk.

Due to lack of parallel CFI mining approaches in the literature, we compared
our algorithm to our own parallel implementation of Closet in MapReduce. We
used three Map Reduce jobs. The first job is dedicated to generate the frequency
list containing all items in the dataset and for each one we associated its number
of occurrences (support) and the final list was sorted in descending order of
supports. The second job in Closet takes the entire dataset and removes all the
infrequent items. Eventually, the third job achieves the CFI mining process. The
latter divides the dataset in Map phase into multiple splits using the item-based
partitioning approach mentioned earlier in section 4.2. The Map phase finds for
each frequent item its Sub-Dataset and the associates header table. The Reduce
phase starts by comparing the supports of the items with the supports of the
itemsets in the header table of the corresponding Sub-Dataset. Those which have
the same supports, their string concatenation produces a CFI which is stored in
a hash-table with its corresponding supports.

Finally, we also compared DCIM to the parallel PFP-Growth [11] imple-
mentation of the FP-Growth algorithm (Pfp in short) for MapReduce. Pfp is
dedicated to extraction of frequent itemsets only (and the generation of fre-
quent itemsets from closed frequents one can be done in a significant amount of
time). However, this is an interesting comparison to a well-known approach of
the literature. The default values for Pfp in our experiments are: Q = 30, 000
(the number of groups containing dependent transactions, for the construction
of the corresponding FP-Trees from Sub-Datasets to each itemset candidates)
and K = 90 (the number of top frequent itemsets). For more details see [11].

Datasets. We carried out our tests on two real-life datasets. The first one,
called ”English Wikipedia”, represents a transformed set of Wikipedia articles
into a transactional dataset, each line mimics an article. It contains 8 millions
transactions with 7 millions distinct items, in which the maximal length of a
transaction is 150, 000, and the size of the whole database is 4.7 Gigabytes. The
second dataset, called ”ClueWeb”, consists of Web pages that were collected in
January and February 2009 and is used by several tracks of the TREC confer-
ence. During our experiments, we used a part of this dataset with 53 millions
transactions including 11 millions items with a maximal length of a transaction
of 700,000. The size of the considered ”ClueWeb” dataset is 24.9 Gigabytes.

Runtime. Figures 3 and 4 show the results of our experiments on both English
Wikipedia and ClueWeb datasets (respectively). Figure 3a reports the compar-
ative performance of DCIM under different values of minimum support (θ) less
then 1% of the overall size of the dataset. We see that DCIM sharply outper-
form both other algorithms. In fact, Wikipedia dataset contains a most equally
number of items and transactions. Thus, as far as θ value is low, Pfp and
Closet generate too many candidates, and a lot of long Sub-datasets for each
one. So, the inclusion tests and evaluations under the pruning methods used in

70 60 50 40 30
0

2000

4000

6000

8000

10000

12000

Minimum Support x 10
−3

E
xe

c
u

ti
o

n
 T

im
e

 (
s
)

Closet

DCIM

PFP

(a) All algorithms

40 30 20 10
0

2000

4000

6000

8000

10000

12000

14000

Minimum Support x 10−3

E
xe

cu
tio

n
T

im
e

(s
)

Closet
DCIM
PFP

(b) Focus on scalable algorithms

Fig. 3: Runtime on the English Wikipedia dataset with a cluster of 16 nodes

700 600 500 400 300
0

5000

10000

15000

20000

25000

30000

Minimum Support x 10
−3

E
xe

c
u

ti
o

n
 T

im
e

 (
s
)

Closet

DCIM

PFP

(a) All algorithms

400 300 200 100 50
0

5000

10000

15000

20000

25000

30000

35000

Minimum Support x 10
−3

E
xe

c
u

ti
o

n
 T

im
e

 (
s
)

Closet

DCIM

PFP

(b) Focus on scalable algorithms

Fig. 4: Runtime on the ClueWeb dataset with a cluster of 16 nodes

these two algorithms causes lead as expected to poor performances. Therefore,
the response time of Pfp and Closet grows exponentially and gets quickly
very high. DCIM overcomes these problems by using prime numbers to gen-
erate the Sub-datasets through division operations. Furthermore, the Gcd in
each Sub-dataset has eliminated the check of supports between the candidate
and its deduced closure, leading to much better performances. For instance, on
the wikipedia dataset, the difference in response time is 5% with a support of
θ = 60× 10−3, while it grows up to 43% with a support of θ = 10× 10−3.

Figure 3b highlights the difference between the algorithms of Figure 3a that
scale. Although Closet continues to scale with θ = 40×10−3 , it is outperformed
by DCIM, while Pfp does not scale for lower threshold values. Also, with θ ≤
20×10−3, we clearly observe a significant difference in the response time between
DCIM and all the algorithms from the state of the art, owing to its robust
and efficient core mining process. In Figures 4a similar experiments have been
conducted on the ClueWeb data set, and we observe very similar behaviors

4 8 12 16 20 24 28 32
0

2000

4000

6000

8000

10000

12000

14000

Number of Nodes

E
xe

c
u

ti
o

n
 T

im
e

 (
s
)

Closet

DCIM

PFP

(a) All algorithms

4 8 12 16 20 24 28 32

1000

1500

2000

Number of Nodes

E
xe

c
u

ti
o

n
 T

im
e

 (
s
)

DCIM

(b) Focus on DCIM

Fig. 5: Speed-up on the English Wikipedia dataset, θ = 50× 10−3

4 8 12 16 20 24 28 32
0

4000

8000

12000

16000

20000

24000

28000

Number of Nodes

E
xe

c
u

ti
o

n
 T

im
e

 (
s
)

Closet

DCIM

PFP

(a) All algorithms

4 8 12 16 20 24 28 32

2000

3000

4000

Number of Nodes

E
xe

c
u

ti
o

n
 T

im
e

 (
s
)

DCIM

(b) Focus on DCIM

Fig. 6: Speed-up on the ClueWeb dataset, θ = 500× 10−3

(i.e., DCIM outperforms existing approaches, and the same order between all
algorithms is kept).

Speedup. In order to assess the speed-up of our approach, we performed ex-
periments where we measured the response times with a varying number of
computing nodes. In Figures 5 and 6, we performed multiple evaluations over
different number of nodes, whith θ = 50× 10−3, on the Wikipedia and ClueWeb
datasets (respectively). Figures 5a and 6a show the comparative speed-up results
of all algorithms, and confirm the clear advantage of DCIM for all the possible
settings in the number of nodes. Figures 5b and 6b focus on the speed-up of
DCIM only. This is the same number of nodes and same value of θ (and, of
course, the same response times for each number of nodes), with a magnified
view on DCIM. We can observe the very good speed-up of DCIM which, by
taking into account parallel optmizations in its core design, benefits from an
increase in the number of computing nodes.

6 Conclusion

In this paper, we proposed a reliable and efficient parallel algorithm for CFI
mining namely DCIM, that shows significantly better performances than ap-
proaches from the state of the art. In addition to using prime numbers and
processing big integers, we provide DCIM with optimizations designed towards
massive distribution and the MapReduce framework. The results illustrate that
our method outperforms other alternatives, mainly by reducing the overhead of
data exchange between nodes.

Acknowledgments

This work has been partially funded by the European Commission under the
CloudDBAppliance project (grant 732051) and performed in the context of the
Computational Biology Institute in Montpellier.

References

1. Sandy Moens, Emin Aksehirli, and Bart Goethals. Frequent itemset mining for
big data. In Proceedings of IEEE’13 on Big Data, Santa Clara, CA, USA, 2013.

2. Ana Gainaru, Franck Cappello, Stefan Trausan-Matu, and Bill Kramer. Event log
mining tool for large scale hpc systems. In Proceedings of Euro-Par’11, Berlin,
Heidelberg, 2011.

3. Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan. Mining
console logs for large-scale system problem detection. In Proceedings of SysML’08,
Berkeley, CA, USA, 2008.

4. Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discovering fre-
quent closed itemsets for association rules. In Proceedings of ICDT’99, Jerusalem,
Israel, 1999.

5. Ke Chen, Lijun Zhang, Sansi Li, and Wende Ke. Research on association rules par-
allel algorithm based on fp-growth. In Proceedings of the ICICA’11, Qinhuangdao,
China, 2011.

6. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. J. Commun. ACM, 2008.

7. Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster computing with working sets. In Proceedings of USENIX,
HotCloud’10, Boston, MA, USA, 2010.

8. Su-Qi Wang, Yu-Bin Yang, Yang Gao, Guang-Peng Chen, and Yao Zhang.
Mapreduce-based closed frequent itemset mining with efficient redundancy filter-
ing. In Proceedings of IEEE’12 ICDM, Brussels, Belgium, 2012.

9. Osmar R. Zäıane, Mohammad El-Hajj, and Paul Lu. Fast parallel association rule
mining without candidacy generation. In Proceedings of IEEE’01 ICDM, San Jose,
California, USA, 2001.

10. Eric Li and Li Liu. Optimization of frequent itemset mining on multiple-core
processor. In Proceedings of VLDB’07, Vienna, Austria, 2007.

11. Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, and Edward Y. Chang. Pfp: par-
allel fp-growth for query recommendation. In Proceedings of RecSys’08, Lausanne,
Switzerland, 2008.

12. Jianyong Wang, Jiawei Han, and Jian Pei. CLOSET+: searching for the best
strategies for mining frequent closed itemsets. In Proceedings of SIG-KDD’03,
Washington, DC, USA, 2003.

13. Claudio Lucchese, Salvatore Orlando, and Raffaele Perego. Fast and memory effi-
cient mining of frequent closed itemsets. J. IEEE’06, 2006.

14. Benjamin Négrevergne, Alexandre Termier, Jean-François Méhaut, and Takeaki
Uno. Discovering closed frequent itemsets on multicore: Parallelizing computations
and optimizing memory accesses. In Proceedings of HPCS’10, pages 521–528, Caen,
France, 2010.

15. Takeaki Uno, Tatsuya Asai, Yuzo Uchida, and Hiroki Arimura. LCM: an efficient
algorithm for enumerating frequent closed item sets. In Proceedings of the ICDM
2003 Workshop on Frequent Itemset Mining Implementations, Melbourne, Florida,
USA, 2003.

16. Shui Wang and Le Wang. An implementation of fp-growth algorithm based on
high level data structures of weka-jung framework. J. JCIT, 2010.

17. Christophe Nègre. Efficient binary polynomial multiplication based on optimized
karatsuba reconstruction. J. Cryptographic Engineering, 2014.

18. Alberto Zanoni. Iterative toom-cook methods for very unbalanced long integer
multiplication. In Proceedings ISSAC’10, Munich, Germany, 2010.

DCIM: Une Approche Massivement Distribuée pour
l’Extraction de Motifs Fermés Fréquents

Résumé

L’extraction d’itemsets fermés fréquents (IFF) est l’un des principaux défis de la
fouille de données, car elle permet de découvrir des itemsets avec une meilleure
efficacité et une plus grande compacité de résultats. Cependant, la découverte de
ces itemsets dans des données massivement distribuées pose un certain nombre de
problèmes qui ne sont pas abordés par les méthodes traditionnelles. Une solution
pour ce problème est de tirer parti des environnements parallèles, comme MapRe-
duce ou Spark, qui permettent de fabriquer de puissantes unités de calculs et de
stockage à partir de machines ordinaires. Malheureusement, les implémentations
directes d’algorithmes de fouille de données, dans de tels environnements, sont
des échecs puisque les principes de distribution ne sont pas pris en considération.
Nous abordons le problème de l’extraction des IFF à partir de données massives
en introduisant un nouvel algorithme parallèle appelé DCIM. Notre algorithme
utilise une approche basée sur les nombres premiers en utilisant uniquement les
opérations de multiplication et de division. Une caractéristique clé de DCIM
est la combinaison de propriétés de la fouille de données avec les principes de
la distribution massive de données. Nous avons effectué des expérimentations
complètes sur de grands ensembles de données du monde réel pour évaluer les
performances de DCIM. Les résultats obtenus mettent en évidence l’efficacité de
DCIM avec des données qui contiennent jusqu’à 53 millions d’articles.

