
HAL Id: lirmm-01620239
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620239

Submitted on 23 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

End-to-end Graph Mapper
Benjamin Billet, Mickaël Jurret, Didier Parigot, Patrick Valduriez

To cite this version:
Benjamin Billet, Mickaël Jurret, Didier Parigot, Patrick Valduriez. End-to-end Graph Mapper. BDA:
Gestion de Données - Principes, Technologies et Applications, Nov 2017, Nancy, France. �lirmm-
01620239�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620239
https://hal.archives-ouvertes.fr

End-to-end Graph Mapper
Benjamin Billet

Inria, Sophia-Antipolis, France
benjamin.billet@inria.fr

Mickaël Jurret
Beepeers, Sophia-Antipolis, France

mickael.jurret@beepeers.fr

Didier Parigot
Inria, Sophia-Antipolis, France

didier.parigot@inria.fr

Patrick Valduriez
Inria, Sophia-Antipolis, France
patrick.valduriez@inria.fr

ABSTRACT
The growth of linked data in web and mobile applications motivates
software developers tomodel their business data as graphs, enabling
them to leverage the capabilities of various graph databases. Going
one step further, we introduce an End-to-end Graph Mapper (EGM)
for modeling the whole application as (i) a set of graphs represent-
ing the business data, the in-memory data structure maintained
by the application and the user interface (tree of graphical compo-
nents), and (ii) a set of standardized mapping operators that maps
these graphs with each other. As a benefit, the application becomes
a complex live query over multiple graph databases, making the
development process simpler and safer, thanks to the automation
of repetitive development tasks.
Thiswork is done in collaborationwith Beepeers (www.beepeers.com),
a startup that develops and markets social network mobile applica-
tions for small communities.

CCS CONCEPTS
• Information systems→ Graph-based database models; • Soft-
ware and its engineering→Model-driven software engineering;

KEYWORDS
Graph Databases; Object-Graph Mapping; Linked Data; Software
Development

1 INTRODUCTION
Nowadays, an increasing number of mobile and web applications
deal with linked data (e.g., social networks, online stores, recom-
mendation systems) which leads developers to model their data
as graphs. In this context, it is natural to use a Graph Database
Management System (GDBMS) as an alternative to a relational
DBMS, since it provides (i) dedicated data structures for storing
nodes, links and key/value pairs efficiently, and (ii) query engines
for browsing these structures easily [7].

In practice, web and mobile applications are typically composed
of a client part and a server part that communicate with each other
using web services. In a nutshell, the client part provides a graphical
interface for the user while the server part manages the application
logic and communicates with a standalone database for storing the
linked data. As illustrated in Figure 1, each part of the application
relies on dedicated data structures managed by specialized data
management systems: for example, the user interface manages a
tree of queryable graphical components (e.g., the document object

Internet

Data

Queries

GDBMS

Server Client UI Data

Queries

GDBMS Server Entity
Graph

Data

Queries

Client Entity
Graph

UI Tree

Code-driven

Data-driven
UI Tree | Client Graph Mapping Operator

𝒪GUI
𝒪CNM

𝒪SNM

𝒪OGM

𝒪GUI

𝒪CNM

𝒪OGM

Client Entity Graph Queries | Web Services Call Mapping Operator

Server Entity Graph | GDBMS Mapping Operator
𝒪SNM Server Entity Graph | Web Services Response Mapping Operator

Figure 1: Representing applications as mapping operators.

model1, in the context of web interfaces), the client application
maintains a queryable cache containing offline server data or a
data store specialized for specific types of applications (e.g., the
knowledge base in Yarta) [9], and the server application manages
queryable in-memory entities that are mapped onto actual database
entities (e.g., object-relational mappers) [8].

The development of such applications is typically done by writ-
ing code or models, which tends to be tedious and error-prone
given the repetitive scenarios that must be implemented by the
developers. For example, two common scenarios consist in (i) filling
a user interface with data retrieved from the server while maintain-
ing a local cached version of these data in case of network failure
and (ii) sending data to the server when the user interacts with the
application while maintaining a stack of redoable actions in case of
network failure.

As a solution, we introduce a data-driven approach, called End-
to-end Graph Mapping (EGM), where (i) all the specialized data
structures are materialized views of a larger dataset queried by
end users, this dataset being stored by the GDBMS, and (ii) the
whole application is modeled as a live query over these views. The
query itself is a composition of dedicated mapping operators that
automatically transforms data from one view to another, based on
the view schemas and a set of mappings between these schemas. As
a benefit, the main task of the developers consists into providing the
data source schemas and the mappings between them. Thanks to
the schemas, the constraints defined for each data type are always
ensured at each step of the application (both client- and server-
side), thus reducing the risk of inadvertent errors. Thanks to the
1https://www.w3.org/DOM

BDA, November 2017, Nancy, France Benjamin Billet, Mickaël Jurret, Didier Parigot, and Patrick Valduriez

mappings, the repetitive development tasks are automated by the
mapping operators that automatically transforms the data between
the application parts.

The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 illustrates the core concepts and
capabilities of our EGM approach, through two simple application
use cases. Section 4 discusses the current EGM implementation.
Section 5 concludes with our perspective for future work.

2 RELATEDWORK
Many engineering techniques have been proposed for improving
the efficiency of application development, based on declarative ap-
proaches. Such solutions are typically based on the translation of
domain-specific languages [6] or models [3] into the actual appli-
cation code. These approaches are designed for code production
and the underlying concepts (class modeling, formal grammar, lan-
guages) are strongly tied to software development.

In contrast, instead of focusing on the code and its modeling, our
approach emphasizes the data aspects and how they are queried and
processed by the various data stores that compose the application
(store of graphical components, caches, graph databases, domain-
specific data stores, mapped in-memory data structures, etc.). From
this perspective, our work can be related to multistore systems, i.e.,
systems that provide integrated access to heterogeneous data stores
through one or more query languages [2]. Our approach indeed
abstracts various specialized data sources, but introduces a set of
dedicated operators used to represents the whole application as a
live query over the abstracted data..

3 END-TO-END GRAPH MAPPING
Our EGM specifically targets applications composed of a client part
and a server part. The server-side application includes:

• A standalone GDBMS that maintains a full graph, i.e., the
whole set of linked data.

• A server graph, i.e., a graph of in-memory entities that are
mapped on the actual GDBMS entities.

• Various web services for reading/updating the server graph
(and, by extension, the full graph).

Similarly, the client-side application includes:
• A set of UI screens with which the user interacts.
• A client graph, which is a simplified version of the full graph.
This client graph is maintained by the mobile application
to remain usable when the network is not available (down-
graded mode).

To illustrate the capabilities of our EGM, we consider a simple
application use case throughout this paper. In essence, this appli-
cation enables users to watch video talks and evaluate them by
(i) providing comments or “likes” and (ii) by answering small sets of
questions. Two scenarios are considered for covering the concepts
of the EGM:

• Scenario 1: the user opens a talk page that displays a brief
summary of the talk, the video file, the questionnaire results
and the last comments.

Step 1 – A retrieve query
is issued to the client

graph

Step 2 – The query is
translated to a Web

service call

Step 3 – The query is
translated into a server

graph query

Step 4 – The query is
translated to a GDBMS

query

Step 5 – Store the results
into the server graph.

Step 6 – Serialize the
results into the Web

service response

Step 7 - Deserialize the
results and store it into

the client graph

Step 8 - Updates the UI
with the relevant data

the user can read the
grades and the comments

the user selects a talk in
the list of talks

CLIENT GRAPH

SERVER GRAPH

CLIENT GRAPH

SERVER GRAPH

GDBMS QUERY execute the
GDBMS query

GDBMS RESULTS

UI TREE

𝒪OGM

𝒪GUI

𝒪CNM

UI TREE

𝒪SNM

C
L
I
E
N
T
-
S
I
D
E

S
E
R
V
E
R
-
S
I
D
E

Figure 2: Typical application flow.

• Scenario 2: once a talk page is opened, the user can provide
a comment, give a “like” to the talk or answer the question-
naire.

As an example, Figure 2 illustrates Scenario 1: when a talk page
is opened, (1) a retrieve query is issued to the client graph. If the
data are not available locally, (2) the query is translated into a web
service call, asking the server to return the data associated to this
talk. The server (3) issues a retrieve query to the server graph and
(4) this query is translated into the query language of the GDBMS.
The GDBMS processes the query and returns a set of results (e.g., a
sub-graph). The server (5) transforms these results into in-memory
entities that are stored into the server graph, (6) serializes these
entities using an exchange format (e.g., JSON, XML) and sends the
serialized results to the client. Finally, the client (7) deserializes
these results into the client graph and (8) fills the UI screen with the
relevant attributes of the Talk node (e.g., the attributes that have
changed).

This kind of scenario is very common in mobile and web appli-
cation development and our EGM enables developers to replace
each step by a well-defined mapping operator between two graphs.
These steps indeed consume and produce graph-oriented data (full
graph, client graph, server graph) or tree-oriented data (user inter-
face, JSON documents) that can be mapped with each other. Our
EGM defines and standardizes the mapping operators required to
write such scenarios and provides reusable implementations of
these operators. Once all the mapping operators are parameterized
with the proper information (typically a set of mapping definitions),
the application can be represented as a sequence of graph mappings
between the user interface and the full graph.

The remainder of this section will describe the mapping oper-
ators introduced by our EGM for client-side (mapping the user
interface to the client graph), server-side (mapping the GDBMS
content to the server graph) and between the two sides.

End-to-end Graph Mapper BDA, November 2017, Nancy, France

Talk:
attributes: {title, string}, {startTime, date},

{endTime, date}, {summary, string}
User:

attributes: {name, string, mandatory}
Evaluation:

attributes: {comment, string}, {like, boolean},
{question1, boolean}, ...

links: {evaluated, Talk, one-to-one},
{evaluator, User, one-to-one}

Figure 3: Example of full graph schema.

3.1 Full Graph Modeling
In our approach, the full graph is modeled as a directed graph where
each node is defined by a node type, a unique vertex identifier (VID)
and a set of attribute values, while each link is defined by a label.
The full graph schema describes each node type by a name, a set of
attributes and a set of outgoing links. An attribute is specified by a
name, a primitive type (number, string, boolean, date, array), a value
domain, a default value and some flags for expressing additional
constraints regarding the attribute (e.g., “mandatory”, “read-only”).
A link is specified by a name, a type of destination node and a
cardinality (minimum and maximum number of links).

The full graph schema associated to our application use case is
illustrated by Figure 3, which defines (i) a simple set of attributes
for the types Talk, User and Evaluation and (ii) the links from an
Evaluation node to one Talk node (evaluated) and one User node
(evaluator).

3.2 Mapping the Client Graph and the User
Interface

Steps 1 and 8 of Figure 2 represents the mappings between the client
state and the user interface. For example, when the user comments
a talk, we want to insert automatically the comment text into the
client graph when the user validate. Given that a user interface is
typically modeled as a UI tree (e.g., the document object model for
web pages), our EGM defines Step 1 as a mapping operator OGU I
from the UI tree to the client graph. Step 8 is defined as a reverse
mapping operator O−1

GU I , that applies the reverse transformation
of OGU I by mapping the client graph to the UI tree.

Both operators take a set of mapping definitions to operate prop-
erly. Figure 4 illustrates such definitions for OGU I , based on Sce-
nario 1. In this definition, the content of a text input (TextBox1), the
state of a like button (LikeButton1) and the value of a radio group
(RadioGroup1) are mapped to the “comment”, “like” and “question1”
attributes of the Evaluation node type.

When the user fills and validates the form by clicking on a button
(Button1), the value of each mapped graphical component will be
inserted in a new Evaluation node, according to the query mapped
to the button.

Similarly to OGU I , O−1
GU I takes a set of additional mappings

to perform the transformation from the client graph to the user
interface. As shown in Figure 4, a custom expression maps the
number of Evaluation nodes containing a like to the like button
counter (LikeButton1.count).

TALK

Let us a comment here

Does this work relate to
your research interests ?

Send

Screen1

TitleBar1 Page1

Text2

Text3

Text4

RadioGroup1

TextBox1

LikeButton1

Text1

Icon2

Icon1

Like 12

Yes No

RadioButton1

RadioButton2

Button1

(a) UI Component Tree

OGU I :
TextBox1.text = Evaluation.comment
RadioGroup1.value = Evaluation.question1
LikeButton1.isActive = Evaluation.like
Button1.click = insert TextBox1.text, RadioGroup1.value, LikeButton1.isActive

O−1
GU I :
LikeButton1.count = count(select in(Evaluation) where like = 1)

(b) Example of mapping definitions for OGU I and O−1
GU I

Figure 4: Example of user interface and client state map-
pings.

3.3 Mapping the Server Graph and the Full
Graph

When a web service provided by the server is invoked, queries for
reading or updating the server graph are issued (Step 3). These
queries are automatically translated into GDBMS-specific queries
for reading or updating the full graph (Step 4). The GDBMS pro-
cesses the queries and returns a set of results that are converted
into server graph entities (Step 5). These entities are serialized into
an exchange format (Step 6) and sent back to the client for updating
the client graph.

In applications based on relational databases, the mapping be-
tween the server application and the standalone database can be
managed automatically by an object-relational mapper, which maps
the database types to the data structures of the language the server
application is written with (e.g., Java classes). Similarly, our EGM
includes an object-graph mapper [4] for mapping the types of the
full graph to the types of the server graph.

Step 4 is performed by the mapping operator OOGM parame-
terized with a set of definitions that maps each type of the server
graph to the corresponding type of the full graph, enabling the
server to build the relevant GDBMS requests. The reverse mapping
operator O−1

OGM uses the same definitions for mapping the query
results types to the server graph types.

Figure 5 illustrates a OOGM definition for Scenario 1, where
three Java classes, called Talk, Evaluation and User, are mapped to
the Talk, Evaluation and User types of the full graph schema.

BDA, November 2017, Nancy, France Benjamin Billet, Mickaël Jurret, Didier Parigot, and Patrick Valduriez

class Talk {
private String talkTitle;
...
private List<Evaluation> evaluations;
private List<User> evaluators;

}
class Evaluation {

private Boolean like;
private String comment;
private Boolean question1;
private Talk talk;
private User user;

}
class User {

private String name;
private List<Talk> evaluatedTalks;

}

(a) Java classes

OOGM :
Talk.class:
graphType: Talk
attributes: {talkTitle, title}, ...,
links: {evaluations, in(evaluated)}

{evaluators, in(evaluated).evaluator}
autofetch: in(evaluated)
autodelete: in(evaluated)

Evaluation.class:
graphType: Evaluation
attributes: {liked, like}, {comment, comment}, {question1, question1}
links: {talk, out(evaluated)}
autofetch: out(evaluated)

User.class:
graphType: User
attributes: {name, name}
links: {evaluatedTalks, out(evaluator).evaluated
autodelete: in(evaluator)

(b) Example of mapping definitions for OOGM

Figure 5: Example of server graph and full graph mappings.

3.4 Client-server mappings
Steps 2, 3, 6 and 7 are related to the communication between the
client part and the server part. Several mapping operators are in-
volved in this communication: OCNM manages the invocation of
web services and O−1

CNM deserializes the query results returned
by the server as a response to the web service call, while OSNM
translates web services calls into server graph queries and O−1

SNM
serializes the results of these queries into a tree-oriented exchange
format, such as JSON or XML.

The typical behavior of OCNM consists into translating client
graph queries into web services calls carrying a request graph that
must be completed or merged with the content of the full graph,
depending on the type of the query:

• Retrieve Queries (e.g., select from Talk)
A GET request is issued to the server and the request graph
represents a pattern to match with the server graph.

• Create Queries (e.g., insert into User values (...))
A PUT request is issued to the server and the request graph
must be added to the server graph.

• Update Queries (e.g., update Evaluation set like=0)
A POST request is issued to the server and the request graph
must be merged with the server graph.

• Delete Queries (e.g., delete from Evaluation)
A DELETE request is issued to the server and the request

Client Server

GET /graph HTTP/1.1
...
{ type: Talk, id: 1 }

{
 type: Talk, id: 1,
 title: My Lecture
 evaluated: [{
 type: Evaluation, id: 2,
 like: 1, comment: "...",
 ...
 }]
}

select from Talk where id = 1

nodes {type=Talk, id=1, ...} and
{type=Evaluation, id=2, ...} are added

to the client graph

(a) Scenario 1

Client Server
insert into Evaluation
values (like = 1, comment = 'blah', …)
links (evaluated = (select from Talk
where id = 5), (select from User
where id = 6))

node {type=Evaluation, id=4, ...} is
added to the client graph

PUT /graph HTTP/1.1
...
{
 type: Evaluation,
 like: 1,
 comment: "blah",
 ...
 evaluated: [{
 type: Talk, id: 5
 }],
 evaluator: [{
 type: User, id: 6
 }],
}

{
 type: Evaluation, id: 7
}

(b) Scenario 2

Figure 6: Example of request graphs exchanged between
client and server.

graph represents a sub-graph that must be deleted from the
server graph.

When the server process the web service call, OSNM translates
the request graph into a query for the server graph, bymapping each
type, attribute and link of the request graph to the corresponding
type, attribute and link of the server graph. The results of the
translated query are managed by O−1

SNM , which serializes the set
of result nodes into a tree structure that is sent back to the client.
After receiving the serialized results, O−1

CNM deserializes them and
updates the client graph accordingly.

Figure 6 illustrates the behavior of these mapping operators for
Scenarios 1 and 2, by displaying the HTTP requests exchanged
between the client end the server.

In Scenario 1, the user selects a talk in a talk list. This action
triggers a query for retrieving the Talk node with the corresponding
VID in the client graph. If the node is not already in the client
graph, OCNM translates the query into a GET request that embeds
a request graph representing the pattern that must be matched by
the server. The server processes the request and sends back the
data associated to the requested Talk node, i.e., the node attributes
and all the linked Evaluation nodes, as specified by the fetch plan

End-to-end Graph Mapper BDA, November 2017, Nancy, France

Figure 7: Mobile Application Screenshots

defined in Figure 5. Finally, the client merges the results with the
client graph, potentially triggering changes in the user interface.

In Scenario 2, the user evaluates the talk. This action triggers a
query for inserting a new Evaluation node filled using the data input
by the user through the user interface. A new Evaluation node is
inserted into the client graph, without a VID. As a reaction, OCNM
translates the query into a PUT request that embeds a request graph
representing the node and the links to create. When the server
processes the request graph, it creates the new Evaluation node and
links it to the existing User and Talk nodes. As a response, the server
sends back the VID associated to the new Evaluation node in the full
graph and the client updates the client graph accordingly. At this
point, the client graph and the full graph are correctly synchronized.

4 CURRENT IMPLEMENTATION STATUS
Our work takes place in the context of a joint project with Beepeers
(www.beepeers.com), a company that develops and markets social
network mobile applications for small communities, i.e., communi-
ties that share common activities and interests (e.g., associations,
companies) or attend to a same event (e.g., conference, concert). The
development of our EGM prototype is based on the common scenar-
ios identified in a set of social network applications (approximately
100 concepts in the full graph) actually developed by Beepeers.

The client side is implemented using Javascript technologies. The
user interface is based on React (http://facebook.github.io/react) and
React-Native (http://facebook.github.io/react-native), two frame-
work for managing user interfaces components and their states,
based on the document object model (web applications) or on native
mobile UI frameworks (mobile applications). The client graph is
implemented using Redux (http://redux.js.org), a framework for
managing a global application state and linking it to the user inter-
face: when an action updates a part of the global state, the graphical
components that are connected to this part are automatically up-
dated.

The server side is implemented using Java technologies. The
server graph is based on TinkerPop (http://tinkerpop.apache.org), a
generic framework for dealing with graph data. TinkerPop provides
Object-Graph Mapping capabilities and a common interface to
access standalone graph databases. Finally, the full graph is stored
into an OrientDB (http://orientdb.com) database, a multi-model
(document and graph) database that supports inheritance.

Our prototype is still work in progress, where the mapping op-
erators are currently integrated into a small customized code base.
From our experiments, the graph query languages are sometimes
not enough to express any type of computation and the developers
may want to customize the operators by injecting specific code.

5 CONCLUSION
In this paper we proposed the concept of End-to-End Graph Map-
per: a set of mapping operators for representing web and mobile
applications as (i) a multistore system composed of dedicated graph
databases and (ii) live queries over this multistore system, in such a
way that the graph data are mapped from one database to another.
This work is still in progress and we plan to extend it in several
direction.

From a technical perspective, our operators can be improved to
deal with additional non-functional use cases, such as user authen-
tication and access control to the full graph data: new concepts
must be added to our schema and mapping definition languages
in order to enforce security constraints automatically at each step
of the application. Similarly, we want to investigate how the map-
ping functions could support transactions and how our EGM could
support replayable updates in case of sparse network connectivity.
Second, we want to investigate alternative implementations for our
EGM. Currently, it is implemented as a set of reusable operators
that consumes mapping definitions at runtime. If an operator does
not suit a use case, the developers must write a new operator or
deal with the current operator interfaces to inject custom code.
Another solution consists into generating the application source
code, by building automatically an application-specific implemen-
tation of operators based on the mapping definitions. In this case,
the application source code would be fully customizable by the
developers.

From a functional perspective, we plan to extend this work to
integrate other types of applications (e.g., desktop applications),
architectures (e.g., decentralized architectures instead of client-
server) [5] and communication paradigm (e.g., data streaming through
services) [1]. Given that our approach is extensible, other types of
architecture could be implemented by reusing some of the mapping
operators presented in this paper or by introducing new dedicated
operators. In addition, dealing with various types of applications
and architectures would enable us to investigate more use cases
in order to improve the query and mapping definition languages
introduced in this paper.

REFERENCES
[1] Benjamin Billet, Valerie Issarny, and Géraldine Texier. 2017. Composing Contin-

uous Services in a CoAP-based IoT. In Proc. of 2017 IEEE International Conference
on AI & Mobile Services.

[2] Carlyna Bondiombouy and Patrick Valduriez. 2016. Query Processing in Multistore
Systems: an overview. Technical Report. INRIA Sophia Antipolis - Méditerranée.

BDA, November 2017, Nancy, France Benjamin Billet, Mickaël Jurret, Didier Parigot, and Patrick Valduriez

[3] Alberto Rodrigues da Silva. 2015. Model-driven engineering: A survey supported
by the unified conceptual model. Computer Languages, Systems & Structures 43
(2015).

[4] Felix Dietze, Johannes Karoff, André Calero Valdez, Martina Ziefle, Christoph
Greven, and Ulrik Schroeder. 2016. An Open-Source Object-Graph-Mapping Frame-
work for Neo4j and Scala: Renesca. Springer.

[5] Fady Draidi, Esther Pacitti, Didier Parigot, and Guillaume Verger. 2011. P2Prec:
A Social-based P2P Recommendation System. In Proceedings of the 20th ACM
International Conference on Information and Knowledge Management.

[6] Dean Kramer, Tony Clarl, and Samia Oussena. 2010. MobDSL: A Domain Specific
Language for multiple mobile platform deployment. In Proc. of 2010 IEEE Interna-
tional Conference on Networked Embedded Systems for Enterprise Applications.

[7] Montiago Labute and Matthew Dombroski. 2014. Review of Graph Databases
for Big Data Dynamic Entity Scoring. Technical Report. Lawrence Livermore
National Laboratory.

[8] Craig Russell. 2008. Bridging the Object-Relational Divide. Queue 6, 3 (2008).
[9] Alessandra Toninelli, Animesh Pathak, and Valérie Issarny. 2011. Yarta: A Mid-

dleware for Managing Mobile Social Ecosystems. In Proc of the 2011 International
Conference on Advances in Grid and Pervasive Computing. Springer.

	Abstract
	1 Introduction
	2 Related Work
	3 End-to-end Graph Mapping
	3.1 Full Graph Modeling
	3.2 Mapping the Client Graph and the User Interface
	3.3 Mapping the Server Graph and the Full Graph
	3.4 Client-server mappings

	4 Current Implementation Status
	5 Conclusion
	References

