
HAL Id: lirmm-01620383
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620383

Submitted on 20 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data placement in massively distributed environments
for fast parallel mining of frequent itemsets

Saber Salah, Reza Akbarinia, Florent Masseglia

To cite this version:
Saber Salah, Reza Akbarinia, Florent Masseglia. Data placement in massively distributed environ-
ments for fast parallel mining of frequent itemsets. Knowledge and Information Systems (KAIS),
Springer, 2017, 53 (1), pp.207-237. <10.1007/s10115-017-1041-5>. <lirmm-01620383>

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620383
https://hal.archives-ouvertes.fr

Data Placement in Massively Distributed
Environments for Fast Parallel Mining of

Frequent Itemsets

Saber Salah?, Reza Akbarinia, and Florent Masseglia

INRIA & LIRMM
France

FirstName.LastName@inria.fr

Abstract. Frequent itemset mining presents one of the fundamental
building blocks in data mining. However, despite the crucial recent ad-
vances that have been made in data mining literature, few of both stan-
dard and improved solutions scale. This is particularly the case when
i) the quantity of data tends to be very large and/or ii) the minimum
support is very low. In this paper, we address the problem of parallel
frequent itemset mining (PFIM) in very large databases, and study the
impact and effectiveness of using specific data placement strategies in a
massively distributed environment. By offering a clever data placement
and an optimal organization of the extraction algorithms, we show that
the arrangement of both the data and the different processes can make
the global job either completely inoperative or very effective. In this set-
ting, we propose two different highly scalable, PFIM algorithms, namely
P2S (Parallel-2-Steps) and PATD (Parallel Absolute Top Down). P2S
algorithm allows discovering itemsets from large databases in two sim-
ple, yet efficient parallel jobs, while PATD renders the mining process
of very large databases more simple and compact. Its mining process is
made up of only one parallel job, which dramatically reduces the min-
ing runtime, the communication cost and the energy power consumption
overhead in a distributed computational platform. Our different pro-
posed approaches have been extensively evaluated on massive real-world
data sets. The experimental results confirm the effectiveness and scala-
bility of our proposals by the important scale-up obtained with very low
minimum supports compared to other alternatives.

1 Introduction

Frequent itemset mining (FIM for short) is one of the fundamental building
bricks in data mining. Itemsets might be, for instance, the words occurring in a
document, items bought by a customer in a supermarket etc. FIM presents an
essential and fundamental role in many domains. In business and e-commerce,
for instance, FIM techniques can be applied to recommend new items, such

? This work has been partially supported by the Inria Project Lab Hemera.

2 Saber Salah, Reza Akbarinia, and Florent Masseglia

as books and different other products. In science and engineering, FIM can be
used to analyze different scientific parameters (e.g., based on their regularities).
Finally, FIM methods can aid to perform other data mining tasks such as text
mining [1], for instance, and as it will be better illustrated by our experiments
in Section 4, FIM techniques can be used to figure out frequent co-occurrences
of words in a very large-scale text database.

In the literature, there are several FIM algorithms for mining databases.
However, the recent exponential growth of data prevents most of the standard
and improved FIM algorithm to scale and achieve reasonable performance when
mining Big Data [2]. The manipulation and processing of large-scale databases
have opened up new challenges in data mining [3]. The data is no longer located
in one computer, instead, it is distributed over several machines. Thus, an effi-
cient parallel design of FIM algorithms must be taken into account. Whatever
the size of the database and the minimum support (MinSup) threshold, parallel
frequent itemset mining (PFIM for short) algorithms should scale and achieve
reasonable processing time.

Fortunately, with the availability of powerful programming models, such as
MapReduce [4] or Spark [5], the parallelism of most FIM algorithms can be
elegantly achieved. MapReduce has gained increasing popularity as shown by
the tremendous success of Hadoop [6], an open-source implementation. It is one
of the most popular solutions for big data processing [7], in particular due to
its automatic management of parallel execution in clusters of machines. Initially
proposed in [4], MapReduce divides the computation in two phases, namely map
and reduce, which in turn are carried out by several tasks that process the data
in parallel. The idea behind MapReduce is simple and elegant. Given an input
file, and two map and reduce functions, each MapReduce job is executed in two
main phases. In the first phase, called map, the input data is divided into a set
of splits, and each split is processed by a map task in a given worker node. These
tasks apply the map function on every key-value pair of their split and generate
a set of intermediate key-value pairs. In the second phase, called reduce, all
the values of each intermediate key are grouped and assigned to a reduce task.
Reduce tasks are also assigned to worker machines and apply the reduce function
on the created groups to produce the final results.

Despite the robust parallelism setting that the parallel frameworks such as
MapReduce and Spark offer, PFIM algorithms remain holding major crucial
challenges. With very low MinSup, and very large data, as will be illustrated
by our experiments, most of the standard and improved PFIM algorithms do
not scale. Therefore, the problem of mining large-scale databases does not only
depend on the parallelism design of FIM algorithms. In fact, PFIM algorithms
have brought the same regular issues and challenges of their sequential imple-
mentations. For instance, given a FIM algorithm X and its parallel version X ′,
consider a very low MinSup δ and a database D, if X runs out of memory in a
local mode, then, with a large database D′, X ′ might also exceed available mem-
ory in a distributed mode. Thus, the parallelism, all alone, does not guarantee a
successful and exhaustive mining of large-scale databases. Therefore, to improve

Data Placement for Fast Parallel Mining of Frequent Itemset 3

PFIM algorithms in MapReduce, other issues should be taken into account. Our
claim is that the data placement is one of these issues [8].

By thoroughly studying the deep relationships between the distribution prin-
ciples of massively parallel environments and data mining algorithms character-
istics, we investigate an efficient combination between a mining process (i.e., a
PFIM algorithm) and an efficient data placement. We show the impact of such
placement on the global mining process in these environments. Interestingly and
to the best of our knowledge, there has been no focus on studying data placement
strategies for improving PFIM algorithms in massively distributed environments.
However, as we highlight in this work, the data placement strategies have signif-
icant impacts on PFIM performance. We have evaluated the performance of our
different proposed solutions through extensive experiments over ClueWeb (up to
one Terabyte of size and half a billion of Web pages) and Wikipedia data sets
(the whole set of Wikipedia articles in English). Our results show that a careful
management of the parallel processes along with an adequate data placement
can dramatically improve the performance and make a big difference between
an inoperative and a successful extraction. In particular, our results stress on the
significant scale-up obtained with very low minimum support for our algorithms
compared to other alternatives.

The rest of the paper is structured as follows. Section 2 presents a formal
definition of the FIM problem, basic notations, and the necessary background.
Section 3 elucidates our data placement techniques and details the working pro-
cess of our parallel FIM solutions. Section 4 reports on our experiments over
real-world data sets. Section 5 discusses related work, and Section 6 concludes.

2 Definitions and Background

In this section, first, we describe the basic notations and terminology that we
are going to adopt in the rest of the paper, and give a formal definition of FIM
problem. Then, we give the necessary background on MapReduce, and introduce
some specific PFIM algorithms that will serve us in the rest of the paper.

2.1 Problem Statement

The problem of frequent itemset mining was first introduced in [9] and then
various algorithms have been proposed to solve it. In definition 1, we adopt the
notations used in [9].

Definition 1. Let I = {i1, i2, . . . , in} be a set of literals called items. An itemset
X is a set of items from I i.e., X ⊆ I. The size of the itemset X is the number
of items in it. A transaction T is a set of elements (i.e., items) such that T ⊆ I
and T 6= ∅. A transaction T supports the item x ∈ I if x ∈ T . A transaction
T supports the itemset X ⊆ I if it supports any item x ∈ X i.e., X ⊆ T . A
database D is a set of transactions. The support of the itemset X in D is the
number of transactions T ∈ D that contain X. An itemset X ⊆ I is frequent
in D if its support is equal or higher than a MinSup threshold.

4 Saber Salah, Reza Akbarinia, and Florent Masseglia

The FIM problem consists of extracting all frequent itemset from a database
D with a minimum support MinSup given by the user.

Example 1. Let us consider a database D with 5 transactions as shown in Ta-
ble 1. The items in each presented transaction are delimited by commas. With a
minimum support of 3, there will be two frequent itemsets of size one: {{a}, {c}}.
With a minimum support of 2, there will be 8 frequent itemsets:{{a}, {b}, {c},
{f}, {g}, {a, c}, {b, c}, {f, g}}.

TID Transaction
T1 a, b, c
T2 a, c, d
T3 b, c
T4 e, f, g
T5 a, f, g

Table 1: Database D

In this work, we focus on the parallel frequent itemset mining problem, where
the data is distributed over several computational machines. We have adopted
MapReduce as a programming model to illustrate our mining approaches.

2.2 MapReduce and job execution

Each MapReduce job includes two functions: map and reduce. For executing
the job, we need a master node for coordinating the job execution, and some
worker nodes for executing the map and reduce tasks. When a MapReduce job
is submitted by a user to the cluster, after checking the input parameters, e.g.,
input and output directories, the input splits (blocks) are computed. The number
of input splits can be personalized, but typically there is one split for each 64
MB of data. The location of these splits and some information about the job are
submitted to the master. The master creates a job object with all the necessary
information, including the map and reduce tasks to be executed. One map task
is created per input split.

When a worker node, say w, becomes idle, the master tries to assign a task
to it. The map tasks are scheduled using a locality-aware strategy. Thus, if there
is a map task whose input data is kept on w, then the scheduler assigns that
task to w. If there is no such task, the scheduler tries to assign a task whose
data is in the same rack as w (if any). Otherwise, it chooses any task.

Each map task reads its corresponding input split, applies the map function
on each input pair and generates intermediate key-value pairs, which are firstly
maintained in a buffer in main memory. When the content of the buffer reaches
a threshold (by default 80% of its size), the buffered data is stored on the disk in

Data Placement for Fast Parallel Mining of Frequent Itemset 5

a file called spill. Once the map task is completed, the master is notified about
the location of the generated intermediate key-values.

In the reduce phase, each intermediate key is assigned to one of the reduce
workers. Each reduce worker retrieves the values corresponding to its assigned
keys from all the map workers, and merges them using an external merge-sort.
Then, it groups pairs with the same key and calls the reduce function on the
corresponding values. This function will generate the final output results. When
all tasks of a job are completed successfully, the client is notified by the master.

2.3 Parallel Frequent Itemset Mining

One of the primordial FIM algorithms is Apriori [9]. Apriori starts mining the
database D by determining a list of frequent items of size one, say L1. Then,
builds a list of potential frequent itemsets of size two, say C2 by joining the
items in L1. The algorithm tests the support of each C2 element in D and returns
a list of frequent itemsets, say L2. The mining process is carried out until there
is no more frequent itemset in D. The main drawback of Apriori is the size
of intermediate itemsets that need to be generated. With itemsets having a
maximum length of n, Apriori needs to generate n times the candidates (i.e.,
itemsets), each being a superset of the previous frequent itemsets. Usually, the
number of intermediate itemsets follows a normal distribution according to the
generation number. In other words, the number of candidates reaches its higher
number in the middle of the process. A straightforward implementation of this
algorithm in MapReduce is very easy since each database scan is replaced by a
MapReduce job for candidate support counting. However, the performances are
very bad, mainly because intermediate data have to be communicated to each
mapper.

In the context of investigating PFIM and studying the effect of data place-
ment strategies in MapReduce, we need to briefly describe the SON [10] algo-
rithm. SON simplifies the mining process by dividing the FIM problem into two
steps. This makes it very suitable for being used in MapReduce. The steps of
this algorithm are as follow.

Step 1: Divide the input database D into |P| = n chunks (i.e., data par-
titions), P = {p1, p2, . . . , pn}. Mine each chunk in the memory based on a
local minimum support localMinSup and a given FIM algorithm. Thus, the
first step is devoted to determine a list of local frequent itemsets (LFI).

Step 2: Filter the LFI list by comparing its elements (i.e., local frequent
itemsets) against the entire database D using a global minimum support
globalMinSup. Return a list of global frequent itemsets (GFI) which is a
subset of LFI.

As stated in the first step of SON, a specific FIM algorithm can be applied
to mine each chunk locally. For the needs of this work, we have implemented and
tested two different algorithms for this step. The first one is Apriori as described
above and the second one is CDAR [11]. The steps of CDAR are given as follow.

6 Saber Salah, Reza Akbarinia, and Florent Masseglia

Step 1: Divide the database D into |P| = n chunks, P = {p1, p2, . . . , pn},
such that each data partition pi in P holds only the transactions (i.e.,
itemsets) that have length of i.

Step 2: Start mining the data partitions according to transaction lengths
in descending order. A transaction in each data partition represents an
itemset. If a transaction T is frequent in a data partition pi+1, then it will
be stored in a list of frequent itemsets L, otherwise, T will be stored in
a temporary data structure Temp. After checking the occurrence frequency
of all T in pi+1, generate i subsets of all T in Temp and adds them to the
data partition pi. The same mining process is carried out until visiting all
data partitions pi ⊂ D. Before counting the support of a transaction T , its
inclusion in L is checked. If it is included, T is ignored, as it is already in L
which is considered as frequent.

3 Data Placement

As we briefly mentioned in Section 1, using an efficient data placement technique
could improve the performance of PFIM algorithms in MapReduce. This is par-
ticularly the case, when the logic and the principle of a parallel mining process
is highly sensitive to its data. For instance, let us consider the case when most
of the workload of a PFIM algorithm is being done on the mappers. In this case,
the way the data is exposed to the mappers could highly contribute to the effi-
ciency and the performance of the whole mining process (i.e., PFIM algorithm).
In this setting, we point out to the data placement as a custom placement of
database transactions in MapReduce. To this end, we use different data parti-
tioning methods. In this section, we introduce two PFIM architectures designed
for massively distributed environments that exploit our new data placement prin-
ciples. The first one, called Parallel Two Steps (P2S), performs the extraction
in two jobs, with a careful data partitioning, where no overlapping is allowed
from one partition to the other. For the second one, called Parallel Absolute
Top-Down (PATD), we study even further the data placement techniques and
show how part of the computation may be replaced by data duplication. The
latter allows overlapping between partitions, hence the organization of this sec-
tion in two parts, for the presentation of our strategies: non-overlapping and
overlapping.

3.1 Non-Overlapping Strategy

The principle of P2S is as follows. Divide the input database D into |P | = n
data partitions P = {p1, p2, . . . , pn}, where ∪pi = D. Then, perform the mining
of frequent itemsets using two jobs:

Job 1: Each mapper takes a data split (partition) and performs a particular
FIM algorithm. Then, the mapper emits a list of local frequent itemsets to
the reducer.

Data Placement for Fast Parallel Mining of Frequent Itemset 7

Job 2: Each mapper takes a database D as input, and filters the global
frequent itemsets from the list of local frequent itemsets. Then, writes the
final results to the reducer.

Thus, P2S divides the mining process into two steps. As one may observe from
its pseudo-code, given by Algorithm 1, P2S is very well suited for MapReduce.
From the mining point of view, P2S is inspired from the SON algorithm [10].
The main reason behind opting SON as a reference for P2S is that a parallel
version of the former algorithm does not require costly overhead between map-
pers and reducers. However, as illustrated by our experiments in Section 4, a
straightforward implementation of SON in MapReduce would not be the best
solution for the FIM problem. Therefore, with P2S we propose new solutions for
PFIM problem within the "two steps" architecture.

Algorithm 1: P2S
Input: Database D and MinSup δ
Output: Frequent Itemsets

1 //Map Task 1
2 map(key:Null : K1, value = Whole Data Split: V1)
3 - Determine a local MinSup ls from V1 based on δ
4 - Perform a complete FIM algorithm on V1 using ls
5 emit (key: local frequent itemset, value: Null)

6 //Reduce Task 1
7 reduce(key:local frequent itemset, list(values))
8 emit (key,Null)

9 //Map Task 2
10 Read the list of local frequent itemsets from Hadoop Distributed Cache LFI

once
11 map(key:line offset : K1, value = Database Line: V1)
12 if an itemset i ∈ LFI and i ⊆ V1 then
13 key ← i

14 emit (key:i, value: 1)

15 //Reduce Task 2
16 reduce(key:i, list(values))
17 sum← 0
18 while values.hasNext() do
19 sum+ = values.next().get()

20 if sum >= δ then
21 emit (key:i, value: Null)

Actually, the first MapReduce job of P2S consists of applying specific FIM
algorithm at each mapper based on a local minimum support (localMinSup). A

8 Saber Salah, Reza Akbarinia, and Florent Masseglia

local minimum support is computed at each mapper based on a global MinSup
δ percentage and the number of transactions of the data split being processed.
For instance, suppose that we are given a database D with 10 transactions. Let
us consider a global minimum support of 4 (i.e., an itemset is frequent in D if it
appears 4 times or more). Suppose we divide D into two data partitions P1 and
P2 where each one holds 5 transactions fromD. Then, the local minimum support
in P1 and P2 would be equal to 2 (40% of 5). Then P2S determines a list of local
frequent itemsets LFI. This list includes the local results of all data splits found
by all mappers. The second step of P2S aims to deduce a list of global frequent
itemset GFI. This step is carried out relying on a second MapReduce job. In
order to deduce a GFI list, P2S filters the LFI list by performing a global test
of each local frequent itemset. At this step, each mapper m reads once the list of
local frequent itemset stored in Hadoop Distributed Cache. Then, m takes one
transaction at a time and checks the inclusion of its itemsets in the list of the
local frequent itemset. Thus, at this map phase of P2S, each mapper emits all
local frequent itemsets with their complete occurrences in the whole database
(i.e., key: itemset, value: 1). The reducer simply computes the sum of the count
values of each key (i.e., local frequent itemset) by iterating over the list of values
(i.e., ones) of each key. Finally, the reducer compares the number of occurrences
of each local frequent itemset to MinSup δ (i.e., global minimum support), if it
is greater or equal to δ then the local frequent itemset is considered as a global
frequent itemset, otherwise, the reducer discards the key (i.e., local frequent
itemset).

The two steps approach (i.e., P2S) would not miss any itemset as false neg-
ative case i.e., at the first MapReduce job since each mapper holds a specific
number k of the database transactions. k is involved when computing the local
minimum support based on the global one (e.g., the local minimum support is
proportional to k). Thus, regardless the skewness of the data being distributed
among the mappers, we always guarantee the local frequency of the itemsets.
Hence, a local frequent itemset cannot be missed at the first job of P2S. Then,
its global frequency is determined at the second job of P2S.

The performance of PFIM algorithms in MapReduce may strongly depend
on the distribution of the data among the workers. To illustrate this, let us
consider an example of a PFIM algorithm that is based on a candidate generation
approach. Suppose that most of the workload including candidate generation is
being done on the mappers. In this case, the data split or data partition that
holds long frequent itemsets would take more execution time. In the worst
case, the job given to that specific mapper would not complete and making the
global extraction process impossible. Thus, despite the fairly automatic data
distribution by Hadoop, the computation would highly depend on the design
logic of PFIM algorithms in MapReduce. In general, FIM algorithms are highly
susceptible to the data sets nature. Consider for instance, the Apriori algorithm,
if the itemsets to be extracted are very long, it will be difficult for this algorithm
to perform the extraction. This is due to the fact that Apriori has to enumerate
each subset of each itemset. The longer the final itemset, the larger the number

Data Placement for Fast Parallel Mining of Frequent Itemset 9

of subsets (actually, the number of subsets grows exponentially). Now let us
consider P2S first Job. If the split of a mapper contains a subset of D that
would lead to lengthy local frequent itemsets, then, it would be the bottleneck
of the whole mining process and might even not be able to complete. On the other
hand, let us consider the same mapper containing itemsets with the same size
and apply the CDAR algorithm to it. Then CDAR would rapidly converge since
it is well suited for long itemsets. Actually, the working principle of CDAR is to
first extract the longest patterns (i.e., itemsets) and try to find frequent subsets
that have not been discovered yet. Intuitively, grouping similar transactions on
mappers and applying methods that perform best for long itemsets seems to be
the best choice. This is why a placement strategy along with the most appropriate
algorithm should dramatically improve the performances of the whole mining
process.

From the observations above, we claim that optimal performances depend
on a particular care of massive distribution requirements and characteristics,
calling for particular data placement strategies. Therefore, in order to improve
the efficiency of some data sensitive PFIM algorithms, P2S uses different data
placement strategies such as Random Transaction Data Placement and Similar
Transaction Data Placement.

3.1.1 Random Transaction Data Placement (RTDP): this technique
merely refers to a random process for choosing bunch of transactions from a
database D. Thus, using RTDP strategy, the database is divided into |P | = n
data partitions P = {p1, p2, . . . , pn}, where ∪pi = D. RTDP does not rely on
any constraint for placing such bunch of transactions in same data partition.

3.1.2 Similar Transaction Data Placement (STDP): unlike RTDP data
placement strategy, STDP relies on the principle of similarity between chosen
transactions. Each bucket of similar transactions is mapped to the same data
partition p. Therefore, the database D is split into n disjoint data partitions.
In STDP, each data split would be more homogeneous, unlike the case of using
RTDP. More precisely, by creating data partitions that contain similar trans-
actions, we increase the chance that each data split will contain local frequent
itemsets of high length.

Partitioning the data according to similarities is a complex problem. A clus-
tering algorithm may seem appropriate for this task, but it might be time con-
suming. We propose a graph data partitioning mechanism that will allow for
a fast execution of this step, thanks to existing efficient algorithms for graph
partitioning such as Min-Cut [12]. In the following, we describe how transaction
data can be transformed into graph data for doing such partitioning.

Step 1: For each unique item in D, we determine the list of transactions L
that contain it. Let D′ be the set of all transaction lists L.

Step 2: We present D′ as a graph G = (V,E), where V denotes a set of
vertices and E is a set of edges. Each transaction T ∈ D refers to a vertex

10 Saber Salah, Reza Akbarinia, and Florent Masseglia

vi ∈ G where i = 1, . . . , n. The weight w of an edge that connects a pair of
vertices p = (vi, vj) in G equals to the number of common items between
the transactions representing vi and vj .

Step 3: After building the graph G, a Min-Cut algorithm is applied in order
to partition D′.

In the above approach, the similarity of two transactions is evaluated by the
number of their common items i.e., the size of their intersection. In order to
illustrate our graph partitioning technique, let us consider a simple example as
follows.

Example 2. Let us consider D, the database from Table 1. We start by mapping
each item in D to its transactions holder. As illustrated in the table of fig-
ure 3.1.2, T1 and T2 have 2 common items. Likewise, T3 and T4 have 2 common
items, while the intersection of T2 and T3 is one. The intersection of transactions
in D′ refers to the weight of their edges. In order to partition D′, we first build a
graph G from D′ as shown in Figure 3.1.2. Then, the algorithm Min-Cut finds a
minimum cut in G (red line in Figure 4) which refers to the minimum capacity
in G. In our example, we created two partitions: Partition1 =< T1, T2 > and
Partition2 =< T3, T4 >.

TID Transaction
T1 a, b, c
T2 a, b, e
T3 e, f, g
T4 d, e, f

Fig. 1: Transactions of a database (left) & Graph representation of the database
(right)

We have used a particular graph partitioning tool namely PaToH [13] to generate
data partitions. The reason behind opting Patoh lies in its set of configurable
properties e.g., the number of data partitions and the partition load balance
factor.

Based on the architecture of P2S and the data placement strategies we have
developed and efficiently designed two PFIM mining algorithms. Parallel Two
Steps CDAR (P2SC) and Parallel Two Steps Apriori (P2SA). P2SC and P2SA
respectively represents instances of P2S algorithm with CDAR [11] and Apriori
(i.e., implemented at P2S first job).

In a massively distributed environment, the main bottleneck of P2S algo-
rithm would be its first execution phase (i.e., mapper execution of P2S first
job to determine local frequent itemsets). Intuitively, in the case of P2SC, the
mapper that holds more homogeneous data (i.e., similar transactions) would be

Data Placement for Fast Parallel Mining of Frequent Itemset 11

faster. By referring to CDAR [11] mining principle, conceivably, a mapper that
holds homogeneous transactions allows for more itemset inclusions, which re-
sults in less subset generation. Thus, placing each bucket of similar transactions
on the mappers would improve the performance of P2SC algorithm. This data
placement technique (i.e., STDP) can be achieved by means of different data
partitioning methods. In this setting, and because it is designed for an opti-
mal relationship between data placement and the adequate FIM algorithm, we
denote by Opt-P2S the algorithm P2SC that is based on STDP data placement.

In contrast, logically, STDP would not improve the performance of P2SA,
instead it should lower it. Intuitively, each mapper would hold a data partition
(i.e., data split) of similar transactions that allows for a high number of frequent
itemsets. This results in a huge number of itemset candidate generations. Using
RTDP to randomly place transactions on the mappers, should give the best
performance of P2SA. Our experiments given in Section 4 clearly illustrate this
intuition.

PFIM algorithms that depend on P2S mining design perform two MapReduce
jobs to determine an exhaustive list of all frequent itemsets. Unfortunately, this
may drop down the whole mining process by duplicating the mining results.
P2S based algorithms may output itemsets that are locally frequent with no
guarantee about their global frequency. Hence, in fact they amplify the number
of transferred data (i.e., itemsets) between mappers and reducers.

To cover the different above-mentioned issues, our major challenge is to limit
the mining process to one simple MapReduce job. This should guarantee a very
fast itemsetmining process, low data communications and less energy power con-
sumption in a distributed computing environment. To this end, we take the full
advantage of the available massive data storage space, CPU(s) etc. We efficiently
designed and developed our Parallel Absolute Top Down (PATD) algorithm to
tackle all above mentioned issues.

3.2 Overlapping: a Novel Strategy for Parallel FIM

As illustrated above, paying particular care to data placement is crucial for
efficient PFIM algorithms in massively distributed environments. Building on
this first result, we explore this idea further and propose novel solutions for
transferring one part of the computation from the FIM algorithm itself, to the
data placement. This is feasible due to two factors. First, the disk space available
in these environments is not a limit, and data might be duplicated without
causing any trouble. Second, the frequency of an itemset X is the same on two
different partitions P1 and P2, if and only if it is guaranteed that each transaction
that contains X occurs in both P1 and P2.

In the following, we introduce our Item Based Data Partitioning Strategy
(IBDP for short). We depict and illustrate its process through an illustrative
example. Then, we introduce our PATD algorithm and we detail its core mining
process and principle for a fast and successful frequent itemset extraction from
very large databases. Finally, we validate our proposed PATD algorithm and
provide a proof of correctness.

12 Saber Salah, Reza Akbarinia, and Florent Masseglia

The main idea is to prepare the data with a partitioning scheme that will
allow better performances in the itemset extraction. The partitioning scheme is
denoted IBDP in the following. IBDP takes 2 jobs to complete, as explained in
Section 3.2.1. The itemset mining algorithm applied on the partitions of IBDP
is denoted PATD. PATD takes one additional job, after IBDP. In total, the
complete pattern mining process of IBDP+PATD is thus done in 3 jobs. However,
as long as the mininum support given to PATD is at least equal to the minimum
support given to IBDP, PATD may be applied many times without calling IBDP.
Our goal is to offer a data mining algorithm that corresponds well to real cases
of data analytics. Actually, it is not unusual to apply a pattern mining algorithm
with a given minimum support and then apply it again with another support
(for instance a higher support if the current mining process is too slow, or it
gives too much patterns, or a lower support if no pattern was extracted with
the current support, etc.). Pattern mining generally calls for empiric parameter
settings, and the consequence is to apply the algorithm with different values of
minimum support until the results are satisfying from the end-user’s point of
view. In order to provide a suitable workflow, we consider that IBDP should be
applied with a very low support only once. Then, each call to PATD will need
only one job.

3.2.1 Itemset Based Data Placement. Our claim is that duplicating the
data on the mappers allows for a better accuracy in the first P2S job and there-
fore leads to less infrequent itemsets (meaning, less communications and fast
processing). Consider a data placement with a high overlap, for instance, with
10 data partitions, each holding 50% of the database. Obviously, there will be
less globally infrequent itemsets in the first job (in other words, if an itemset
is frequent on a mapper, then it is highly likely to be frequent on the whole
database). Unfortunately, such an approach is not realistic. First, we still need a
second job to filter the local frequent itemsets and check their global frequency.
Furthermore, such a thoughtless placement is absolutely not plausible, given the
massive data sets we are dealing with.

Thus, we take advantage of this duplication opportunity and propose IBDP,
an efficient strategy for partitioning the data over all mappers, with an optimal
amount of duplicated data, allowing for an exhaustive mining in just one MapRe-
duce job. The goal of IBDP is to replace part of the mining process by a clever
placement strategy and optimal data duplication. The main idea of IBDP is to
consider the different groups of frequent itemsets that are usually extracted. Let
us consider a minimum support ∆ and X a frequent itemset according to ∆ on
D. Let SX be the subset of D restricted to the transactions supporting X. The
first expectation is to have |SX | � |D| since we are working with very low min-
imum support thresholds. The second expectation is that X can be extracted
from SX with ∆ as a minimum support. The goal of IBDP is a follows: for each
frequent itemset X, build SX the subset from which the extraction of X can be
done in one job. Fortunately, itemsets usually share a lot of items between each
other. For instance, with Wikipedia articles, there will be a group of itemsets

Data Placement for Fast Parallel Mining of Frequent Itemset 13

related to the Olympic games, another group of itemsets related to Algorithms,
etc. IBDP exploits these affinities between itemsets. It divides the search space
by building subsets of D that correspond to these groups of itemsets, optimizing
the size of duplicated data.

More precisely, given a database of transactions D, and its representation in
the form of a set S of n non-overlapping data partitions S = {S1, S2, . . . , Sn}.
Each one of these non-overlapping data partitions (i.e, Si ∩ Sj = ∅ for ∀i, j ∈
{1, . . . , n}∧i 6= j), holds a set of similar transactions (the union of all elements in
S is D,

⋃n
i=1 Si = D). For each non-overlapping data partition Si in S, we extract

a "centroid". The centroid of Si contains the different items, and their number
of occurrences, in Si. Only the items having a maximum number of occurrences
over the whole set of partitions, are kept for each centroid. Once the centroids
are built, IBDP simply intersects each centroid of Si with each transaction in D.
If a transaction in D shares an item with a centroid of Si, then the intersection of
this transaction and the centroid will be placed in an overlapping data partition
called S′

i. If we have n non-overlapping data partitions (i.e, n centroids), IBDP
generates n overlapping data partitions and distributes them on the mappers.
The core working process of IBDP data partitioning in MapReduce is given in
Algorithm 2.

Job 1: Centroids: each mapper takes a transaction (line of text) from non-
overlapping data partitions as a value, S = {S1, S2, . . . , Sn}, and the name
of the split being processed as key. Then, it tokenizes each transaction (i.e.,
value) to determine different items, and emits each item as a key coupled
with its split name as a value. After mappers termination, the reducer aggre-
gates over the keys (i.e., items) and emits each key coupled with its different
value (i.e., split name) in the list of values (i.e., split names).

Job 2: Overlapping Data Partitions: the format of the MapReduce output
is set to "MultiFileOutput" in the driver class. In this case, each key will
denote the name of each overlapping data partition (override the "generate-
FileNameForKeyValue" function in MapReduce to return a string as a key).
In the map function, first, we store once the previous MapReduce job cen-
troids in a key-value data structure (e.g., MultiHashMap etc.). The key in
the used data structure is the split name and the value is a list of items. Each
mapper takes a transaction (line of text) from the database D, and for each
key in the used data structure, if there is an intersection between the values
(i.e., list of items) and the transaction being processed, then the mapper
emits the key as the split name (in the used data structure) and value as the
transaction of D. The reducer simply aggregates over the keys (split names)
and writes each transaction of D to an overlapping data partition file.

3.2.2 Parallel Absolute Top Down: Complete Approach. We take the
full advantage from IBDP data partitioning strategy and propose a powerful
and robust PFIM algorithm namely PATD. PATD algorithm limits the mining
process of very large databases to one simple MapReduce job and exploits the

14 Saber Salah, Reza Akbarinia, and Florent Masseglia

Algorithm 2: IBDP
1 //Job1

Input: Non-overlapping data partitions S = {S1, S2, . . . , Sn} of a database D
Output: Centroids

2 //Map Task 1
3 map(key: Split Name: K1, value = Transaction (Text Line): V1)
4 - Tokenize V1, to separate all items
5 emit (key: Item, value: Split Name)

6 //Reduce Task 1
7 reduce(key: Item, list(values))
8 while values.hasNext() do
9 emit (key:(Split Name) values.next (Item))

10 //Job2
Input: Database D
Output: Overlapping Data Partitions

11 //Map Task 2
12 - Read previous job1 result once in a (key, values) data structure (DS), where

key: SplitName and values: Items
13 map(key: Null : K1, value = Transaction (Text Line): V1)
14 for SplitName in DS do if Items.Item ∩V1 6= ∅ then
15 emit (key: SplitName, value: V1)
16

17 //Reduce Task 2
18 reduce(key: SplitName, list(values))
19 while values.hasNext() do
20 emit (key: (SplitName), values.next: (Transaction))

Data Placement for Fast Parallel Mining of Frequent Itemset 15

natural design of MapReduce framework. Given a set of overlapping data parti-
tions (S = {S1, S2, . . . , Sm}) of a database D and an absolute minimum support
AMinSup ∆. PATD algorithm mines each overlapping data partition Si inde-
pendently. At each mapper mi, i = 1, ..., n, PATD performs CDAR algorithm
on Si. The mining process is based on the same AMinSup ∆ for all mappers
i.e., each overlapping data partition Si is mined based on ∆. The mining pro-
cess is carried out in parallel on all mappers. The mining result (i.e., frequent
itemsets) of each mapper mi is sent to the reducer. The latter receives each
frequent itemsets as its key and null as its value. The reducer aggregates over
the keys (frequent itemsets) and writes the final result to a distributed file
system (i.e., HDFS).

The main activities of the mappers and reducers in PATD algorithm are
summarized as follow.

Mapper: Each mapper is given a Si, i = 1...m overlapping data partition,
and a global absolute minimum support (i.e., AMinSup). The latter, per-
forms CDAR algorithm on Si. Then, it emits each frequent itemset as a
key and null for its value, to the reducer.

Reducer: The reducer simply aggregates over the keys (frequent itemsets
received from all mappers) and writes the final result to a distributed file
system.

Example 3. Let us take the example of Figure 2. Given an absolute minimum
support ∆ = 2 (i.e., an itemset is considered frequent, if it appears at least
in two transactions in D). Following PATD mining principle, each mapper is
given an overlapping data partition Si as a value. In our example, we have two
overlapping data partitions. We consider two mappers m1 and m2, each one
performs a complete CDAR with a minimum support ∆ = 2. In Figure 2 from
bottom-up : mapper m1 mines first overlapping data partition and returns {fg}
as a frequent itemset. Likewise, mapper m2 mines second overlapping data
partition and returns {{ac}, {bc}}. All the results are sent to the reducer, the
reducer aggregates over the keys (frequent itemsets) and outputs the final result
to a distributed file system.

3.2.3 Proof of Correctness. To prove the correctness of PATD algorithm,
it is sufficient to prove that if an itemset x is frequent, then it is frequent in
at least one of the data partitions produced by IBDP. Since each data partition
is locally mined by one mapper, then x will be found as frequent by one of the
mappers. Thus, the correctness proof is done by the following lemma.

Lemma 1. Given a database D = {T1, T2, . . . , Tn}, and an absolute minimum
support ∆, then ∀ itemset x ⊆ D we have:

SupportD(x) ≥ ∆⇔ ∃ P | SupportP(x) ≥ ∆, where P denotes one of the
data partitions obtained by performing IBDP on D.

16 Saber Salah, Reza Akbarinia, and Florent Masseglia

Proof.

We first prove that if SupportD(x) ≥ ∆ then ∃ P | SupportP(x) ≥ ∆.

∀ Ti ∈ {T1, T2, . . . , Tn}, the intersection of Ti with I (the set of unique items
of D) is Ti and the union of these all intersections is D. Thus, in this par-
ticular case, SupportD(x) ≥ ∆ ⇒ ∃ D | SupportD(x) ≥ ∆. If the set of
unique items I is partitioned into k items partitions, then the intersection
of each one of these k items partitions with all transactions {T1, T2, . . . , Tn}
in D, would result in a new data partition P. Let us denote by Π =
{P1, P2, . . . , Pk}, the set of all these new data partitions.
Suppose a given itemset x in D. Since x ⊆ I (i.e., x is included in the
set of items), then there is at least one items partition, say Xj , such that
the intersection of x and Xj is not empty. Let i be an item included in the
intersection of x and Xj, i.e., i ∈ x∩Xj . Let Pj be the partition associated
to Xj , then Pj contains all transactions containing i. Thus, Pj contains all
transactions containing x. Therefore, if x is globally frequent, then it is also
frequent in Pj , i.e. SupportD(x) ≥ ∆⇒ ∃ IP | SupportIP (x) ≥ ∆

Next, we prove the inverse i.e., if ∃ P | SupportP(x) ≥ ∆ then SupportD(x) ≥
∆.
This is done simply by using the fact that each data partition P is a subset
of D. Hence, if the support of x in P is higher than ∆, then this will be the
case in D. Thus, we have: if ∃ P | SupportP(x) ≥ ∆⇒ SupportD(x) ≥ ∆.
Therefore, we conclude that: SupportD(x) ≥ ∆⇔ ∃ P | SupportP(x) ≥ ∆.

An illustration of the complete process (IBDP+PATD) is given in example
4.

Example 4. Figure 2 illustrates the principle of PATD on the transaction database
D of Table 1. In this example, we have two non-overlapping data partitions, built
according to transaction similarities, at step (1) and thus two centroids at step
(2). The centroids are filtered in order to keep only the items having the maxi-
mum number of occurrences (3). IBDP intercepts each one of these two centroids
with all transactions in D. A transaction T is copied to the partition of a cen-
troid c if T ∩ c 6= ∅. Then, on each partition, the locally infrequent items are
removed (4). This results in two overlapping data partitions in (5). Finally, the
frequent itemsets are extracted (6) locally (note that only the maximal frequent
itemset are shown in figure 2). Redundancy is used for the counting process of
different itemsets. For instance, transaction afg is duplicated in both data par-
titions in (4) where the upper version participates to the frequency counting of
a and the lower version participates to the frequency counting of fg.

Data Placement for Fast Parallel Mining of Frequent Itemset 17

abc
acd
bc
efg
afg

abc
acd
bc

efg
afg

a:2
b:2
c:3
d:1

a:1
e:1
f:2
g:2

a
b
c
d

a
e
f
g

abc
acd
bc
efg
afg

abc
acd
bc
efg
afg

abc
ac
bc
a

fg
fg

ac
bc

fg

(1) (2) (3)

(4)
(5)

(6)

Fig. 2: Data Partitioning Process: (1) partitions of similar transactions are built;
(2) centroids are extracted; (3) and filtered; (4) transaction are placed and fil-
tered ; (5) overlapping partitions are ready for pattern extraction; (6) local
frequent itemsets are also globally frequent.

4 Experiments

To assess the performance of our proposals, we have carried out extensive exper-
imental evaluations. In Section 4.1, we depict our experimental setup. In Section
4.2, we describe the data sets used for our various experiments. In Section 4.3
and Section 4.4, we discuss the results of our experiments.

4.1 Experimental Setup

We implemented all different presented PFIM algorithms and data placement
strategies on top of Hadoop MapReduce using the Java programming language
version 1.7 and Hadoop version 1.0.3. For comparison with PFPGrowth [14],
we adopted the default implementation provided in the Mahout [15] machine
learning library (Version 0.7). Since our algorithm and the algorithms from the
literature used for comparisons do not filter on the top-k results, we have set
the parameter k (top-k frequent itemsets to be extracted) of PFPGrowth algo-
rithm to 106. This allows us to obtain the whole set of frequent itemsets with
PFPGrowth, and not only the top-k ones.

We have carried out two bunch of experiments. In the first set of experiments,
described by section 4.3, we evaluate the performances of P2S, compared to
existing work in the literature. In the second bunch of experiments, presented in
section 4.4, we stress our experimental evaluations on our PATD algorithm.

We carried out all our experiments in Grid5000 [16], which is a platform
for large-scale data processing. We have used a cluster of 16 machines for both
the English Wikipedia [17] and the Amazon Reviews [18] data sets, while we
have used 48 machines for the ClueWeb [19] data set. All of these data sets are
described in Section 4.2.

18 Saber Salah, Reza Akbarinia, and Florent Masseglia

When assessing the performance of PATD algorithm using the EnglishWikipedia
data set, we have varied the number of machines from 16 up to 48 to get an
overview of the impact of using more nodes on the speedup performance of the
different presented PFIM algorithms.

In our different experiments, we have used clusters of homogeneous machines
(i.e., having similar properties), where each machine is equipped with a Linux
operating system, 64 Gigabytes of main memory, Intel Xeon X3440 4 core CPUs,
and 320 Gigabytes SATA II hard disk. For 2-Jobs Schema, we performed our
experiments by varying the minimum supportMinSup parameter value for each
algorithm along with a particular data placement strategy (STDP or RTDP).

To evaluate the performance of our different proposals and compare them to
existing solutions in the literature, we have taken into account different measures.
We consider the execution time (i.e., elapsed mining time: from the beginning
of the mining process until its end) to evaluate the performance of both PATD
and P2S algorithms. Furthermore, we consider the total amount of transferred
data and the energy power consumption in the Grid5000 [16] platform when as-
sessing the performance of PATD algorithm. i.e., the total amount of transferred
data represents the sum of the quantity of data being transmitted between the
mappers and the reducers, while the energy power consumption accounts for the
quantity of power consumed by the machines when executing a particular PFIM
algorithm.

When assessing both the impact of data placement and the PATD algorithm,
we have used 500 mappers for all the data sets and number of reducers equals
to the number of used machines (i.e., 16 and 48 reducers). This choice of the
number of the reducer is taken based on several attempts to get an optimal
configuration.

4.2 Data Sets

We have performed our experiments on three real-world data sets. To evaluate
the performance of PATD algorithm, we used as a first data set which is the
latest dump of the 2014 English Wikipedia articles [17] having a total size of 49
Gigabytes, and composed of 5 millions articles. The second data set is the 2013
Amazon Reviews [18] data set having a size of 34 Gigabytes, and composed of 34
millions reviews. The third data set is a sample of the ClueWeb English data set
[19] with size of one Terabyte and having 632 million articles. Likewise, to assess
the performance of Opt-P2S and the impact of different used data placement
strategies (i.e., STDP and RTDP), we used the same English Wikipedia, Amazon
Reviews data sets, and a sample of the ClueWeb English data set [19] with size
of 240 Gigabytes and having 228 millions articles.

For each data set we performed a data cleaning task by removing all English
stop words from all articles and obtained a data set where each article represents
a transaction (the items are the corresponding words in the article) to each
invoked PFIM algorithm in our experiments.

Data Placement for Fast Parallel Mining of Frequent Itemset 19

4.3 2-Jobs Schema

Here, we evaluate the impact of RTDP and STDP data placements on the per-
formance of PFIM algorithms that is based only on P2S design schema. Consider
a FIM algorithm called ’x’. We denote by P2Sx-R and P2Sx-S the use of our
P2S principle with STDP (P2Sx-S) or RTDP (P2Sx-R) strategy for data place-
ment, where local frequent itemsets are extracted by means of the ’x’ algorithm.
For instance, P2SA-S means that P2S is executed on data arranged according
to STDP strategy, with Apriori executed on the mappers for extracting local
frequent itemsets. MR-Apriori is the straightforward implementation of Apriori
in MapReduce (one job for each length of candidates and database scans for
support counting are replaced by MapReduce jobs). In our experiments there
has been no difference between using STDP and RTDP on MR-Apriori perfor-
mance. Thus, we decided to restrict our comparison to only MR-Apriori with
RTDP data placement strategy. We denote by P2SC-R for Parallel Two Steps
CDAR with RTDP data placement. Finally, we denote by Opt-P2S the opti-
mized combination between P2S architecture and a FIM algorithm (i.e., P2SC
algorithm with STDP data placement strategy).

Figures 3(a) and 3(b) report our results on the whole set of Wikipedia articles
in English. Figures 3(a) gives a complete view on algorithms performances for a
support varying from 0.12% to 0.01%. We see that MR-Apriori runtime grows
exponentially, and gets quickly very high compared to other presented PFIM
algorithms. In particular, this exponential runtime growth reaches its highest
value with 0.04% threshold. Below this threshold, MR-Apriori needs more re-
sources (e.g., memory) than what exists in our test machines, so it is impossible
to extract frequent patterns with this algorithm. Another interesting observation
is that P2SA-S i.e., the two steps algorithm that use Apriori as a local mining
solution, shows lower performance than MR-Apriori. This is an important result,
since it confirms that a bad choice of data-process relationship compromises a
complete analytic process and makes it inoperative. Let us now consider the set
of the four algorithms that scale. The less effective are PFPGrowth and P2SA-R.
It is interesting to see that two very different algorithmic schemes (PFPGrowth
is based on the pattern tree principle and P2SA-R is a two steps principle with
Apriori as a local mining solution with no specific care to data placement) have
similar performances. The main difference is that PFPGrowth exceeds the avail-
able memory below 0.02%. Eventually, P2SC-R and Opt-P2S give the best per-
formances, with an advantage for Opt-P2S. In this experiment on the English
Wikipedia data set, the time for creating the STDP data partitions (500 data
partitions) using PaToH is 133 seconds. Since it is done only once and all the
runs of Opt-P2S use the same data placement, this time is mentionned here in
the text but is not considered in Figures 3(a) and 3(b)

Figure 3(b) focuses on the differences between the three algorithms that scale
in Figure 3(a). The first observation is that P2SA-R is not able to provide re-
sults below 0.006%. Regarding the algorithms based on the principle of P2S, we
can observe a very good performance for Opt-P2S thanks to its optimization
between data and process relationship. These results illustrate the advantage of

20 Saber Salah, Reza Akbarinia, and Florent Masseglia

 0

 500

 1000

 1500

 2000

0.12 0.1 0.08 0.06 0.04 0.02 0.01

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Support (%)

P2SA-S
MR-Apriori

P2SA-R

PFPGrowth
P2SC-R
Opt-P2S

(a) All algorithms

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0.01 0.008 0.006 0.004 0.002

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Support (%)

P2SA-R
P2SC-R
Opt-P2S

(b) Focus on scalable algorithms

Fig. 3: Runtime and scalability on English Wikipedia data set

Data Placement for Fast Parallel Mining of Frequent Itemset 21

 0

 500

 1000

 1500

 2000

 2500

 3000

0.12 0.1 0.08 0.06 0.04 0.02 0.01

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Support (%)

P2SA-S
MR-Apriori

P2SA-R

PFPGrowth
P2SC-R
Opt-P2S

(a) All algorithms

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0.01 0.008 0.006 0.004 0.002

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Support

P2SA-R
P2SC-R
Opt-P2S

(b) Focus on scalable algorithms

Fig. 4: Runtime and scalability on Amazon Reviews data set

22 Saber Salah, Reza Akbarinia, and Florent Masseglia

 0

 1000

 2000

 3000

 4000

 5000

0.001 0.0008 0.0006 0.0004 0.0002

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Support (%)

P2SA-S
MR-Apriori

P2SA-R
PFPGrowth

P2SC-R
Opt-P2S

Fig. 5: Runtime on ClueWeb data set

 0

 100

 200

 300

 400

 500

0
.0

0
1

0
.0

0
0

8

0
.0

0
0

6

0
.0

0
0

4

0
.0

0
0

2

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Support (%)

Job1
Job2

Fig. 6: Opt-P2S: Job1 Vs Job2

using a two steps principle where an adequate data placement favors similar-
ity between transactions, and the local mining algorithm does better on long
frequent itemsets.

Figures 4(a) and 4(b) illustrate our results on the Amazon Reviews data
set. Figures 4(a) shows a global view on algorithms performances for a support
varying from 0.12% to 0.01%. As on the English Wikipedia data set, we observe
that the performance of MR-Apriori is poor compared to other presented PFIM
alternatives. Particularly, below a minimum support of 0.02%, MR-Apriori is not
able to extract the frequent itemsets. On the other hand, we see that P2SA-S
(the two steps algorithm that uses Apriori as a local mining solution) gives very
poor performance which is lower than MR-Apriori performance. In Particular,

Data Placement for Fast Parallel Mining of Frequent Itemset 23

with a minimum support that is less than 0.04%, P2SA-S becomes unable to
extract the frequent itemsets. Again, as on the English Wikipedia data set, this
performance result of P2SA-S algorithm obviously confirms the prominent role
of using a particular data placement strategy along with a specific FIM algo-
rithm. Similarly, as in Figure 3(a), we see in Figure 4(a) that PFPGrowth and
P2SA-R algorithms give better performance compared to MR-Apriori and P2SA-
S algorithms. Finally, we record better performances of P2SC-R and Opt-P2S
compared to other presented PFIM alternatives. Particularly, our solution Opt-
P2S shows very good performance compared to P2SC-R and all other presented
PFIM algorithms.

Figure 4(b) highlights the differences between the algorithms that scale in
Figure 4(a). We see that P2SA-R algorithm cannot continue scaling below a min-
imum support of 0.006%. On the other side, we observe that P2SC-R continues
scaling. However, with a minimum support of 0.002% P2SC-R is outperformed
by Opt-P2S algorithm. This very good performance of Opt-P2S algorithm con-
firms the fundamental role of using an adequate data placement strategy along
with a specific FIM algorithm to successfully optimize a mining process and
renders it highly operative.

In this experiment on the Amazon Reviews data set, the overall runtime for
building the STDP data partitions (500 data partitions) using PaToH is 110
seconds.

In Figure 5, similar experiments have been conducted on the ClueWeb data
set. We observe that the same order between all algorithms is kept, compared to
Figures 3(a) and 4(a). There are two bunches of algorithms. One, made of P2SA-
S and MR-Apriori which cannot reasonably applied to this data set, whatever
the minimum support. In the other bunch, we see that PFPGrowth suffers from
the same limitations as could be observed on the Wikipedia data set in Figure
3(a) and on the Amazon Reviews data set in Figure 4(a). PFPGrowth follows a
behavior that is very similar to that of P2SA-R, until it becomes impossible to
execute.

On the other hand, P2SC-R and Opt-P2S are the two best solutions, while
Opt-P2S is the optimal combination of data placement and algorithm choice for
local extraction, providing the best relationship between data and process. In
this particular experiment with this very large data set size, we recorded 663
seconds to build the STDP data partitions using PaToH.

Figure 6 gives an entire overview on the difference between the execution
times of the first and the second job of Opt-P2S algorithm on the ClueWeb data
set. We observe that by varying the minimum support from 0.001% to 0.0002%,
the performance of the first MapReduce job is always faster than the second
job. This difference in the runtime performance is more significant when the
minimum support threshold (e.g., 0.0002% in Figure 6). This behavior of Opt-
P2S first job confirms our intuition on the optimization of the mining process
by combining the data with a specific mining process. The bottleneck of the two
steps mining approach is due to its second step. This result confirms our analysis

24 Saber Salah, Reza Akbarinia, and Florent Masseglia

on the limitations of the two steps approach that are solved in our 1-Job schema
approach described in the following.

4.4 1-Job Schema

In this section, first we focus on the runtime and scalability of PATD algorithm
compared to other proposed PFIM algorithms in the literature. Second, we dis-
cuss the impact of increasing the number of machines on the speedup perfor-
mance of each PFIM algorithm. Eventually, we discuss the amount of transferred
data and energy power consumption of different compared algorithms. In partic-
ular, we consider all different measurements when the minimum support is very
low. Beside the PFIM algorithms that we have used to evaluate the impact of
using data placement strategies along with a specific FIM algorithm, we have
compared the performance of our PATD solution to BigFIM [20] algorithm.

4.4.1 Runtime and Scalability. Figures 7, 8 and 9 show a complete view of
our experiments on English Wikipedia, ClueWeb and Amazon Reviews data sets.
Figures 7(a) and 7(b) illustrate our experimental results on the whole English
Wikipedia data set. Figure 7(a) gives an entire view on algorithms performances
for a minimum support ranging from 0.12% to 0.01%. We see that MR-Apriori
algorithm presents a very weak performance. With a minimum support below
0.04%, MR-Apriori algorithm becomes unable to scale. In the other side, we see
that P2SA-R performance tends to be very closed to PFPGrowth until a min-
imum support of 0.02%. P2SA-R algorithm continues scaling with 0.01% while
PFPGrowth does not. Although P2SA-R algorithm is outperformed by BigFIM,
its scalability performance behavior explains the fundamental role of using such
adequate data placement strategy (in this case RTDP). This observation, is bet-
ter illustrated by the performance given by Opt-P2S algorithm. Opt-P2S scales
with low minimum support values and outperforms the other algorithms. This
stresses the high capability of data placements techniques (i.e., RTDP or STDP)
to deviate the performance of the whole mining process. Although, these tech-
niques (i.e., data placements) have resulted in high performance improvements
of P2S based algorithms, they are outperformed by PATD algorithm. We see
that with a minimum support threshold of 0.01%, PATD achieves a very good
and significant performance compared to other presented algorithm. This differ-
ence in the performance is better illustrated in Figure 7(b). In fact, The high
performance behavior of PATD algorithm in both response time and scalability,
illustrates the high impact of a careful and clever placement of the data on a
parallel distributed environment (thanks to the efficient and clever IBDP data
partitioning technique). In this experiment, the time for generating the overlap-
ping data partitions using IBDP (which is done only once) is fast, compared to
the mining time. Actually, it takes 289 seconds to generate 500 overlapping data
partitions.

Figure 7(b) illustrates the differences between the three algorithms that scale
in Figure 7(a). We see that BigFIM algorithm does not scale below a minimum

Data Placement for Fast Parallel Mining of Frequent Itemset 25

 0

 500

 1000

 1500

 2000

0.12 0.1 0.08 0.06 0.04 0.02 0.01

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Support (%)

MR-Apriori
P2SA-R
PFPGrowth
BigFIM
Opt-P2S
PATD

(a) All algorithms

 0

 200

 400

 600

 800

 1000

 1200

 1400

0.01 0.008 0.006 0.004 0.002

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Support (%)

BigFIM
Opt-P2S
PATD

(b) Focus on scalable algorithms

Fig. 7: Runtime and scalability on English Wikipedia data set

26 Saber Salah, Reza Akbarinia, and Florent Masseglia

 0

 500

 1000

 1500

 2000

 2500

 3000

0.12 0.1 0.08 0.06 0.04 0.02 0.01

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Support (%)

MR-Apriori
P2SA-R
PFPGrowth
BigFIM
Opt-P2S
PATD

(a) All algorithms

 0

 200

 400

 600

 800

 1000

 1200

 1400

0.01 0.008 0.006 0.004 0.002

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Support (%)

BigFIM
Opt-P2S
PATD

(b) Focus on scalable algorithms

Fig. 8: Runtime and scalability on Amazon Reviews data set

Data Placement for Fast Parallel Mining of Frequent Itemset 27

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

0.001 0.0008 0.0006 0.0004 0.0002 0.0001 0.00008

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Support (%)

MR-Apriori
P2SA-R
PFPGrowth
BigFIM
Opt-P2S
PATD

(a) All algorithms

 0

 5000

 10000

 15000

 20000

 25000

 30000

0.00008 0.00006 0.00004

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Support (%)

Opt-P2S
PATD

(b) Focus on scalable algorithms

Fig. 9: Runtime and scalability on ClueWeb data set

28 Saber Salah, Reza Akbarinia, and Florent Masseglia

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 16 24 32 40 48

S
p

e
e

d
u

p

Number of Machines

PATD
PFPGrowth
BigFIM
Opt-P2S
P2SA-R
MR-Apriori

Fig. 10: Speedup on the English Wikipedia data set

support threshold of 0.006%. Looking at other presented algorithms, we see that
Opt-P2S continues to scale with 0.002% while it is outperformed by PATD in
terms of the response time. With a minimum support of 0.002%, we observe
a big difference in the execution time between PATD and Opt-P2S. This very
good performance of PATD is due to its clever and simple mining principle, and
its simple one MapReduce job property that allows for a very fast mining of
frequent itemsets.

Figures 8(a) and 8(b) report our experimental results on the Amazon Re-
views data set. Figure 8(a) gives a complete view on algorithms performances
for a minimum support ranging from 0.12% to 0.01%. By looking at the perfor-
mance of the MR-Apriori algorithm, we see that below a minimum support of
0.02%, MR-Apriori does not scale. In the other side, we see that P2SA-R and
BigFIM continue scaling, while PFPGrowth does not. Although the scalability
of these two PFIM algorithms, they are outperformed by Opt-P2S which is in
turn outperformed by PATD algorithm.

In this experiment using the Amazon Reviews data set, the running time
of IBDP to builds 500 overlapping data partitions is 243 seconds. This step is
done once for all and we do not consider this running time when reporting the
performance of PATD in Figures 8(a) and 8(b).

Figure 8(b) shows the differences between the algorithms that scale in Figure
8(a). We see that BigFIM algorithm does not scale below a minimum support of
0.004%. Looking at other presented algorithms, we see that Opt-P2S continues to
scale with 0.002% while it is outperformed by PATD. With a minimum support
of 0.002%, we observe a big difference in the execution time between PATD and
Opt-P2S. This very good performance of PATD is due to its clever and simple
mining principle, and its simple one MapReduce job property that allows for a
very fast mining of frequent itemsets.

Data Placement for Fast Parallel Mining of Frequent Itemset 29

 0

 1000

 2000

 3000

 4000

 5000

0
.1

2

0
.1

0
.0

8

0
.0

6

0
.0

4

0
.0

2

0
.0

1

0
.0

0
8

0
.0

0
6

0
.0

0
4

0
.0

0
2

T
ra

n
s
fe

rr
e

d
 D

a
ta

 (
M

B
)

Support (%)

MR-Apriori
P2SA-R
PFPGrowth
BigFIM
Opt-P2S
PATD

(a) English Wikipedia data set

 0

 1000

 2000

 3000

 4000

 5000

0
.0

0
1

0
.0

0
0

8

0
.0

0
0

6

0
.0

0
0

4

0
.0

0
0

2

0
.0

0
0

1

0
.0

0
0

0
8

0
.0

0
0

0
6

0
.0

0
0

0
4

T
ra

n
s
fe

rr
e

d
 D

a
ta

 (
M

B
)

Support (%)

MR-Apriori
P2SA-R
PFPGrowth
BigFIM
Opt-P2S
PATD

(b) ClueWeb data set

Fig. 11: Data communication

30 Saber Salah, Reza Akbarinia, and Florent Masseglia

 0

 5

 10

 15

 20

 25

 30

0
.1

2

0
.1

0
.0

8

0
.0

6

0
.0

4

0
.0

2

0
.0

1

0
.0

0
8

0
.0

0
6

0
.0

0
4

0
.0

0
2

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 (

W
)

Support (%)

MR-Apriori
P2SA-R
PFPGrowth
BigFIM
Opt-P2S
PATD

Fig. 12: Energy consumption

In Figures 9(a) and 9(b), same experiments have been carried out on the
ClueWeb data set. We see that the same order between all algorithms is kept
as in Figures 7(a), 7(b), 8(a) and 8(b). We distinguish three sets of algorithms.
The first one consists of MR-Apriori which is unable to scale and impossible to
be applied with this large data set. In the second set, we see that PFPGrowth
presents the same limitations as on the Wikipedia data set in Figure 7(a). We
can see that PFPGrowth performance is very close to P2SA-R. By decreasing
further the minimum support threshold PFPGrowth becomes unable to scale,
while, P2SA-R continues scaling until it stops executing with a minimum support
of 0.0001%. In the third set of algorithms, we see Opt-P2S and PATD scale until
0.00008%. By further decreasing the minimum support threshold as shown in
Figure 9(b), we observe a very good performance of PATD compared to Opt-P2S.
The Opt-P2S algorithm becomes inoperative with a minimum support below
0.00006%, while PATD continues scaling very well. This big difference in the
performance behavior between PATD and all other presented algorithms shows
the high capacity of PATD in terms of scaling and response time. Particularly, in
this experiment with this very large data set, it is worth to mention that the time
for generating the overlapping data partitions using IBDP takes 1123 seconds to
build 500 overlapping data partitions on this data set of one terabytes.

With both, Gigabytes and Terabytes of data, PATD gives a very good and
significant performance. Whatever the data set size of our experiments, the num-
ber of transactions, and the minimum support, PATD scales and achieves very
good results.

4.4.2 Speedup. Let us investigate the impact of varying the number of nodes
on the speedup of the PATD algorithm and the other presented alternatives. In
our experiments, we compute the speedup s by considering the centralized and
the parallel execution of each algorithm i.e., the speedup s is s = T1

Tm
, where

Data Placement for Fast Parallel Mining of Frequent Itemset 31

T1 represents the execution time of the algorithm on a single machine, and Tm
accounts for the execution time of the same algorithm on m machines.

Figure 10 reports our experimental result on the English Wikipedia data set.
By fixing the minimum support to 0.04% (i.e., to consider all the algorithms) and
varying the number of used machines from 16 up to 48, we see that the speedup of
MR-Apriori is not highly impacted by increasing the number of nodes. Although
the availability of more resources (e.g., memory), MR-Apriori (straightforward
implementation of Apriori) needs to scan the database multiple times in a serial
manner. Looking at the mining principle of MR-Apriori, the increase in the num-
ber of the machines impacts the data communication overhead which degrades
the speedup performance (e.g., as shown in Figure 10, by using 40 to 48, there
is no much gain in the speedup).

On the other side, we see that P2SA-R has a better speedup compared to
MR-Apriori. This is due to its 2-jobs compact architecture to extract the frequent
itemsets. However, each data partition (i.e., each mapper at the first round) of
P2SA-R needs to be mined using Apriori algorithm i.e., each data partition is
scanned multiple times (cannot be parallelized), and this impacts the overall
speedup of the algorithm. By looking at the Opt-P2S algorithm, we see that its
speedup is better compared to both MR-Apriori and P2SA-R. This is because,
the CDAR algorithm being applied at each data partition (with STDP) at the
first round of Opt-P2S does not scan the data partition in a sequential manner as
P2SA-R and MR-Apriori do. In addition, Opt-P2S benefits from the parallelism
(i.e., resources) particularly when generating the itemset subsets. However, the
main problem that impacts its speedup performance is the data communica-
tion. Meanwhile, we see that the BigFIM algorithm gives better speedup than
previously mentioned algorithm, however it is outperformed by PFPGrowth. In-
terestingly, we see that PATD algorithm gives very good speedup compared to
PFPGrowth. This is due to the fact that PATD does not allow much data to be
communicated that impacts the overall speedup performance. By increasing the
number of the machines, PATD highly benefits from the available resources.

4.4.3 Data Communication and Energy Consumption. Let us now
study the amount of transferred data over the network when executing different
PFIM algorithms. Figure 11(a) shows the transferred data (in mega bytes) of
each presented algorithm on the Wikipedia data set. We observe in this figure
that MR-Apriori has the highest peak. This is simply due to its multiple round of
MapReduce executions. In other hand, we see that P2SA-R, BigFIM, Opt-P2S
and PFPGrowth represent smaller peaks. Among all the performances of the
presented algorithms in Figure 11(a), we clearly distinguish the performance of
PATD algorithm. We can see that whatever the used MinSup, PATD does not
allow much data transfer compared to other presented PFIM alternatives. This
is because PATD does not rely on chains of jobs (i.e., just one simple job). In ad-
dition, unlike other presented PFIM algorithms, PATD limits the mappers from
emitting non frequent itemsets (i.e., it does not duplicate the data). Therefore,
PATD algorithm does not allow the transmission of useless data (itemsets).

32 Saber Salah, Reza Akbarinia, and Florent Masseglia

In Figure 11(b), we report the results of the same experiment on the ClueWeb
data set. We observe that PATD algorithm always has the lowest peak in terms
of transferred data compared to other algorithms.

We also measured the energy power consumption of the compared algo-
rithms during their execution. For measuring the power consumption, we used
the Grid5000 [16] tools that allow us to measure the power consumption of the
nodes during a job execution. Figure 12 shows the total amount of the power
consumption of each algorithm. We observe that the energy power consumption
increases when decreasing the minimum support threshold for each algorithm.
We see that PATD still gives a lower consumption compared to other presented
alternatives. Taking the advantage from its parallel design, PATD allows a high
parallel computational execution. This, impacts the mining runtime to be fast,
which is in turn, allows for a fast convergence of the algorithm and thus, lower
energy consumption. PATD also transfers less data over the network, and this
is another reason for its lower energy consumption.

5 Related Work

In data mining literature, several endeavors have been made to improve the
performance of frequent itemset mining (FIM) algorithms [21], [22], [23]. Due to
the explosive growth of data, an efficient parallel design of FIM algorithms has
been highly required to handle large volumes of data.

Candidate Distribution algorithm [24] accounts for a parallel frequent item-
set mining process that is based on data partitioning approach. The algorithm
partitions the itemset candidates among the different processors, then redis-
tributes the database transactions among the processor in such a way that each
data partition can be mined independently from other partitions. However, The
algorithm uses Apriori algorithm to mine each data partition, this results in
multiple scans of each data partition which degrades the overall performance.
In other hand, our proposed PATD algorithm is based on CDAR [11] algorithm
to mine each data partition independently. Each one of these data partitions
contains similar transactions, and this strategy highly increases the efficiency
and scalability of the mining process.

Intelligent Data Distribution (IDD for short) algorithm [25] is an improve-
ment of the Data Distribution (DD for short) algorithm [24]. Likewise, DD al-
gorithm was proposed to solve the limitations (i.e., memory issues with high
number of items) of the Count Distribution (CD for short) algorithm [24]. To
this end, the DD algorithm partitions the the set of candidate itemsets among
the processors in a round robin fashion. DD exploits better the available mem-
ory than the CD algorithm, however the DD algorithm has accounted for several
flaws, particularly the cost of the data communication between the processors
(i.e., sending the locally stored portions of the database transactions) which
highly degrades the overall mining performance. IDD algorithm solves the prob-
lems presented in the DD algorithm by sending the locally stored portions of the
database to other processors by using the ring-based all-to-all broadcast [26].

Data Placement for Fast Parallel Mining of Frequent Itemset 33

FPGrowth algorithm [23] has shown an efficient scale-up compared to other
FIM algorithms , it has been worth coming up with a parallel version of FP-
Growth [14] (i.e., PFPGrowth). The partitioning scheme of PFPGrowth follows
that of FPGrowth, in the sense that FPGrowth divides the search space into
"families of itemsets". The principle of FPGrowth is to explore the search space
according to the F-List (the list of frequent items, sorted by decreasing order).
For each frequent item in the reverse order of frequency, FPGrowth constructs
its conditional pattern-base, and then its conditional FP-tree. The process is
repeated on each newly created conditional FP-tree. The partitioning principle
of PFPGrowth follows the construction of conditional FP-Trees. For each item,
a partition that corresponds to the conditional tree is created and then mined
for frequent itemsets. The principle of PATD is different since we build inde-
pendent local databases that i) will locally ensure the extraction of a subset of
the global frequent itemsets and ii) guarantee that the union of local frequent
itemsets is exactly the set of global frequent itemsets. Although, PFPGrowth is
distinguishable with its fast mining process, it has several flaws. In particular,
with very low minimum support MinSup, PFPGrowth may run out of memory
as illustrated by our experiments in Section 4.

BigFIM [20] algorithm has been proposed to cover the limitations of PF-
PGrowth. This algorithm has shown better performance in terms of scalability
compared to PFPGrowth. It represents a hybrid method between Apriori [9] and
Eclat algorithm [27]. BigFIM first uses Apriori to extract the frequent itemsets
of length k and later on switches to Eclat when the projected databases fit into
the memory.

PARMA algorithm [28] uses an approximation in order to determine the
list of frequent itemsets. It has shown better running time and scale-up than
PFPGrowth. However, PARMA algorithm does not return an exhaustive list of
frequent itemsets, it only approximates them.

A parallel version of Apriori algorithm [21] requires n MapReduce jobs, in
order to determine frequent itemsets of size n. However, the algorithm is not
efficient because it requires multiple database scans. To overcome conventional
FIM issues and limits, a novel FIM technique, namely CDAR has been proposed
in [11]. This algorithm uses a top down approach in order to determine the list
of frequent itemsets. CDAR algorithm avoids the generation of candidates and
renders the mining process more simple, by dividing the database into groups of
transactions of equal sizes. Although, CDAR algorithm [11] has shown signifi-
cant performance improvement in mining FIM, yet there has been no proposed
parallel version of it.

Another FIM technique, called SON, has been proposed in [10], consists
of dividing the database into n data partitions. Its mining process starts by
searching the local frequent itemsets in each data partition independently. Then,
it compares the whole list of local frequent itemsets against the entire database
to figure out a final list of global frequent itemsets.

In this work, we address the problem of parallel frequent itemset mining
(PFIM) in Big Data [2]. In particular, we take our inspiration from SON [10] al-

34 Saber Salah, Reza Akbarinia, and Florent Masseglia

gorithm. We propose two different parallel MapReduce based solutions that allow
a fast and efficient parallel mining of frequent itemsets in very large databases.

To this end, we call for different data placement strategies in a massively dis-
tributed environment as efficient solutions for optimizing the mining process of
PFIM. In this setting, we relate our work on data placement to data partitioning
as a key idea that allows a customized data placement in massively distributed
environments. We have used the PatoH [13] tool for graph partitioning, how-
ever, other various techniques and approaches can be used. In [29], the authors
proposed an algorithm for partitioning data stream databases in which the data
can be appended continuously. In the case of very dynamic databases, instead
of PatoH tool which we used in this paper for graph partitioning, we can use the
approach proposed in [29] to perform the STDP (refer to Section 3.1.2 for more
details) partitioning efficiently and quickly after arrival of each new data to the
database.

6 Conclusion

In this paper, we identified and studied the impact of the relationship between
data placement and process organization in a massively distributed environment
such as MapReduce for frequent itemset mining. This relationship has not been
investigated before this work, despite crucial consequences on the extraction time
responses allowing the discovery to be done with very low minimum support. We
proposed a reliable and efficient MapReduce based parallel frequent itemset algo-
rithm, namely PATD, that has shown significant efficiency in terms of; i) runtime
and scalability; i) low data communication; and low energy consumption. PATD
algorithm takes the advantage of an efficient data partitioning technique namely
IBDP. IBDP data partitioning strategy allows for an optimized data placement
on MapReduce. This placement technique has not been investigated before this
work. It allows PATD algorithm to exhaustively and quickly mine very large
databases. Such ability to use very low minimum supports is mandatory when
dealing with Big Data and particularly hundreds of Gigabytes like what we have
done in our experiments. Our results show that PATD algorithm dramatically
outperforms other existing PFIM alternatives, and makes the difference between
an inoperative and a successful extraction.

7 Appendix

7.1 Two Rounds Closed Itemset Mining

Closed itemsets present a compact representation of the whole set of frequent
itemsets. Very efficient solutions have proposed for their extraction, with orders
of magnitude in performance improvements. Therefore, one would be tempted to
apply frequent closed itemset mining algorithms as a local solution for pattern
extraction in the first step of a 2 job-schema mining algorithm such as P2S or
PATD. However, frequent closed itemset have very constraining characteristics

Data Placement for Fast Parallel Mining of Frequent Itemset 35

TID A B C D E F
1 X X X X X
2 X X X X X
3 X X X X
4 X X X X
5 X X X
6 X X X X X
7 X X X X
8 X X X X
9 X X X X
10 X X X X
11 X X X
12 X X X

Table 2: Database D

that may prevent from using them is a 2-job approach. Let us consider the
illustration given by Example 5 to show that a global frequent closed itemset
might never be a local frequent closed itemset (in no partition).

Example 5. Table 2 presents a database D with 12 transactions. Suppose we
divide D into four data partitions P1 = {T1, T2, T3}, P2 = {T4, T5, T6}, P1 =
{T1, T2, T3} and P2 = {T4, T5, T6}, where D = P1 ∪ P2 ∪ P3 ∪ P4.

The set of global frequent closed itemsets on D, along with their support is:
{(C : 12)(A,C : 8)(C,D : 8)(C,E : 8)}. In this set, the only itemset that is also a
local frequent closed itemset is (C,D), because it is supported by 3 transactions
in P3 and it has no superset with the same support. All the remaining global
frequent closed itemsets are either unfrequent or not closed in the partitions. Let
us consider, for instance, the itemset (C). In partition P1 it has the same support
as (A,C,E). In partition P2 it has the same support as (C,F). In partition P3

it has the same support as (C,D). In partition P4 it has the same support as
(B,C).

This simple counter example shows that, even though closed frequent itemsets
are an appealing research track for distributed environments, their usage call
for particular care. It would be interesting to investigate their properties in a
distributed scheme like PATD, but it calls for proofs, or counter examples, of
their compatibility with such a scheme.

References

1. Michael Berry. Survey of Text Mining Clustering, Classification, and Retrieval.
Springer New York, New York, NY, 2004.

2. Alexandros Labrinidis and H. V. Jagadish. Challenges and opportunities with big
data. Proc. VLDB Endow., 5(12):2032–2033, August 2012.

3. Wei Fan and Albert Bifet. Mining big data: Current status, and forecast to the
future. SIGKDD Explor. Newsl., 14(2):1–5, April 2013.

36 Saber Salah, Reza Akbarinia, and Florent Masseglia

4. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, 2008.

5. Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster computing with working sets. In Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–
10, Berkeley, CA, USA, 2010. USENIX Association.

6. Hadoop. http://hadoop.apache.org, 2014.
7. Christian Bizer, Peter A. Boncz, Michael L. Brodie, and Orri Erling. The meaning-

ful use of big data: four perspectives - four challenges. SIGMOD Record, 40(4):56–
60, 2011.

8. Saber Salah, Reza Akbarinia, and Florent Masseglia. Data partitioning for fast
mining of frequent itemsets in massively distributed environments. In 26th Inter-
national Conference on Database and Expert Systems Applications (DEXA), 2015.

9. Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, ed-
itors, Proceedings of International Conference on Very Large Data Bases (VLDB),
Santiago de Chile, Chile, pages 487–499, 1994.

10. Ashok Savasere, Edward Omiecinski, and Shamkant B. Navathe. An efficient al-
gorithm for mining association rules in large databases. In Proceedings of Interna-
tional Conference on Very Large Data Bases (VLDB), pages 432–444, 1995.

11. Yuh-Jiuan Tsay and Ya-Wen Chang-Chien. An efficient cluster and decomposition
algorithm for mining association rules. Inf. Sci. Inf. Comput. Sci., 160(1-4):161–
171, March 2004.

12. Shimon Even. Graph algorithms. Computer Science Press, Potomac, Md, 1979.
13. Patoh. http://bmi.osu.edu/ umit/PaToH/manual.pdf, 2011.
14. Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, and Edward Y. Chang. Pfp: par-

allel fp-growth for query recommendation. In Pearl Pu, Derek G. Bridge, Bamshad
Mobasher, and Francesco Ricci, editors, Proceedings of the 2008 ACM Conference
on Recommender Systems, RecSys 2008, Lausanne, Switzerland, October 23-25,
2008, pages 107–114. ACM, 2008.

15. Sean Owen. Mahout in action. Manning Publications Co, Shelter Island, N.Y,
2012.

16. Grid5000. https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home.
17. English wikipedia articles. http://dumps.wikimedia.org/enwiki/latest, 2014.
18. Amazon. http://snap.stanford.edu/data/web-Amazon-links.html.
19. The clueweb09 dataset. http://www.lemurproject.org/clueweb09.php/, 2009.
20. S. Moens, E. Aksehirli, and B. Goethals. Frequent itemset mining for big data. In

Big Data, 2013 IEEE International Conference on, pages 111–118, Oct 2013.
21. Rajaraman Anand. Mining of massive datasets. Cambridge University Press, New

York, N.Y. Cambridge, 2012.
22. Wei Song, Bingru Yang, and Zhangyan Xu. Index-bittablefi: An improved algo-

rithm for mining frequent itemsets. Knowl.-Based Syst., 21(6):507–513, 2008.
23. Han, Pei, and Yin. Mining frequent patterns without candidate generation. SIG-

MODREC: ACM SIGMOD Record, 29, 2000.
24. Rakesh Agrawal and John C. Shafer. Parallel mining of association rules. IEEE

Trans. on Knowl. and Data Eng., 8(6):962–969, December 1996.
25. Mohammed J. Zaki. Parallel and distributed association mining: A survey. IEEE

Concurrency, 7(4):14–25, October 1999.
26. Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction

to Parallel Computing: Design and Analysis of Algorithms. Benjamin-Cummings
Publishing Co., Inc., Redwood City, CA, USA, 1994.

http://hadoop.apache.org
https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
http://dumps.wikimedia.org/enwiki/latest
http://snap.stanford.edu/data/web-Amazon-links.html
http://www.lemurproject.org/clueweb09.php/

Data Placement for Fast Parallel Mining of Frequent Itemset 37

27. Mohammed J. Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li.
Parallel algorithms for discovery of association rules. Data Min. Knowl. Discov.,
1(4):343–373, December 1997.

28. Matteo Riondato, Justin A. DeBrabant, Rodrigo Fonseca, and Eli Upfal. Parma: a
parallel randomized algorithm for approximate association rules mining in mapre-
duce. In 21st ACM International Conference on Information and Knowledge Man-
agement (CIKM), Maui, HI, USA, pages 85–94. ACM, 2012.

29. Miguel Liroz-Gistau, Reza Akbarinia, Esther Pacitti, Fabio Porto, and Patrick
Valduriez. Dynamic Workload-Based Partitioning Algorithms for Continuously
Growing Databases. Transactions on Large-Scale Data- and Knowledge-Centered
Systems, page 105, 2014.

	Data Placement in Massively Distributed Environments for Fast Parallel Mining of Frequent Itemsets
	Introduction
	Definitions and Background
	Problem Statement
	MapReduce and job execution
	Parallel Frequent Itemset Mining

	Data Placement
	Non-Overlapping Strategy
	Random Transaction Data Placement (RTDP):
	Similar Transaction Data Placement (STDP):

	Overlapping: a Novel Strategy for Parallel FIM
	Itemset Based Data Placement.
	Parallel Absolute Top Down: Complete Approach.
	Proof of Correctness.

	Experiments
	Experimental Setup
	Data Sets
	2-Jobs Schema
	1-Job Schema
	Runtime and Scalability.
	Speedup.
	Data Communication and Energy Consumption.

	Related Work
	Conclusion
	Appendix
	Two Rounds Closed Itemset Mining

