M. Berry, Survey of Text Mining Clustering, Classification, and Retrieval, 2004.

A. Labrinidis and H. V. Jagadish, Challenges and opportunities with big data, Proc. VLDB Endow, pp.2032-2033, 2012.
DOI : 10.14778/2367502.2367572

W. Fan and A. Bifet, Mining big data, ACM SIGKDD Explorations Newsletter, vol.14, issue.2, pp.1-5, 2013.
DOI : 10.1145/2481244.2481246

J. Dean and S. Ghemawat, MapReduce, Communications of the ACM, vol.51, issue.1, pp.107-113, 2008.
DOI : 10.1145/1327452.1327492

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, Spark: Cluster computing with working sets, Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud'10, pp.10-10, 2010.

C. Bizer, P. A. Boncz, M. L. Brodie, and O. Erling, The meaningful use of big data, ACM SIGMOD Record, vol.40, issue.4, pp.56-60, 2011.
DOI : 10.1145/2094114.2094129

S. Salah, R. Akbarinia, and F. Masseglia, Data Partitioning for Fast Mining of Frequent Itemsets in Massively Distributed Environments, 26th International Conference on Database and Expert Systems Applications (DEXA), 2015.
DOI : 10.1007/978-3-319-22849-5_21

URL : https://hal.archives-ouvertes.fr/lirmm-01169603

R. Agrawal and R. Srikant, Fast algorithms for mining association rules in large databases, Proceedings of International Conference on Very Large Data Bases (VLDB), pp.487-499, 1994.

A. Savasere, E. Omiecinski, and S. B. Navathe, An efficient algorithm for mining association rules in large databases, Proceedings of International Conference on Very Large Data Bases (VLDB), pp.432-444, 1995.

Y. Tsay and Y. Chang-chien, An efficient cluster and decomposition algorithm for mining association rules, Information Sciences, vol.160, issue.1-4, pp.1-4161, 2004.
DOI : 10.1016/j.ins.2003.08.013

S. Even, Graph algorithms, 1979.
DOI : 10.1017/CBO9781139015165

H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang, Pfp, Proceedings of the 2008 ACM conference on Recommender systems, RecSys '08, pp.107-114, 2008.
DOI : 10.1145/1454008.1454027

S. Owen, Mahout in action, p.2012

S. Moens, E. Aksehirli, and B. Goethals, Frequent Itemset Mining for Big Data, 2013 IEEE International Conference on Big Data, pp.111-118, 2013.
DOI : 10.1109/BigData.2013.6691742

R. Anand, Mining of massive datasets

W. Song, B. Yang, and Z. Xu, Index-bittablefi: An improved algorithm for mining frequent itemsets. Knowl.-Based Syst, pp.507-513, 2008.

P. Han and Y. , Mining frequent patterns without candidate generation, ACM SIGMOD Record, vol.29, 2000.

R. Agrawal and J. C. Shafer, Parallel mining of association rules, IEEE Transactions on Knowledge and Data Engineering, vol.8, issue.6, pp.962-969, 1996.
DOI : 10.1109/69.553164

J. Mohammed and . Zaki, Parallel and distributed association mining: A survey, IEEE Concurrency, vol.7, issue.4, pp.14-25, 1999.

V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing: Design and Analysis of Algorithms, 1994.

M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, Parallel Algorithms for Discovery of Association Rules, Data Min. Knowl. Discov, vol.1, issue.4, pp.343-373, 1997.
DOI : 10.1007/978-1-4615-5669-5_1

M. Riondato, J. A. Debrabant, R. Fonseca, and E. Upfal, PARMA, Proceedings of the 21st ACM international conference on Information and knowledge management, CIKM '12, pp.85-94, 2012.
DOI : 10.1145/2396761.2396776

M. Liroz-gistau, R. Akbarinia, E. Pacitti, F. Porto, and P. Valduriez, Dynamic Workload-Based Partitioning Algorithms for Continuously Growing Databases. Transactions on Large-Scale Data-and Knowledge-Centered Systems, p.105, 2014.
URL : https://hal.archives-ouvertes.fr/lirmm-00906966