Amir Khatibi 
  
Fabio Porto 
email: fporto@lncc.br
  
Joao Guilherme Rittmeyer 
email: joanonr@lncc.br
  
Eduardo Ogasawara 
email: eogasawara@ieee.org
  
Patrick Valduriez 
email: patrick.valduriez@inria.fr
  
Dennis Shasha 
email: shasha@courant.nyu.edu
  
Pre-processing and Indexing techniques for Constellation Queries in Big Data

Keywords: Constellation Queries, Geometric Shapes, PH-tree Indexing, Dataset Pre-Processing, Query Pre-Processing, SQL extension

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The availability of large datasets in science, web and mobile applications enables new interpretations about natural phenomena and human behavior. From inferring sites of touristic interest based on pictures taken in social network applications [START_REF] Brilhante | On planning sightseeing tours with tripbuilder[END_REF] to the existence of dark matter inferred from multiple occurrences of quasars [START_REF] Overbye | Astronomers observe supernova and find they are watching reruns[END_REF], new knowledge emerges whenever individual observations are combined allowing for queries on patterns. This paper extends the algorithms and techniques in a type of pattern queries in spatial databases that we referred to as constellation queries (CQ) in our previous work [START_REF] Porto | Constellation queries over big data[END_REF]. Constellation queries are obtained from compositions of individual elements in large datasets. CQ computation entails matching geometric pattern queries against sets of individual data observations, such that each set collectively agrees in the geometric constraints expressed by the pattern query. In particular, we are interested in efficiently finding patterns like the Einstein cross (EC). From a constellation query representing the EC, involving a set of sky objects,we should compare it's attributes with other set of sky objects in a astronomy catalog. The data scheme of an astronomy catalog such as Sloan Digital Sky Survey (SDSS) 5 is as the following relation: SDSS (Obj_ID, RA, DEC, u, g, r, i, z, Redshift, . . . ) . The attributes u, g, r, i, z refer to the magnitude of light emitted by an object measured in specific wavelength. A constellation in the SDSS scenario would be defined by a sequence of objects from the catalog whose spatial distribution forms a shape conforming to a constellation query. In this paper we focus on improving the process of executing constellation queries, as described in [START_REF] Porto | Constellation queries over big data[END_REF], by applying query pre-processing and indexing techniques. We propose two new steps that could be executed prior to processing a user's query: (a) query pre-processing and (b) dataset pre-processing using the PH-tree algorithm. The advantage of pre-processing is hidden in the fact that solving a constellation query in a big dataset is hard due to the numerous possible compositions from billions of observations. In general, for a big dataset D and a number k of elements in the pattern query, the number of possible candidate combinations, |D| k is the number of ways to choose k items from D. Dataset pre-processing aims to reduce the size of D while pre-processing the query tries to reduce the size of k in a way that without losing the quality of solutions, we process the constellation queries in a shorter time. Our main contributions in this paper are: the adoption of the PH-tree indexing algorithm; the definition of a SQL extension for the constellation queries; and a query and dataset pre-processing techniques.

The rest of the paper is organized as follows: in section 2, we review the related works. Then section 3 presents the problem statement. Section 4 discusses our contributions in order to improve the CQ processing. In section 5, we show our experimental results. Finally, section 6 concludes.

Related Works

The relational data model, and SQL therein, adopt set based constraints that are imposed to each individual tuple in order to appear in a query result set. There are nevertheless many practical real-world problems such as geometric pattern queries that require tuples in a set to collectively satisfy a set of constraints [START_REF] Papadias | Algorithms for querying by spatial structure[END_REF], [START_REF] Brucato | Scalable package queries in relational database systems[END_REF]. The former is concerned with topological constraints among multi-dimensional objects. In [START_REF] Brucato | Scalable package queries in relational database systems[END_REF], the authors present package queries that enable users to express constraints over package of tuples. The approach considers local constraints, as traditional where clause in SQL, and global constraint that refer to packages of tuples. The query expressed using additional SQL clauses is rewritten into an expression composed of a SQL query, submitted to a relational database, and an integer linear program that solves the package constraints on top of database results. Constellation queries [START_REF] Porto | Constellation queries over big data[END_REF] is a class of package queries, in which a geometric shape defines the global constraints. The assessment of such constraints requires tuples in candidate packages to be labelled so that they can be referred to elements of the query according to the ordering imposed by the shape. Expressing CQ as package queries leads to self joins in the number of elements of the query that would be impractical for large datasets. Constellation queries combine quad-trees, matrix multiplication, and un-indexed join processing to discover sets of elements that match a geometric pattern within some additive factor on the pairwise distances.

Problem Formulation

We formulate the problem of solving spatial pattern queries, referred to as constellation queries as follows: We consider a Big Dataset D defined as a set of elements D = {e 1 , e 2 , . . . , e n }, in which each e i , 1 ≤ i ≤ n, is an element of a domain Dom. Furthermore, e i =< atr 1 , atr 2 , . . . , atr m >, such that atr j , 1 ≤ j ≤ m, is a value describing a characteristic of e i . Conversely, a sample query Q is defined as a set of elements Q = {q 1 , q 2 , . . . , q k }, where q j , 1 ≤ j ≤ k, are elements of the same domain Dom as D. We further adopt the following definitions: Definition 1: A boolean function fe (e i : Dom, Q j : Q, θ : R) verifies whether an element e i from a domain Dom is at most at a similarity distance θ from any element q i in Q j . Definition 2: A boolean function fs (C i : Dom, Q j : Q, : R) verifies whether the sets (C i ,Q j ) is at most a distance of with respect to the similarity of their composition model. Moreover, an increasing value for flexibilizes the distance evaluation. Finally, the semantics of fs evaluation considers all permutations of C i . Problem statement: given a Big dataset D and a sample query Q j , both with elements in a domain Dom, and constants θ = r1 and = r2, efficiently compute the set of all compositions

C = {C 1 , C 2 , . . . , C m }, C i ⊂ D, with |C i | = |Q j |, such that f e(e u ,Q j , r1) = true, for all e u ∈ C i , and f s(C i ,Q j , r2) = true, for all 1 ≤ i ≤ m.

CQ Processing

This section discusses our contributions in improving the performance of CQ processing. In general, query execution in large datasets is a challenge due to long execution time. However, one way to improve the user's experience of the system is pre-processing the input large dataset so that at the time of query execution, the system provides a quicker response as it has done some of the steps in advance. Likewise, another alternative to reduce the user's waiting time is by preprocessing the query itself. In the next subsections we elaborate each of these pre-processing steps.

Query Pre-processing

In constellation queries, the number of possible compositions increases exponentially with the query size k, (N ≈ |D| k ). One may intuitively suggest reducing the size k of a constellation query in order to save computation. As it turns out, elements in a full query Q k may induce redundant constraints, specially those located very close to each other. In this context, Q k can be built from subset M of elements of Q k that only includes elements that are candidates for defining the geometric shape induced by Q k (k ≤ k). As an example, Q k may only include elements that are at a certain distance apart. Once Q k has been fixed, an anchor element q 0 is picked and pairwise distances from it to every remaining element

Q k \ q 0 are computed. Axiom 1: Given constellation queries Q k and Q k , such that Q k = Q k -Q v , Q v ⊂ Q k ,
and S k a set of all sequences s k , such that s k matches Q k , and S k a set of all sequences s k ,such that s k matches Q k , we say that Q k is equivalent to 6 < δ and shape(s k ) ∼ = shape(s k ).

Q k ↔ (1 -F -measure(S k , S k ))

Query Transformation

The discussion in Section 4.1 raises an optimization strategy for constellation queries based on query pre-processing. The intuition is that some elements would offer little contribution for constellation specification but would add to the query elapsed-time. In this context, detecting such elements, and subtracting them from the query, could reduce query elapsed-time. Query modification, however, must be subject to equivalence guarantees between the original query and its reduced version, as stated by axiom 1. Proposition 1 suggests a verifiable condition to assess constellation query equivalence. In section 5 we experimentally evaluate the proposition 1.

Proposition 1:

Given constellation queries Q k and Q k , such that Q k = Q k - Q v , Q v ⊂ Q k , If for each query element q j ∈ Q v ∃ q i ∈ (Q k -Q v ), such that: distance(q j , q i ) ≤ then Q k is equivalent to Q k .

Dataset Pre-processing

The second opportunity to reduce the complexity of constellation queries, approximately N ≈ |D| k , is to reduce the size of D. Additionally, we want to look for elements to build compositions that are candidates for producing shapes geometrically close to that of Q k . The element q 0 from Q k becomes a key to such reduction. It enables to fix an anchor for building compositions both with respect to attribute values and to shape constraints. Regarding the former, q 0 reduces the size of D to |σ f (e i ) (D)|. In other words, we only test for compositions that hold a similar anchor element as q 0 in Q k . Secondly, as we scan D, looking for anchor elements, we store each element in a PH-tree [START_REF] Zäschke | The ph-tree: a space-efficient storage structure and multi-dimensional index[END_REF]. The latter is used in the sequel to search for candidate elements in the neighborhood of selected e i within a radius ρ, corresponding to the distance of the furthest query element q i to q 0 plus as depicted in Figure 1. The possible constellations having e as anchor are within this set.

The constellations based on an anchor e includes the neighbors within radius ρ whose distances to e match the distance d i of some query element in Q k . For a constellation query with k query elements, we produce k -1 buckets holding , where e refers to an anchor element in D, and n k is a neighbor of e in D with distance less than the largest distance (q i , q 0 ), for all q i in Q k . An interesting side-effect of computing D is that it fosters the parallelization of the constellation query processing by enabling a balanced distribution of D tuples over a cluster of machines to be evaluated by a Big Data processing framework, such as Spark.

Experiments

This section presents the experiments conducted to evaluate the pre-processing and indexing techniques in Constellation queries. We first evaluate the query preprocessing technique. Next, we evaluate the performance of the PH-tree applied to the Constellation query problem.

Query Pre-processing

In our first experiment, we randomly generate 10 queries with 7 elements each. Next, we reduce the query size, by randomly selecting one element to be deleted from each query. Figure 2(a) shows the results in elapsed-time, in seconds, for each query, sorted in ascending order by the elapsed time of the full query, k=7. Two main observations can be drawn from this plot. Firstly, indeed, as expected, the query size impacts in its response-time. The elapsed-time of the full query dominates the ones from its reduced versions. Moreover, the decrease in computation costs follows the modification of the query once one of its elements is, randomly, subtracted. However, as it can be more clearly verified in query 8, the choice of the element to be subtracted contributes differently to the query outcome, as it can be observed by a drastic reduction on the query elapsed-time. In order to explore this last observation, we measured the effect of selecting different query elements to be subtracted from the query. Figure 2(b) plots, in the horizontal axis, the query id against the query elapsed-time, in the vertical axis. Curves show: (i) the number of solutions (divided by 10 4 ), in blue, and (ii) the query elapsed-time, in red. Query Q 7 corresponds to the full query. As it can be seen, the choice significantly impacts on both the elapsed-time and the answer set. The difference in the answer set reflects in variation of the Fmeasure. Moreover, as observed when subtracting q 2 from Q 7 , the elapsed-time increases with respect to that of the full query, contrarily to the intuition. As a matter of fact, in Section 4.1, Proposition 1 states that modification of constellation query should be limited to query elements in close distance to one of its neighbors. Under this constraint, the results of the modified query and the full query would be equivalent. The query depicted in Figure 2(c) was specially constructed such that dist(q 2 , q 3 ) ≤ e psilon. According to Proposition 1, excluding either q 2 or q 3 would produce an equivalent query answer set, compared to the full query.

Table 1 depicts the results of running the query shown in Figure 2(c). Query id=1 corresponds to the full query. The remaining queries are obtained from query 1 by deleting an element corresponding to its id. The Fs elapsed-time column highlights the query time corresponding to running the composition function, which is the dominant constellation query cost. Unfortunately, Table 1 contradicts the premise exposed in Proposition 1. As it can be observed, the deletion of q 2 or q 3 produces many false positives. As a result, Q 2 and Q 3 are not equivalent to Q 1 , or q 5 exhibit higher precision and lower elapsed-time, with dist(q 4 , q 5 ) > . The later indicates that the original shape, as specified by the full query, would have been sensibly modified by the query modification. These experiments show that query modification must be exercised with extreme caution. An automatic decision, in line with proposition 1, is only possible if knowledge about spatial data distribution is available such that the precision of the modified query Q v , with respect to the full query Q k , is above a threshold. Moreover, the user may indicate her preferences regarding:elapsed-time; shape equivalence and F-measure. Selecting a faster execution with flexibility on the remaining parameters may open opportunity to query pre-processing under proposition 1.

PH-tree versus Quad-tree

In this section, we evaluate the efficiency of the PH-tree as the basic data structure used to aid retrieving the set of candidate matching neighboring stars for each given star in the dataset.In [START_REF] Porto | Constellation queries over big data[END_REF], a quad-tree data structure reduces the number of matching operations by adopting a representative of set of stars covered by the Quad-tree leaf nodes. In this context, node centroids are compared and, in case of successful matching, the process is carried over to stars covered by the matching nodes. Conversely, PH-tree indexes all stars, and neighboring computation must be exercised through all stars in the dataset. Thus, this experiments compares both approaches, considering the amount of memory used to build the data structure and the elapsed-time taken when retrieving the neighbors for stars in the SDSS R-12 dataset. The latter includes approximately 7 million stars and its file size is 1 GB. The Einstein cross is the query used with maximum distance between elements in order of 10 -5 . The PH-tree implementation showed, in average, 1.5 times higher memory footprint than the quad-tree. The former consumed 4.53 GB for 3.02 GB for the latter memory space consumption.

Figure 2(d) depicts our results on searching for candidates elapsed-time (logarithmic scale). Values for the PH-tree and the Quad-tree considered the average of 10 runs, but the ones for QT-9, which only report the average of 3 runs, due to the long elapsed-time for processing the query and, at the same time, low variance among runs. Results for QT-7, QT-8 and QT-9 report on the impact on the elapsed-time for the neighbors search when the Quad-tree is built with different heights. As it can be observed, the quad-tree with heights 7 and 8 showed better results than that of the PH-tree. Height 9, however, is the inflexion point. From height 9 on, the quad-tree implementation becomes extremely costly and PH-tree is a clear winner. It is also important to note that on higher heights, the quad-tree solutions may hide candidate solutions, as they may be covered within the same node, avoiding the procedure to detect them as candidates. Thus, despite presenting better performance, high height scenarios may lead to incomplete answers.

Conclusion

In this paper, we proposed pre-computing and indexing techniques for processing constellation queries. The query pre-processing technique involves selecting a query element to be excluded from the pattern in order to reduce the query complexity. As our experiments have shown, this process requires further investigation. Our proposition of excluding query elements within a pre-defined threshold distance eliminates a higher selective constraint, considerably increasing the answer set and reducing its F-measure. Thus, we consider that further investigation is needed to determine query elements that can be deleted without compromising query answer quality. Finally, the PH-tree presented very good results in computing neighbors of stars. The technique requires larger memory space but produces very efficient neighbors computation elapsed-time with complete solution set. We intend to explore techniques that would enable the distribution of the index structure in order to cope with even larger input datasets.

Fig. 1 .

 1 Fig. 1. (a) candidate anchor and neighboring ring elements and (b) geometric query

Fig. 2 .

 2 Fig. 2. (a) Query Size Reduction Impact (b)Effect on the Selected Query Element, (c) Assessing proposition 1 (d) PH-tree versus Quad-tree -Log Execution Time

Table 1 .

 1 Equivalence of Queries , despite being very close to each other. Moreover, the effect in performance of running Q 2 and Q 3 is worse than running the full query Q 1 . These results can be easily explained and, in fact, are co-related. Firstly, as the query elements are very close in space, they impose a severe restriction in the result set. Only candidate solutions that include pairs of elements, associated to bucket 2 and bucket 3 , with dist(e 2 , e 3 ) ≤ are selected, expressing a very selective predicate. Conversely, modified queries caused by the deletion of either q 4

	Query id	F-measure	Recall	No. Solutions	Fs elapsed-time
	1	1	1	38	0.3416
	2	0.0112	1	6690	2.7499
	3	0.01234	1	6117	2.6596
	4	0.7102	1	69	0.0500
	5	0.7446	0.9219	56	0.0512
	according to axiom 1			

http://skyserver.sdss.org/dr12/en/help/browser/browser.aspx

F-measure = precision/recall.