
HAL Id: lirmm-01620398
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620398

Submitted on 20 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pre-processing and Indexing techniques for
Constellation Queries in Big Data

Amir Khatibi, Fabio Porto, Joao Guilherme Rittmeyer, Eduardo Ogasawara,
Patrick Valduriez, Dennis Shasha

To cite this version:
Amir Khatibi, Fabio Porto, Joao Guilherme Rittmeyer, Eduardo Ogasawara, Patrick Valduriez, et
al.. Pre-processing and Indexing techniques for Constellation Queries in Big Data. DaWaK: Data
Warehousing and Knowledge Discovery, Aug 2017, Lyon, France. pp.164-172, �10.1007/978-3-319-
64283-3_12�. �lirmm-01620398�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01620398
https://hal.archives-ouvertes.fr

Pre-processing and Indexing techniques for
Constellation Queries in Big Data

Amir Khatibi1, Fabio Porto1, Joao Guilherme Rittmeyer1

Eduardo Ogasawara2, Patrick Valduriez3, and Dennis Shasha4

1 DEXL Lab, LNCC, Petropolis, RJ, Brazil, {ahassan,joanonr,fporto}@lncc.br
2 C.S. department, CEFET/RJ, RJ, Brazil, eogasawara@ieee.org

3 Zenith, LIRMM, Inria, Montpellier, France, patrick.valduriez@inria.fr
4 NYU, Courant Institute, USA, shasha@courant.nyu.edu

Abstract. Geometric patterns are defined by a spatial distribution of a set
of objects. They can be found in many spatial datasets as in seismic, as-
tronomy, and transportation. A particular interesting geometric pattern is
exhibited by the Einstein cross, which is an astronomical phenomenon in
which a single quasar is observed as four distinct sky objects when cap-
tured by earth telescopes. Finding such crosses, as well as other geometric
patterns, collectively referred to as constellation queries, is a challenging
problem as the potential number of sets of elements that compose shapes is
exponentially large in the size of the dataset and the query pattern. In this
paper we propose algorithms to optimize the computation of constellation
queries. Our techniques involve pre-processing the query to reduce its di-
mensionality as well as indexing the data to fasten stars neighboring com-
putation using a PH-tree. We have implemented our techniques in Spark
and evaluated our techniques by a series of experiments. The PH-tree index-
ing showed very good results and guarantees query answer completeness.
Keywords: Constellation Queries, Geometric Shapes, PH-tree Indexing,
Dataset Pre-Processing, Query Pre-Processing, SQL extension

1 Introduction

The availability of large datasets in science, web and mobile applications enables
new interpretations about natural phenomena and human behavior. From infer-
ring sites of touristic interest based on pictures taken in social network appli-
cations [1] to the existence of dark matter inferred from multiple occurrences of
quasars [2], new knowledge emerges whenever individual observations are com-
bined allowing for queries on patterns. This paper extends the algorithms and
techniques in a type of pattern queries in spatial databases that we referred to
as constellation queries (CQ) in our previous work [3]. Constellation queries are
obtained from compositions of individual elements in large datasets. CQ compu-
tation entails matching geometric pattern queries against sets of individual data
observations, such that each set collectively agrees in the geometric constraints
expressed by the pattern query. In particular, we are interested in efficiently find-
ing patterns like the Einstein cross (EC). From a constellation query representing

2

the EC, involving a set of sky objects,we should compare it’s attributes with other
set of sky objects in a astronomy catalog. The data scheme of an astronomy cata-
log such as Sloan Digital Sky Survey (SDSS)5 is as the following relation: SDSS
(Obj_ID, RA, DEC, u, g, r, i, z, Redshift, . . .) . The attributes u, g, r, i, z refer to
the magnitude of light emitted by an object measured in specific wavelength. A
constellation in the SDSS scenario would be defined by a sequence of objects from
the catalog whose spatial distribution forms a shape conforming to a constellation
query. In this paper we focus on improving the process of executing constellation
queries, as described in [3], by applying query pre-processing and indexing tech-
niques. We propose two new steps that could be executed prior to processing a
user’s query: (a) query pre-processing and (b) dataset pre-processing using the
PH-tree algorithm. The advantage of pre-processing is hidden in the fact that
solving a constellation query in a big dataset is hard due to the numerous pos-
sible compositions from billions of observations. In general, for a big dataset D
and a number k of elements in the pattern query, the number of possible candi-
date combinations,

(|D|
k

)
is the number of ways to choose k items from D. Dataset

pre-processing aims to reduce the size of D while pre-processing the query tries
to reduce the size of k in a way that without losing the quality of solutions, we
process the constellation queries in a shorter time. Our main contributions in this
paper are: the adoption of the PH-tree indexing algorithm; the definition of a SQL
extension for the constellation queries; and a query and dataset pre-processing
techniques.

The rest of the paper is organized as follows: in section 2, we review the related
works. Then section 3 presents the problem statement. Section 4 discusses our
contributions in order to improve the CQ processing. In section 5, we show our
experimental results. Finally, section 6 concludes.

2 Related Works

The relational data model, and SQL therein, adopt set based constraints that are
imposed to each individual tuple in order to appear in a query result set. There
are nevertheless many practical real-world problems such as geometric pattern
queries that require tuples in a set to collectively satisfy a set of constraints [4],
[5]. The former is concerned with topological constraints among multi-dimensional
objects. In [5], the authors present package queries that enable users to express
constraints over package of tuples. The approach considers local constraints, as
traditional where clause in SQL, and global constraint that refer to packages of
tuples. The query expressed using additional SQL clauses is rewritten into an
expression composed of a SQL query, submitted to a relational database, and an
integer linear program that solves the package constraints on top of database
results. Constellation queries [3] is a class of package queries, in which a geo-
metric shape defines the global constraints. The assessment of such constraints
requires tuples in candidate packages to be labelled so that they can be referred to

5 http://skyserver.sdss.org/dr12/en/help/browser/browser.aspx

3

elements of the query according to the ordering imposed by the shape. Express-
ing CQ as package queries leads to self joins in the number of elements of the
query that would be impractical for large datasets. Constellation queries combine
quad-trees, matrix multiplication, and un-indexed join processing to discover sets
of elements that match a geometric pattern within some additive factor on the
pairwise distances.

3 Problem Formulation

We formulate the problem of solving spatial pattern queries, referred to as con-
stellation queries as follows: We consider a Big Dataset D defined as a set of
elements D = {e1, e2, . . . , en}, in which each ei, 1≤ i ≤ n, is an element of a domain
Dom. Furthermore, e i =< atr1,atr2, . . . ,atrm >, such that atr j, 1 ≤ j ≤ m, is a
value describing a characteristic of e i. Conversely, a sample query Q is defined as
a set of elements Q = {q1, q2, . . . , qk}, where q j, 1≤ j ≤ k, are elements of the same
domain Dom as D. We further adopt the following definitions: Definition 1: A
boolean function fe (e i : Dom, Q j : Q, θ : R) verifies whether an element e i from
a domain Dom is at most at a similarity distance θ from any element qi in Q j.
Definition 2: A boolean function fs (Ci : Dom, Q j : Q, ε : R) verifies whether
the sets (Ci,Q j) is at most a distance of ε with respect to the similarity of their
composition model. Moreover, an increasing value for ε flexibilizes the distance
evaluation. Finally, the semantics of fs evaluation considers all permutations of
Ci. Problem statement: given a Big dataset D and a sample query Q j, both with
elements in a domain Dom, and constants θ = r1 and ε = r2, efficiently compute
the set of all compositions C = {C1,C2, . . . ,Cm}, Ci ⊂ D, with |Ci| = |Q j|, such that
f e(eu,Q j, r1)= true, for all eu ∈ Ci, and f s(Ci,Q j, r2)= true, for all 1≤ i ≤ m.

4 CQ Processing

This section discusses our contributions in improving the performance of CQ pro-
cessing. In general, query execution in large datasets is a challenge due to long
execution time. However, one way to improve the user’s experience of the system
is pre-processing the input large dataset so that at the time of query execution,
the system provides a quicker response as it has done some of the steps in ad-
vance. Likewise, another alternative to reduce the user’s waiting time is by pre-
processing the query itself. In the next subsections we elaborate each of these
pre-processing steps.

4.1 Query Pre-processing

In constellation queries, the number of possible compositions increases exponen-
tially with the query size k, (N ≈ |D|k). One may intuitively suggest reducing
the size k of a constellation query in order to save computation. As it turns out,
elements in a full query Qk may induce redundant constraints, specially those

4

located very close to each other. In this context, Qk′ can be built from subset M of
elements of Qk that only includes elements that are candidates for defining the
geometric shape induced by Qk′ (k′ ≤ k). As an example, Qk′ may only include
elements that are at a certain distance apart. Once Qk′ has been fixed, an anchor
element q0 is picked and pairwise distances from it to every remaining element
Qk′ \ q0 are computed.

Axiom 1: Given constellation queries Qk′ and Qk, such that Qk′ = Qk −Qv,
Qv ⊂ Qk, and Sk′ a set of all sequences sk′, such that sk′ matches Qk′, and Sk a
set of all sequences sk,such that sk matches Qk, we say that Qk′ is equivalent to
Qk ↔ (1 − F −measure(Sk′,Sk))6 < δ and shape(sk′)∼= shape(sk).

4.2 Query Transformation

The discussion in Section 4.1 raises an optimization strategy for constellation
queries based on query pre-processing. The intuition is that some elements would
offer little contribution for constellation specification but would add to the query
elapsed-time. In this context, detecting such elements, and subtracting them from
the query, could reduce query elapsed-time. Query modification, however, must
be subject to equivalence guarantees between the original query and its reduced
version, as stated by axiom 1. Proposition 1 suggests a verifiable condition to
assess constellation query equivalence. In section 5 we experimentally evaluate
the proposition 1.

Proposition 1: Given constellation queries Qk′ and Qk, such that Qk′ =Qk −
Qv, Qv ⊂ Qk, If for each query element q j ∈ Qv ∃ qi ∈ (Qk −Qv), such that:
distance(q j, qi)≤ ε then Qk′ is equivalent to Qk.

4.3 Dataset Pre-processing

The second opportunity to reduce the complexity of constellation queries, approx-
imately N ≈ |D|k, is to reduce the size of D. Additionally, we want to look for
elements to build compositions that are candidates for producing shapes geomet-
rically close to that of Qk. The element q0 from Qk becomes a key to such reduc-
tion. It enables to fix an anchor for building compositions both with respect to
attribute values and to shape constraints. Regarding the former, q0 reduces the
size of D to |σ f (e i)(D)|. In other words, we only test for compositions that hold a
similar anchor element as q0 in Qk. Secondly, as we scan D, looking for anchor
elements, we store each element in a PH-tree [6]. The latter is used in the sequel
to search for candidate elements in the neighborhood of selected e i within a ra-
dius ρ, corresponding to the distance of the furthest query element qi to q0 plus ε
as depicted in Figure 1. The possible constellations having e as anchor are within
this set.

The constellations based on an anchor e includes the neighbors within radius
ρ whose distances to e match the distance di of some query element in Qk. For
a constellation query with k query elements, we produce k−1 buckets holding

6 F-measure = precision/recall.

5

Fig. 1. (a) candidate anchor and neighboring ring elements and (b) geometric query

neighbors of anchor e. The matching constellations are the sets of k-1 neighbors
of e with one element from each bucket and having pairwise distances matching
the corresponding pairwise distances of elements in Qk. The pre-processing of D
produces an intermediary relation D′, substantially smaller than D, with schema
D′ = (e : Dom, l ist o f neighbors < nk,dk >), where e refers to an anchor element
in D, and nk is a neighbor of e in D with distance less than the largest distance
(qi, q0), for all qi in Qk. An interesting side-effect of computing D′ is that it fosters
the parallelization of the constellation query processing by enabling a balanced
distribution of D′ tuples over a cluster of machines to be evaluated by a Big Data
processing framework, such as Spark.

5 Experiments

This section presents the experiments conducted to evaluate the pre-processing
and indexing techniques in Constellation queries. We first evaluate the query pre-
processing technique. Next, we evaluate the performance of the PH-tree applied
to the Constellation query problem.

5.1 Query Pre-processing

In our first experiment, we randomly generate 10 queries with 7 elements each.
Next, we reduce the query size, by randomly selecting one element to be deleted
from each query. Figure 2(a) shows the results in elapsed-time, in seconds, for
each query, sorted in ascending order by the elapsed time of the full query, k=7.
Two main observations can be drawn from this plot. Firstly, indeed, as expected,
the query size impacts in its response-time. The elapsed-time of the full query
dominates the ones from its reduced versions. Moreover, the decrease in com-
putation costs follows the modification of the query once one of its elements is,
randomly, subtracted. However, as it can be more clearly verified in query 8, the
choice of the element to be subtracted contributes differently to the query out-
come, as it can be observed by a drastic reduction on the query elapsed-time.

6

(a) (b)

q0

q1

q2,q3

q4

q5

q6

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

201 201.5 202 202.5 203 203.5 204

(c) (d)

Fig. 2. (a) Query Size Reduction Impact (b)Effect on the Selected Query Element, (c) As-
sessing proposition 1 (d) PH-tree versus Quad-tree - Log Execution Time

In order to explore this last observation, we measured the effect of selecting
different query elements to be subtracted from the query. Figure 2(b) plots, in the
horizontal axis, the query id against the query elapsed-time, in the vertical axis.
Curves show: (i) the number of solutions (divided by 104), in blue, and (ii) the
query elapsed-time, in red. Query Q7 corresponds to the full query. As it can be
seen, the choice significantly impacts on both the elapsed-time and the answer
set. The difference in the answer set reflects in variation of the F − measure.
Moreover, as observed when subtracting q2 from Q7, the elapsed-time increases
with respect to that of the full query, contrarily to the intuition. As a matter of
fact, in Section 4.1, Proposition 1 states that modification of constellation query
should be limited to query elements in close distance to one of its neighbors. Un-
der this constraint, the results of the modified query and the full query would
be equivalent. The query depicted in Figure 2(c) was specially constructed such
that dist(q2, q3) ≤ epsilon. According to Proposition 1, excluding either q2 or q3
would produce an equivalent query answer set, compared to the full query.

Table 1 depicts the results of running the query shown in Figure 2(c). Query
id=1 corresponds to the full query. The remaining queries are obtained from query
1 by deleting an element corresponding to its id. The Fs elapsed-time column high-
lights the query time corresponding to running the composition function, which
is the dominant constellation query cost. Unfortunately, Table 1 contradicts the
premise exposed in Proposition 1. As it can be observed, the deletion of q2 or q3
produces many false positives. As a result, Q2 and Q3 are not equivalent to Q1,

7

Table 1. Equivalence of Queries

Query id F-measure Recall No. Solutions Fs elapsed-time
1 1 1 38 0.3416
2 0.0112 1 6690 2.7499
3 0.01234 1 6117 2.6596
4 0.7102 1 69 0.0500
5 0.7446 0.9219 56 0.0512

according to axiom 1, despite being very close to each other. Moreover, the effect
in performance of running Q2 and Q3 is worse than running the full query Q1 .
These results can be easily explained and, in fact, are co-related. Firstly, as the
query elements are very close in space, they impose a severe restriction in the
result set. Only candidate solutions that include pairs of elements, associated to
bucket2 and bucket3, with dist(e2, e3) ≤ ε are selected, expressing a very selec-
tive predicate. Conversely, modified queries caused by the deletion of either q4
or q5 exhibit higher precision and lower elapsed-time, with dist(q4, q5) > ε. The
later indicates that the original shape, as specified by the full query, would have
been sensibly modified by the query modification. These experiments show that
query modification must be exercised with extreme caution. An automatic deci-
sion, in line with proposition 1, is only possible if knowledge about spatial data
distribution is available such that the precision of the modified query Qv, with re-
spect to the full query Qk, is above a threshold. Moreover, the user may indicate
her preferences regarding:elapsed-time; shape equivalence and F-measure. Se-
lecting a faster execution with flexibility on the remaining parameters may open
opportunity to query pre-processing under proposition 1.

5.2 PH-tree versus Quad-tree

In this section, we evaluate the efficiency of the PH-tree as the basic data struc-
ture used to aid retrieving the set of candidate matching neighboring stars for
each given star in the dataset.In [3], a quad-tree data structure reduces the num-
ber of matching operations by adopting a representative of set of stars covered
by the Quad-tree leaf nodes. In this context, node centroids are compared and,
in case of successful matching, the process is carried over to stars covered by the
matching nodes. Conversely, PH-tree indexes all stars, and neighboring compu-
tation must be exercised through all stars in the dataset. Thus, this experiments
compares both approaches, considering the amount of memory used to build the
data structure and the elapsed-time taken when retrieving the neighbors for stars
in the SDSS R-12 dataset. The latter includes approximately 7 million stars and
its file size is 1 GB. The Einstein cross is the query used with maximum distance
between elements in order of 10−5. The PH-tree implementation showed, in aver-
age, 1.5 times higher memory footprint than the quad-tree. The former consumed
4.53 GB for 3.02 GB for the latter memory space consumption.

8

Figure 2(d) depicts our results on searching for candidates elapsed-time (log-
arithmic scale). Values for the PH-tree and the Quad-tree considered the average
of 10 runs, but the ones for QT-9, which only report the average of 3 runs, due to
the long elapsed-time for processing the query and, at the same time, low vari-
ance among runs. Results for QT-7, QT-8 and QT-9 report on the impact on the
elapsed-time for the neighbors search when the Quad-tree is built with different
heights. As it can be observed, the quad-tree with heights 7 and 8 showed better
results than that of the PH-tree. Height 9, however, is the inflexion point. From
height 9 on, the quad-tree implementation becomes extremely costly and PH-tree
is a clear winner. It is also important to note that on higher heights, the quad-tree
solutions may hide candidate solutions, as they may be covered within the same
node, avoiding the procedure to detect them as candidates. Thus, despite present-
ing better performance, high height scenarios may lead to incomplete answers.

6 Conclusion

In this paper, we proposed pre-computing and indexing techniques for process-
ing constellation queries. The query pre-processing technique involves selecting a
query element to be excluded from the pattern in order to reduce the query com-
plexity. As our experiments have shown, this process requires further investiga-
tion. Our proposition of excluding query elements within a pre-defined threshold
distance eliminates a higher selective constraint, considerably increasing the an-
swer set and reducing its F-measure. Thus, we consider that further investigation
is needed to determine query elements that can be deleted without compromising
query answer quality. Finally, the PH-tree presented very good results in comput-
ing neighbors of stars. The technique requires larger memory space but produces
very efficient neighbors computation elapsed-time with complete solution set. We
intend to explore techniques that would enable the distribution of the index struc-
ture in order to cope with even larger input datasets.

References

1. I. R. Brilhante, J. A. F. de Macêdo, F. M. Nardini, R. Perego, and C. Renso, “On planning
sightseeing tours with tripbuilder,” Inf. Process. Manage., vol. 51, no. 2, pp. 1–15, 2015.

2. D. Overbye, “Astronomers observe supernova and find they are watching reruns,” New
York Times, USA, 2015.

3. F. Porto, A. Khatibi, J. R. Nobre, E. Ogasawara, P. Valduriez, and D. Shasha,
“Constellation queries over big data,” eprint arXiv:1703.02638 - Bibliographic Code:
2017arXiv170302638P, 03/2017.

4. N. M. D. Papadias and V. Delis, “Algorithms for querying by spatial structure,” in Proc.
of the 24thV LDBConf erence, pp. 546−−557,1998.

5. A. M.Brucato, J. F.Beltran and A.Meliou, “Scalable package queries in relational
database systems,” Proceedings of the VLDB Endowment, vol. 9, pp. 576–597, 2016.

6. T. Zäschke, C. Zimmerli, and M. C. Norrie, “The ph-tree: a space-efficient storage struc-
ture and multi-dimensional index,” in Proceedings of the ACM SIGMOD international
conference on Management of data, pp. 397–408, 2014.

