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Abstract. Exploratory search allows to progressively discover a datas-
pace by browsing through a structured collection of documents. Concept
lattices are graph structures which support exploratory search by con-
ceptual navigation, i.e., navigating from concept to concept by selecting
and deselecting descriptors. These methods are known to be limited by
the size of concept lattices which can be too large to be efficiently com-
puted or too complex to be browsed intelligibly. In this paper, we address
the problem of providing techniques that reduce the complexity of FCA-
based exploratory search. We show the suitability of AOC-posets, a con-
densed alternative structure to achieve conceptual navigation. Also, we
outline algorithms to enable an on-demand generation of AOC-posets.
The necessity to devise more flexible methods to perform product selec-
tion in software product line engineering is what motivates our work.

Keywords: Formal Concept Analysis, AOC-poset, Concept Navigation,
Software Product Line Engineering, Product Selection.

1 Introduction

Exploratory search is an information retrieval strategy that aims at guiding the
user into a space of existing documents to help him select the one that best suits
his needs. This process is particularly adapted to situations where a user is un-
familiar with the dataspace, or when the data is too large to be known entirely.
Lattice structures were among the first structures used to support information
retrieval processes [9], and their usage was later generalised to Formal Concept
Analysis (FCA) theory [8]. The concept lattice offers a convenient structure to do
exploratory search, where navigating from concept to concept by selecting or de-
selecting attributes emulates iterative modifications of the document descriptor
selection, and thus of the current research state. Exploratory search by concep-
tual navigation has been used in several applications, for instance querying web
documents [4] or browsing a collection of images [6]. However, FCA-based ex-
ploratory search raises some problems, mainly because of the size (in terms of
number of concepts) of lattices, which are well known to grow exponentially with
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the size of the input data. Computing the whole concept lattice can take time
and it needs adapted algorithms to be efficiently used in applications. Moreover,
a user can rapidly get disoriented while navigating in such a large and convo-
luted structure. Therefore, several ways to overcome these limitations have been
studied in the literature [11, 13, 7].

In this paper, we propose a new and more scalable approach to perform ex-
ploratory search by conceptual navigation, that relies on local generation of
AOC-posets, a partial sub-order of concept lattices. Unlike concept lattices,
which depict all possible queries a user can formulate, this alternative conceptual
structure represents and structures the minimal set of queries that are necessary
to perform conceptual navigation, and therefore permit navigation through a
less complex structure. Also, to avoid generating the whole AOC-poset, we only
generate the current concept and its neighbourhood, represented by its direct
sub-concepts and super-concepts. In fact, even though an AOC-poset is smaller
than its associated concept lattice, it still can be advantageous to only generate
the parts of the structure we are interested in, especially in large datasets. We
outline algorithms to identify neighbour concepts in AOC-posets, i.e., determin-
ing upper and lower covers of a given concept in an AOC-poset. An application
of exploratory search in the field of software product line engineering, for an
activity called product selection, is what motivates our work.

The remainder of this paper is organised as follows. In Sect. 2, we present our
motivations in the domain of software product line engineering. In Sect. 3, we
study AOC-posets to perform exploratory search. We then propose algorithms
to compute upper and lower covers of a concept in AOC-posets in Sect. 4, and
we test our approach on existing datasets. Related work is discussed in Sect. 5,
and Sect. 6 concludes and presents some future work.

2 Motivation

Software product line engineering (SPLE) [14] is a development paradigm that
aims to efficiently create and manage a collection of related software systems.
SPLE is based on factorisation and exploitation of a common set of artifacts,
organised around a generic architecture from which several software variants can
be derived. A central point of SPLE is the modelisation of the common parts
and the variants contained in the related software systems, called the variability
of the software product line (SPL). This variability is represented by variability
models, which are the traditional starting points to perform information retrieval
operations on SPLs, including product selection, an important task that consists
in guiding the user into selecting the functionalities he wants in the final derived
software system. The most prevalent approach to model variability relies on
feature models (FMs) [12], a family of visual languages that describe a set of
features (i.e., main characteristics) and dependencies between them. Figure 1
depicts an FM representing an SPL about cell phones. A combination of features
respecting all the constraints expressed in the FM is called a valid configuration,
and corresponds to a derivable software system.
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Fig. 1. Excerpt of a feature model representing an SPL about Cell Phones

Current approaches for product selection rely on the feature model hierarchy
to automatically deploy configurators; however, these methods are too stiff con-
sidering that it does not allow the user to change his final configuration without
having to start again the product selection, or to see which other configurations
are similar to his. We propose to apply exploratory search in the context of prod-
uct selection to complement these methods and offer a more flexible selection.
In fact, conceptual navigation allows a user to start from an existing or partial
configuration, explore similar ones, and be informed on how he can select or des-
elect features to obtain these configurations. It is noteworthy that the number of
valid configurations depicted by an FM grows exponentially with its number of
features. To be able to conceive applications using conceptual navigation in this
context, reducing the complexity of the underlying conceptual structure along
with its generation time is crucial.

3 AOC-poset: a Condensed Structure for Conceptual
Navigation

Formal Concept Analysis (FCA) [8] is a mathematical framework that structures
a set of objects described by attributes depending on the attributes they share.
As input, FCA takes a formal context K = (O,A,R), where O is the set of
objects, A the set of attributes and R ⊆ O ×A a binary relation. A pair (a, o)
from R states that “the object o possesses the attribute a”. Table 1 presents the
formal context representing the 7 valid configurations of the FM of Fig. 1.

The application of FCA permits to extract from a context K a finite set of
formal concepts through the use of two derivation operators (·)′; (·)′ : 2O 7→ 2A,
and (·)′ : 2A 7→ 2O. Thus, O′ = {a ∈ A | ∀o ∈ O, (o, a) ∈ R} and A′ = {o ∈
O | ∀a ∈ A, (o, a) ∈ R}. A formal concept C is a pair (E, I) with E ⊆ O
and I ⊆ A, representing a maximal set of objects that share a maximal set of
common attributes. E = I ′ is the concept’s extent (denoted Ext(C)), and I = E′

is the concept’s intent (denoted Int(C)). The set of all concepts extracted from
K together with the extent set-inclusion order forms a lattice structure called
a concept lattice. Figure 2 (left) presents the concept lattice associated with
the formal context of Table 1. We simplify the representation of intents and
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Table 1. Formal context depicting the 7 configurations of the SPL about cell phones

Cell Phone Wireless Infrared Bluetooth Display Accu Cell Strong Medium Weak

c1 x x x x

c2 x x x x

c3 x x x x

c4 x x x x x x

c5 x x x x x x

c6 x x x x x x

c7 x x x x x x x

extents in the lattice by displaying each attribute (resp. object) only once in the
structure, in the lowest (resp. the greatest) concept having this attribute (resp.
object). We say that these concepts introduce an element. The attributes of a
concept are inherited from top to bottom, and the objects from bottom to top.

A concept introducing at least an attribute is called an attribute-concept
(AC), and a concept introducing at least an object is called an object-concept
(OC). A concept can introduce both an attribute and an object (attribute-object-
concept (AOC)), or it can introduce neither of them (plain-concept). Plain-
concepts appear in the lattice as concepts with empty extents and intents. In
some types of applications, it is not necessary to take these concepts into ac-
count. For instance, this is the case when the lattice is only used as a support to
organise objects and their attributes (therefore represented by their introducer
concepts), and not to highlight maximal groups of elements. In these particular
cases, one can benefit from only generating the sub-order restricted to the intro-
ducer concepts instead of the whole concept lattice. This smaller structure (in
terms of number of concepts) is called an Attribute-Object-Concept partially or-
dered set (AOC-poset) [10]. Figure 2 (right) presents the AOC-poset associated
with the context from Table 1: it corresponds to the partial order of concepts
from Fig. 2 (left), minus Concept 0 and Concept 7. While a concept lattice
can have up to 2min(|A|,|O|) concepts, the associated AOC-poset cannot exceed
|O|+ |A| concepts.

AOC-posets can be used as a smaller alternative to concept lattices to 1)
structure a collection of objects depending on the attributes they share and 2)
navigate through this collection by selecting and deselecting attributes. But, if
concept lattices represent all possible queries a user can formulate, AOC-posets
restrict this set to the minimal queries required to perform conceptual navigation.
As we have seen before, neighbour concepts in a concept lattice represent minimal
possible modifications a user can make to the current query and therefore offer a
dataspace in which one can navigate in minimal steps. This means that concept
lattices allow to select and deselect non-cooccurrent attributes one by one. AOC-
posets do not preserve the minimal step query refinement/enlargement property,
but factorise the possible query modification steps to keep the most prevalent
ones. For instance, in the concept lattice of Fig. 2 (left), if a user has selected
Concept 4 as the current concept, he can choose to deselect attribute Bluetooth
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Fig. 2. Concept lattice (left) and AOC-poset (right) associated with the formal context
of Table 1

and thus move to Concept 7. From this concept, he can now choose to deselect
either Strong or Wireless and move respectively to Concept 9 or Concept 10. In
AOC-posets, because plain-concepts, playing the role of “transition steps”, are
not present, selection/deselection choices to move from concept to concept are
condensed. This time, in Fig. 2 (right), if a user want to enlarge its query from
Concept 4, he can either deselect both Bluetooth and Strong in one step to move
to Concept 9, or deselect both Bluetooth and Wireless to reach Concept 10.

4 Partial Generation of AOC-poset

On-demand, or local, generation consists in generating only the part of the struc-
ture we are interested in, and has already been applied to concept lattices, with
algorithms such as nextClosure [8]. To our knowledge, several algorithms exist
to build AOC-posets: Ares, Ceres, Pluton and Hermes [3]. However, none of
them perform on-demand generation of AOC-posets. In what follows, we outline
algorithms to retrieve the neighbourhood of a given concept in an AOC-poset.



6 Bazin, Carbonnel, Kahn

4.1 Computing Upper and Lower Covers of a Concept in the
AOC-poset

Exploration can start from the top concept (i.e., the most general query), in the
case where the user wants to make a software configuration from scratch. But,
it is possible that the user already has partial knowledge of the configuration he
wants, and it is then necessary to be able to start from any concept in the AOC-
poset. As the concept corresponding to the (potentially partial) configuration
that the user has in mind does not necessarily introduce an object or an attribute,
we suppose the input of the exploration is a formal concept, plain or not. The
problem is thus to compute the upper and lower covers of a given concept Ci in
the AOC-poset.

Let us start with computing the upper covers. We are looking for the smallest
ACs or OCs greater than the input. We start out by computing the smallest ACs
greater than Ci. They can be obtained by computing the concepts ({a}′, {a}′′)
for each attribute a ∈ Int(Ci). We remark that ({a1}′, {a1}′′) ≥ ({a2}′, {a2}′′) if
and only if a1 ∈ {a2}′′. As such, the smallest ACs are the ones that are computed
from attributes that do not appear in the closures of other attributes. Once we
have the smallest ACs, we want to compute the smallest OCs that are between
them and Ci. This means that we are looking for concepts ({o}′′, {o}′) such that
o is in the extent of one of the ACs we have and {o}′ ⊂ Int(Ci). We remark
once again that ({o1}′, {o1}′′) ≥ ({o2}′, {o2}′′) implies o2 ∈ {o1}′′ and that the
closures of some objects give us information on OCs that can’t be minimal.

Algorithm 1 computes the upper neighbours of the input concept in the AOC-
poset. The first loop computes the closure of single attributes. Each closure allows
us to remove attributes that correspond to non-minimal ACs. The resulting set R
contains the intents of the ACs that are both super-concepts of Ci and minimal
for this property. The second loop constructs the set O of objects that are in the
extent of an element of R but not in the extent of Ci. The third loop removes the
objects of O that cannot possibly be introduced by a superset of Ci and, finally,
the fourth loop removes the objects of O that produce non-minimal OCs. The
ACs that are no longer minimal are also removed. Therefore, considering the
inital configuration, the OCs introduce the most similar and more generalised
configurations, and the ACs show the factorised possible attribute de-selections
the user can make.

Computing the lower covers is done using the same algorithm, exchanging
the roles of attributes and objects. This time, OCs present the most similar and
more specialised configurations, and the ACs the possible condensed attribute
selections.

4.2 Implementation

We have implemented our algorithms, and we tested them on SPL datasets ex-
tracted from the SPLOT repository3. SPLOT (for Software Product Line Online

3 http://www.splot-research.org/
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Algorithm 1: Upper Covers

Input: A concept Ci

Output: The upper covers of Ci in the AOC-poset
1 A← Int(Ci)
2 foreach a ∈ A do
3 Y ← {a}′′
4 A← A \ {Y \ {a}}
5 R← {{a}′′|a ∈ A}
6 O ← ∅
7 forall S ∈ R do
8 X ← S′

9 O ← O ∪ (X \ Ext(Ci))

10 forall o ∈ O do
11 if o′ 6⊂ Int(Ci) then
12 O ← O \ {o}

13 forall o ∈ O do
14 T = {S|(S ∈ R) ∧ (o ∈ S′)}
15 R← R \ T
16 Y ← {o}′′
17 if ∃p ∈ O such that p ∈ Y then
18 O ← O \ {o}

19 R← {({o}′′, {o}′) | o ∈ O}
20 return R

Tools) is an academic website providing a repository of feature models along
with a set of tools to create, edit and perform automated analysis on them. We
have selected 13 representative feature models which describe SPLs as e-shops,
cell phones or video games, from small sizes (13 configurations) to larger ones
(4774 configurations). To test our method on data extracted from feature mod-
els, we first create a formal context configurations × features for each one of
them. Then, from a context, our implementation permits to find a concept cor-
responding to a subset of features and compute its conceptual neighbourhood in
AOC-posets. In this experiment, we assume that a user will not exceed 50 nav-
igation steps, as he wants to be familiarised to the similar valid configurations
around his initial selection of features. To measure the gain of our method in
terms of number of computed concepts, we compare for each context the number
of computed concepts for 50 navigation steps (i.e., a concept and its neighbour-
hood) to the total number of concepts in the associated AOC-poset and concept
lattice. The results are presented in Fig. 3. The concept lattice curve permits to
indicate an ”upper-bound” to visualise more easily the gain of AOC-posets and
local-generation of AOC-posets comparing to concept lattices.

Figure 3 shows that both aspects of our method are useful for conceptual
structures with a size around 700+ concepts. AOC-posets are smaller than con-
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Fig. 3. Number of generated concepts for AOC-posets and conceptual neighbourhood
for 50 navigation steps, depending on the size of their associated concept lattices (log-
arithmic scale)

cept lattices, but the gap between the two conceptual structures can grow ex-
ponentially with their sizes. In fact, the difference when the structures are small
is not very important (e.g., 19 concepts against 25, 131 against 166), but AOC-
posets can become very interesting with larger structures (e.g., 1074 concepts
against 5761, 669 against 6430). Performing several navigation steps in a small
structure makes re-computation of same concepts more likely. In these cases, it is
preferable to compute the whole AOC-poset from the begining. Our experiment
shows that this is the case when the initial conceptual structure possesses less
than around 700 concepts, and with 50 navigation steps.

5 Related Work

Several methods have been proposed through the literature to reduce the com-
plexity of conceptual navigation. In [9], the authors choose not to show the whole
concept lattice to the user, but only a part of it, restricted to a focus concept
and its neighbourhood. This navigation approach, which we study and apply in
this paper, can be found in several works [6, 5, 1]. In [13], the authors propose
two methods to extract trees from concept lattices and use them as less complex
structures for browsing and visualisation. The difference between the two meth-
ods lies in the way the “best” parent for each concept in the tree is assigned: the
first one is based on the selection of one parent per layer, and the second one on
conceptual indexes. They then simplify again the final structure by applying two
reduction methods based on fault-tolerance and clustering on the extracted trees.
In [2], the authors propose a tool to build and visualise formal concept trees.
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Carpineto and Romano [4] allowed the user to bound the information space by
dynamically applying constraints during the search to prune the concept lattice.
Bounding allows to reduce the explorable dataspace and help the user focus on
the parts he is interested in. Following the same idea, iceberg concept lattices
[15] are pruned structures that only show the top-part of concept lattices which
can be used to perform conceptual navigation. By comparison, we use a partial
sub-order of concept lattices. In [5], the authors present SearchSleuth, a tool
for local analysis of web queries based on FCA, that derives a concept and its
neighbourhood from a query. Because the domain cannot be computed entirely,
it generates a new formal context at each navigation step: for each user query,
it retrieves the list of results, extracts the relevant terms, and builds a context
from these terms and their associated documents. The navigation is managed
through an interface which suggests terms, making implicit the underlying graph
structure and its complexity. Alam et al. [1] present a tool, LatViz, that provides
several operations to reduce the information space. One of them facilitates the
visualisation and the navigation. The authors propose to display the concept
lattice level-wise: selecting a concept at a level n displays all its sub-concept at
level n-1. Another functionality allows to prune the concept lattice by restrict-
ing navigation in sub-concepts and/or super-concepts of concepts selected by the
user, in the same way as in [4]. Also, the tool permits to compute AOC-posets to
support conceptual navigation: the authors describe AOC-posets as the “core”
of their corresponding concept lattices. However, they compute the whole struc-
ture using the Hermes algorithm and do not propose an on-demand generation.
Greene el al. [11] discuss refinement and enlargement (broadening) approaches
which are not restricted to neighbour concepts, and therefore allow navigation
by non-minimal steps to ease exploratory search in large information spaces.

6 Conclusion and Future Work

In this paper, we adress the problem of providing scalable and praticable tech-
niques to perform conceptual navigation with formal concept analysis. Product
selection, a software product line engineering task that can benefit from ex-
ploratory search by conceptual navigation to complement current methods which
lack of flexibility is the motivation of our work. We used AOC-posets, the concept
lattice sub-hierarchy restricted to introducer concepts, as a smaller, condensed
alternative to concept lattices that preserve objects and attributes taxonomy.
We show that AOC-posets depict the minimal set of queries necessary to browse
the dataspace, as they “factorise” the possible attribute selection and deselec-
tion steps. To avoid generating the whole sub-hierarchy, we outline algorithms to
enable on-demand generation of AOC-posets by computing the neighbourhood
of any concept in the AOC-poset. We implemented these algorithms to test our
approach on a dozen of SPLs extracted from the SPLOT repository. These exper-
iments reveal that our method provides a gain in terms of number of generated
concepts when used instead of concept lattices, when the concept lattice has a
size larger than about 700 concepts to perform 50 navigation steps.
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In the future, we are considering further experiments on different datasets
to provide a more complete evaluation of the gain of the proposed approach.
From a more theoretical point of view, we plan to extend exploratory search by
conceptual navigation to relational data using Relational Concept Analysis.
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