
HAL Id: lirmm-01624017
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01624017

Submitted on 26 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-predictive control in multi-contact based on
stability polyhedrons

Hervé Audren, Abderrahmane Kheddar

To cite this version:
Hervé Audren, Abderrahmane Kheddar. Model-predictive control in multi-contact based on stability
polyhedrons. Humanoids 2017 - 17th IEEE-RAS International Conference on Humanoid Robots, Nov
2017, Birmingham, United Kingdom. pp.631-636, �10.1109/HUMANOIDS.2017.8246938�. �lirmm-
01624017�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01624017
https://hal.archives-ouvertes.fr

Model-predictive control in multi-contact based on stability polyhedrons

Hervé Audren and Abderrahmane Kheddar

Abstract— We propose a new linear model-predictive control
scheme in multi-contact based on the center of mass reduced
model. In order to linearize the dynamics of the CoM, we
exploit the notion of stability polyhedrons associated to given
contact stances, inside which the existence of contact forces
is guaranteed. To compute stability polyhedrons, we have
first to specify a convex polytope inside which the center of
mass’s acceleration lies. We then generate a minimum jerk
trajectory inside these successive stability polyhedrons that also
yields contact transitions timings, and integrate it with our
quadratic programming whole-body controller as part of the
multi-objective tasks.

I. INTRODUCTION

In this paper we introduce a model-predictive control
(MPC) approach to generate multi-contact motion. Typical
MPC adopt an hierarchical approach, see e.g. in [1], [2],
[3], [4]: they compute trajectories to be best tracked by
the underlying local whole-body controller –see e.g. in [5],
[6]. Later controller decisions (in terms of desired instant
posture position or torque) may impact balance in future
motions. The most part of the MPC computed trajectories
are discarded and only their newly computed head part
(e.g. identified by a time interval) is fed to the whole-
body controller. Indeed, we compensate for uncertainties
and perturbations by recomputing very often the trajectory
from the real state of the robot (and its interaction with the
environment). Thus, the computation time must be small with
respect to the trajectory length. A lot of approaches from
earlier cited works use a simplified linear model that yields
convex optimization problems.

In this work, we first recall the notion of robust stability [7]
that is used in our MPC: it consists of defining a convex
region of acceptable center of mass (CoM) acceleration G,
from which we can deduce an acceptable polyhedron of CoM
positions P . This allows us to formulate a linear minimum
jerk problem in multi-contact and in 3 dimensions without
further assumptions. Moreover, as the resulting problem can
be solved fast, we extend the formulation to search for the
best contact transition timings.

In the context of legged robotics, perhaps the most well-
known application of MPC is [8] in which the authors
optimized a Zero-Moment-Point (ZMP) trajectory. As it
relied on the ZMP, it is however not applicable to multi-
contact motion. This approach was extended in [9] where

This work is supported by H2020 European project COMANOID RIA
No: 645097 and by JSPS Grant-in-Aid for Scientific Research (B) Number
16H02886 (“Cutting-Edge multi-contact behaviors”

H. Audren and A. Kheddar are with CNRS-AIST JRL UMI3218/RL,
Tsukuba, Japan and the CNRS-UM LIRMM, Interactive Digital Human
group, Montpellier, France

the authors optimized a jerk trajectory under constraints.
Similarly, it was limited to walking on flat surfaces.

Since then, we have proposed a multi-contact MPC formu-
lation [2]. However, in order to linearize the CoM dynamics,
we had to specify the motion along one axis, leave one
component of the momentum uncontrolled and specify stance
transition timings in a heuristic (non satisfactory) way. In
later work [10], the above restrictions were lifted in favor
of generating momentum trajectories, but the algorithm no
longer performed well enough for real-time operation.

In other approaches [11], [12] parallelism and general pur-
pose GPU were exploited to solve very quickly a whole-body
non-linear MPC problem giving a set of contact transitions.
Unfortunately, it is hard to generate long enough whole-body
trajectories in real-time, even on powerful computers. Also
non-linear optimization solvers are often hard to tune and
gradient-based ones suffer from local minima.

Finally, some MPC aim at generating spatial trajectories
by solving non-linear problems, and then using Time Optimal
Path Parametrization [13], [14], [15] to determine at which
speed to execute the trajectory. Performing TOPP is fast, but
solving the non-linear spatial problem can be costly unless
specific assumptions or simplifications are made. Moreover,
optimizing separately the kinematics from the dynamics can
yield suboptimal solutions in terms of execution times. In
our formulation, once the slightly expensive robust stability
regions have been determined, each subsequent optimization
is very fast, which makes it a great fit for MPC formulations.

We first recall in section II how we define and compute
the stability regions in which CoM trajectories are generated.
Then our contributions stands as follows:

• We introduce a linear, minimum jerk MPC formulation
in section III, that aims at optimizing the spatial trajec-
tory and finding stances transition timings;

• this MPC trajectory generator is then coupled with our
whole-body, tasks-based controller in section IV;

• finally, simulation results are discussed in section V.

II. ROBUST STABILITY

We recall briefly few results of our work in [7] in which we
extended the notion of static equilibrium in multi-contact to
the notion of robust equilibrium with respect to a predefined
acceleration polytope. To do so, we used a flywheel model
where the robot is reduced to a single rigid body mass (m):

Definition 1. A CoM position c is said to be in robust
equilibrium w.r.t. to a convex acceleration polytope G if and
only if there exists contact forces fi applied at points ri that

satisfy:

∀c̈ ∈ G,∃f s.t.

∑

fi = m(c̈− g)∑
fi × (c− ri) = 0

‖Bf‖ ≤ uT f
(1)

where B, u define the non-linear friction cones relation, g is
the gravity vector, u stacks the contacts’ normals.

Considering that the contact points ri are fixed, the above
equations define a system of convex equalities and inequali-
ties. It entails that there exists a convex shape, P such that:

Definition 2. ∀c ∈ P , c is in robust equilibrium w.r.t G.

We then show that by adapting the recursive projection
algorithm [16] it is possible to obtain an explicit represen-
tation of P , that is to say a set of inequalities HP , bP such
that: {

c ∈ R3|HPc ≤ bP
}

= P (2)

Note that the contact forces f do not appear in the above
criteria: by restricting the possible accelerations to a known
convex polytope G, we have transformed the original non-
linear problem eq. (1) into a linear one, eq. (2).

III. POLYHEDRON MPC

From the previous section, we know, given a convex
acceleration polytope G, how to compute a convex CoM
polyhedron P such that: if c ∈ P and c̈ ∈ G, there exist
contact forces that realize that acceleration. We now see how
to exploit that fact to generate the CoM trajectories online.

We define that a motion is in robust equilibrium if and
only if (iff) for every time instant t:

∀t c(t) ∈ P(t) and c̈(t) ∈ G(t) (3)

Given that P and G are entirely determined by the contact
geometry and friction cones, we can denote C(t) the active
contacts at the time t. The above condition thus write:

∀t c(t) ∈ P (C(t)) and c̈ ∈ G (C(t)) (4)

Thus, to generate a trajectory we need to not only optimize
the CoM trajectory itself (c(t), c̈(t)) but the instants at which
the contacts change (C). As changing contacts is a discrete
event, we parametrize those changes with integer variables.

A. Formulation

We consider a number of stances, i.e. consecutive sets of
contacts, Ci. We discretize the times into tk. We can thus
write that:

∀k ck ∈ P
(
Ci(k)

)
and c̈ ∈ G

(
Ci(k)

)
(5)

where i(k) represents the active contact set index at instant
k. It is a function over finite sets:

i : J0 . .KK 7→ J0 . . NK (6)
k 7→ i(k) (7)

Our problem is formulated as a minimum jerk cost. Thus
let us first form the evolution equation:ck+1

ċk+1

c̈k+1

 =

1 dt dt2

2
0 1 dt
0 0 1

ckċk
c̈k

+

dt36dt2
2
dt

 ...
c k (8)

xk+1 = Axk +B
...
c k (9)

We can thus repeatedly integrate the above with initial
condition x0 to obtain the whole trajectory:

X =
[
xT1 xT2 . . . xTK

]T
(10)

=

A
A2

...
AK

x0 +

B
AB B

. . .
AK−1B AK−2B . . . B

...
c 0...
c 1
......
c n

(11)

= Φx0 + ΨU (12)

We can thus build a quadratic cost that is the distance to
a reference and the weighted norm of the command:

‖X − X̄‖2 +Wu‖U‖2 = UTQU + 2cTU + γ (13)

We introduce the positive, diagonal matrix Wx to weight
the diffent parts of X independently:

Q = ΨTWxΨ +Wu (14)

cT =
(
xT0 ΦT − X̄T

)
WxΨ (15)

We can thus formulate the problem as:

min
U,i(k)

1

2
UTQU + cTU (16)

s.t. ∀k ∈ J0 . .KK
ck ∈ P

(
Ci(k)

)
c̈k ∈ G

(
Ci(k)

) (17)

We obtained a quadratic objective, but the optimization is
over a function, and the constraints are non-linear. The next
sections present how to properly select the function i(k).

B. Choosing a timing function

The family of functions i(k) are defined over finite integer
intervals. Thus, one could exhaustively search all (N + 1)K

of them. But this number is considerably large even for small
values of N and K. Moreover, not any function can fit: we
should go from one polyhedron to the next, without skipping
one and without going backwards.

Hence, instead of looking at all possible i(k), we consider
a specific shape of i(k): a strictly increasing by one function.
That is to say, a stair-shaped function. It is defined by the
τi that indicate at which time we switch from Pi to Pi+1.
Instead of looking for the value of K variables in J0 . . NK,
we have to find the value of N variables in J0 . .KK, but
those variables are known to be strictly increasing, which
drastically reduces the size of the search space. See fig. 1
for a simple example of such a function.

0 2 4 6

0

2

x(m)

y
(m

)

0 2 4 6

0

1

2

k

i

Fig. 1. Schema of the polyhedron CoM preview control. Left shows the spatial trajectory going through three different polygons. Right shows the evolution
of the integer variable with time.

The actual number of possible functions is given by:
N+1∑
i=1

(pi(K)i!) (18)

Where p stands for the partition function (see e.g. [17]).
Indeed the partition function tells us how many tuples of

integers of a certain size sum to K. Those integers represent
the duration of a step. As we consider N switching times,
we are looking for the number of partitions of size N + 1.
We then account for the fact that we might not switch, and
thus sum over all partitions of size less or equal than N + 1.
Finally, we consider that there are i! possible orderings of a
partition of size i.

A numerical application for a typical scenario where K =
15 and N = 2 illustrates the huge reduction, 5 orders of
magnitude, in the size of the search space:
• For the complete space search: (N + 1)K = 14348907.
• For the function search eq. (18): 129.
Whenever the transition times τi are fixed, the problem

is reduced to a simple QP in few variables (typically a few
dozens) and a lot of constraints (a few thousands).

Indeed, as ck and c̈k, are part of our state, eq. (5) can be
written as linear constraints in U :

HPi(k)
ck ≤ bPi(k)

(19)

⇔HPi(k)
Sck(Φx0 + ΨU) ≤ bPi(k)

(20)

⇔HPi(k)
SckΨU ≤ bPi(k)

− Φx0 (21)

And:

HGi(k)
c̈k ≤ bGi(k)

(22)

⇔HGi(k)
Sc̈kΨU ≤ bGi(k)

− Φx0 (23)

With Sck and Sc̈k selection matrices that extract ck and c̈k
from X respectively.

This can be solved in milliseconds (using the quadratic
program QL solver [18]), and thus exploring all the possible
τi for a small number of transitions and instants, i.e. N = 2
and K = 15, can be done in about 500 ms.

To further reduce the search space, we apply the following
strategy: for each choice of τ0, we test if τ1 = N is feasible.

If it is, we explore all possible τ1 starting from N and
working backwards towards τ0 until the problem is no longer
feasible. This amounts to discarding all solutions where it is
not possible to stop in the intermediate polyhedron. As long
as we consider a symmetric G that contains the gravity g,
this is not highly restrictive. Indeed, by symmetry, at any
point, decelerating as much as we previously accelerated is
feasible while containing g means that stopping is a solution.
To confirm this fact, we solved a hundred MPCs. In 97 % of
the cases, there was no loss of optimality and in none of them
did the reduction of the search space result in infeasibility.

We then select the solution (X, τ0, τ1) that yields the
smallest cost. This easily extends to more τi but the combi-
natorial nature of the problem makes it quickly intractable.
This method is sumarized in algorithm 1.

Algorithm 1 Algorithm MINTIM to determine the optimal
timings

for τ0 ∈ J0 . .KK do
for τ1 ∈ JK . . τ0 + 1K do

res← solveQP(τ0, τ1)
if res then

X, cost← res
else

break
end if

end for
end for
return argminτ0,τ1,X(cost)

Although exhaustive search is typically not the most
efficient solution, it is the best that we have implemented.
Hill-climbing [19] is not adapted to our problem as the
objective function (the optimal cost of our QP) is not
convex. Simulated annealing [20] is not well adapted to small
search spaces, and requires tuning of the temperature and
acceptance function. Finally, we can recast our problem as a
Mixed-Integer Quadratic Program (MIQP). Indeed, we would
like to express the following relation between constraints:

τi < j ≤ τi+1 =⇒ cj ∈ Pi ∧ c̈j ∈ Gi (24)

Which can be transformed into linear constraints by in-
troducing binary slack variables. However, our tentative
implementation did not show any improvement in terms of
computation time and failed to converge in some instances.

IV. INTEGRATION FOR MULTI-CONTACT CONTROL

In this section, we present how we integrated the trajectory
generation of the previous section within our multi-contact
planning and control framework.

Begin Select

Add

Remove

postureDone

inNext &&
trajDone

inNext

Fig. 2. Representation of the FSM that drives the whole-body controller

MPC
≈ 20Hz

QP
200Hzc, ċ, c̈, τN0 , τN0+1

x0, N0

Fig. 3. MPC communication with the QP controller

First, we perform multi-contact planning [21], [22], [6]
on our environment in order to obtain a sequence of stances.
Each stance is composed of a set of contacts, a robot posture
and an action. This action tells us if we are adding or
removing a contact in this stance.

Then, from the contacts positions, we compute the poly-
hedrons Pi by appropriately setting the Gi. We then set the
number of stances to look ahead N = 2 and a length of
the preview window K = 10. In this setting, we solve algo-
rithm 1 in about 50 ms.

We can now compute a CoM trajectory and timings by
providing a starting state and a reference: (X, τ0, τ1) =
MINTIM(x0, X̄). To do so, we connect the current state
of the QP controller to the x0 input. The X̄ reference was
chosen to be the simplest: it is a reference position (the end-
point) with zero velocity and acceleration. This means that
we are only specifying where to go, but not giving any hints
as to how to get there.

As for the gains tuning, we simply set Wu to 1e−4 and
Wx to 1 from gathered experiments. Indeed, our primary
objective is to reach the objective, while minimizing the jerk
should have a lower priority.

Our tasks-base controller [22], [6] is built around solving a
quadratic program in the generalized coordinates acceleration
and contact forces, regrouped in the decision vector y:

min.
y

1

2
yTQy + cT y

def
=
∑
i

βiTi(y)

s.t. Ay ≤ B ; Cy = D

(25)

The task functions T allow us to express a variety of
objectives in a quadratic form, and are weighted according
to the βi. In this paper, we only use the posture objective
that minimizes the distance to a given posture and the CoM
objective which tracks a CoM trajectory.

As for the constraints, they allow us to express a variety
of physical limitations of the robot. Amongst them we are
interested in:
• Joint limits constraints either in position, velocity or

torque
• Discretized friction cones constraints
• Collision constraints
The controller is supervised by a three state finite state

machine (FSM), illustrated in fig. 2. In each state, we always
track the posture generated by the planner for the current
stance, with a low weight. The states are:

1) Initial state: we simply track the posture of the initial
stance.

2) Remove state: as we are removing a contact, the only
additional task is to track the CoM trajectory while
remaining in the current stance’s polyhedron.

3) Add state: we are adding a contact, we insert two tasks
to both track the CoM trajectory and track a spline
for the end-effector, while remaining in the current
polyhedron.

For the add state, the control points of this spline are
determined by the geometry of the contacts while the time
parametrization comes from the timings computed by the
MPC. The spline passes through the initial contact position,
with zero initial velocity and acceleration, a waypoint that is
10 % above the highest of the start and end points, and arrives
at the final contact point with zero velocity and acceleration.
From the MPC, we have the whole duration of the add phase,
and thus specify that we pass through the waypoint at 30 %
of the total duration. More complex settings would of course
be necessary as the environment becomes more cluttered.

Now, we specify when to shift from one stance to the next:
1) Initial: whenever the posture error is low.
2) Remove: whenever we are inside the next stance’s

polyhedron.
3) Add: whenever we are inside the next stance’s poly-

hedron and we are done executing the end-effector
trajectory.

For each transition, the type and the contacts of the next
stance are given by the plan.

Finally, the current FSM stance, N0, is sent back to the
MPC component as shown in fig. 3. This value is used as the
starting stance for the MPC: instead of looking for values of
i(k) in J0 . . NK, we look for them in JN0 . . N0 +NK. This

TABLE I
TASKS PART OF THE COST AND TASKS PART OF THE CONSTRAINTS FOR

THE QP CONTROLLER

Cost Tasks Constraint Tasks
CoM Trajectory CoM in polyhedron

Posture Task Contact constraints
Joint limits constraints (position and velocity)

Collision avoidance constraints

means we only look for a small number of transition timings,
and only advance the starting polyhedron / polytope, when
the whole-body controller has realized the current action.
The MPC thus waits until the whole-body controller has
performed the action before advancing to the next stance.

V. RESULTS

The following sections present two illustrations of the
framework presented above: crossing a ridge and climbing
stairs. In both cases, HRP2-Kai is able to perform the motion
if we do not enforce real-torque limitations. This means that
indeed, there exists contact forces that allow the controller to
track the MPC CoM trajectory. However, those contact forces
are not always realizable by the whole-body system. Indeed,
during trajectory generation, we only relied on a reduced
model, that does not take into account joint torques as those
depend non-linearly on the joint angles.

The controller is also unable to perform the end-effector
trajectory in time, but this is not problematic: the CoM
remains in the previous polyhedron as long as the new
contact has not been established. The MPC then computes
new timings based on the current state.

In both scenarii, we used a single G for all stances, that
is the convex hull of lateral accelerations with a magnitude
of a = 0.5 m s−2:

G = {{a, 0, 0}, {−a, 0, 0}, {0, a, 0}, {0,−a, 0}} (26)

We also set the duration of each time-step to dt = 0.15 s,
which yields a total duration of 1.5 s for the trajectories.

A. Ridge crossing

In this simulation, we want to cross a narrow ridge, while
pushing on a flat, non-horizontal, support for added stability.
This is the same environment as in [2], but the multi-contact
plan we used is newly generated. A few keyframes are
available in fig. 4. At most, we have three unilateral contacts
with the environment.

Compared to our previous work [2], the CoM trajectory
that we obtain is much more conservative. This is most
evident in the first stance: HRP2-Kai leans quite heavily
backwards with its CoM above the right foot. That stance
is composed of a single unilateral contact, thus the region
of stability is very small at that time. Indeed, as G contains
the gravity, we are rather statically stable at all times. For
this particular stance, it means that the CoM has to remain
above the right foot, at a low altitude. However, we no longer
need to use a carefully tuned timing heuristic and the timings
automatically adjust based on the current state. Moreover, we

Fig. 4. Keyframes of HRP2-Kai crossing a ridge: the blue ribbon represents
the current CoM trajectory being tracked.

no longer specify the z motion, nor do we have to carefully
choose a X̄ .

B. Stairs climbing

In this scenario, HRP2-Kai is tasked with climbing a
flight of stairs, using the handrail. Halfway up, it grasp
again the handrail while using its other hand as unilateral
support on the top platform. Thus, some stances have three
unilateral contacts and a bilateral one. The resulting motion
is illustrated in fig. 5.

We first remark that this motion appear much more plausi-
ble as compared to the previous scenario. The CoM trajectory
is less constrained because the robot establishes more than
one contact with the environment at all times: we do not
produce the ‘non-expected’ poses of the previous scenario.
However, as research on how humans decide to make or
break contacts is scarce, it is difficult to quantify that feeling.
It would seem coherent that humans use more contacts when
confronted with a difficult and/or uncertain terrain. When
walking under such conditions, humans indeed adopt stiffer,
more static gaits [23].

Still, the motion is executed much faster than in the quasi-
static case: we climb the whole flight in about 30 s whereas
it took about 4 min in our previous work [24]. Indeed, we
gain substantial time by not waiting for the CoM to reach a
predetermined position. Yet, as this motion generates high-
torques, we would probably have to slow it down to execute
it on a real hardware, especially when approaching contact
surfaces so as not to damage the robot in case of unpredicted
contact.

VI. CONCLUSIONS AND FUTURE WORK

We have shown in this paper how the notion of stability
regions allows us to generate a linear CoM MPC in multi-
contact, without making any assumptions outside of restric-
tions on the possible CoM accelerations. Furthermore, we

Fig. 5. Keyframes of HRP2-Kai climbing the stairs: the blue ribbon represents the current CoM trajectory.

exploit the linearity to solve many such problems at once,
and find the optimal stance transitions timings. Finally, this
approach was validated by simulation.

Yet, we have many avenues of improvement left open.
Once all of the following points are solved, we implement
our formulation on the real HRP2-Kai.

Firstly, we would like to improve even further the com-
putation times. To do so, we could parallelize our algorithm
in order to solve multiple QPs at the same time. We would
probably gain the most by finding a better way to explore
the possible timings than exhaustive search, for example by
using MIQP. Our problem also has quite a specific form, and
there is possibly a way to solve it faster.

Secondly, we need to make the trajectory generation track-
able by the whole-body controller: this entails integrating
part or whole of the whole-body constraints in either the
trajectory generation or the polyhedron computation.

Finally, we have used only one G to constrain the accel-
erations. We would like to have it vary, for example through
alternate optimizations, to obtain solutions that are no longer
statically stable.

REFERENCES

[1] P. M. Wensing and D. E. Orin, “Generation of dynamic humanoid
behaviors through task-space control with conic optimization,” in IEEE
International Conference on Robotics and Automation, Karlsruhe,
Germany, 6-10 May 2013, pp. 3088–3094.

[2] H. Audren, J. Vaillant, A. Kheddar, A. Escande, K. Kaneko, and
E. Yoshida, “Model preview control in multi-contact motion– applica-
tion to a humanoid robot,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, Chicago, Illinois, September 2014.

[3] C. Brasseur, A. Sherikov, C. Collette, D. Dimitrov, and P.-B. Wieber,
“A robust linear MPC approach to online generation of 3d biped
walking motion,” in IEEE-RAS International Conference onHumanoid
Robots, 2015, pp. 595–601.

[4] S. Caron and A. Kheddar, “Multi-contact walking pattern generation
based on model preview control of 3d com accelerations,” in IEEE-
RAS International Conference on Humanoid Robots, November 2016.

[5] L. Righetti, J. Buchli, M. Mistry, M. Kalakrishnan, and S. Schaal, “Op-
timal Distribution of Contact Forces with Inverse-dynamics Control,”
Int. J. Rob. Res., vol. 32, no. 3, pp. 280–298, 2013.

[6] J. Vaillant, A. Kheddar, H. Audren, F. Keith, S. Brossette, A. Escande,
K. Bouyarmane, K. Kaneko, M. Morisawa, P. Gergondet, E. Yoshida,
S. Kajita, and F. Kanehiro, “Multi-contact vertical ladder climbing
with an hrp-2 humanoid,” Autonomous Robots, vol. 40, no. 3, 2016.

[7] H. Audren and A. Kheddar, “3d robust stability polyhedron in multi-
contact,” IEEE Transactions on Robotics, vol. ”Submitted”, 2017.
[Online]. Available: https://hal-lirmm.ccsd.cnrs.fr/lirmm-01477362

[8] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in IEEE International Conference on
Robotics and Automation, vol. 2, Sept 2003, pp. 1620–1626 vol.2.

[9] P.-B. Wieber, “Trajectory free linear model predictive control for stable
walking in the presence of strong perturbations,” in Humanoid Robots,
2006 6th IEEE-RAS International Conference on. IEEE, 2006.

[10] A. Herzog, N. Rotella, S. Schaal, and L. Righetti, “Trajectory genera-
tion for multi-contact momentum-control,” in IEEE-RAS International
Conference on Humanoid Robots (Humanoids), Nov. 2015.

[11] T. Erez, K. Lowrey, Y. Tassa, V. Kumar, S. Kolev, and E. Todorov, “An
integrated system for real-time model predictive control of humanoid
robots,” in Humanoid Robots (Humanoids), 2013 13th IEEE-RAS
International Conference on. IEEE, 2013, pp. 292–299.

[12] B. Chrétien, A. Escande, and A. Kheddar, “Gpu robot motion planning
using semi-infinite nonlinear programming,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 10, Oct 2016.

[13] K. Hauser, “Fast interpolation and time-optimization on implicit
contact submanifolds.” in Robotics: Science and systems, 2013.

[14] M. Naveau, M. Kudruss, O. Stasse, C. Kirches, K. Mombaur, and
P. Souères, “A reactive walking pattern generator based on nonlinear
model predictive control,” IEEE Robotics and Automation Letters,
vol. 2, no. 1, pp. 10–17, 2017.

[15] S. Caron and A. Kheddar, “Dynamic walking over rough terrains by
nonlinear predictive control of the floating-base inverted pendulum,” in
Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International
Conference on, September 2017, to be presented.

[16] T. Bretl and S. Lall, “Testing static equilibrium for legged robots,”
IEEE Transactions on Robotics, vol. 24, no. 4, pp. 794–807, 2008.

[17] G. H. Hardy and E. M. Wright, An introduction to the theory of
numbers. Oxford University Press, 1979.

[18] K. Schittkowski, “QL: A fortran code for convex quadratic program-
ming - user’s guide,” University of Bayreuth, Tech. Rep., 2011.

[19] S. Russell and P. Norvig, Artificial Intelligence: a Modern Approach.
Pearson, 2001.

[20] K. A. Dowsland, Simulated annealing in Modern Heuristic Techniques
for Combinatorial Problems. McGraw-Hill, 1995, vol. 13, no. 2.

[21] A. Escande, A. Kheddar, and S. Miossec, “Planning contact points for
humanoid robots,” Robotics and Autonomous Systems, vol. 61, no. 5,
pp. 428–442, 2013.

[22] K. Bouyarmane and A. Kheddar, “Humanoid robot locomotion and
manipulation step planning,” Advanced Robotics, vol. Special Issue
on Cutting edge robotics in Japan, no. 26, pp. 1099–1126, 2012.

[23] G. Cappellini, Y. P. Ivanenko, N. Dominici, R. E. Poppele, and F. Lac-
quaniti, “Motor Patterns During Walking on a Slippery Walkway,”
Journal of Neurophysiology, vol. 103, no. 2, pp. 746–760, 2010.

[24] H. Audren, A. Kheddar, and P. Gergondet, “Stability polygons re-
shaping and morphing for smooth multi-contact transitions and force
control of humanoid robots,” in IEEE-RAS International Conference
on Humanoid Robots, Cancun, Mexico, Nov. 2016, pp. 1037–1044.

