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Abstract We propose a novel rule-based ontology language
for JSON records and investigate its computational proper-
ties. After providing a natural translation into first-order
logic, we identify relationships to existing ontology lan-
guages, which yield decidability of query answering but only
rough complexity bounds. By establishing an interesting and
non-trivial connection to word rewriting, we are able to pin-
point the exact combined complexity of query answering in
our framework and obtain tractability results for data com-
plexity. The upper bounds are proven using a query reformu-
lation technique, which can be implemented on top of key-
value stores, thereby exploiting their querying facilities.

1 Introduction
Ontology-mediated query answering (OMQA) is a paradigm
for accessing legacy data while taking into account knowl-
edge expressed by a domain ontology. OMQA has received
a lot of attention in the last decade, driven by the increas-
ing importance of data integration [Poggi et al., 2008] and
the growing interest in semantic technologies. This paradigm
can be seen as a family of techniques for querying a virtual
knowledge base composed of factual knowledge (the data)
and ontological knowledge. So far, most of the attention on
OMQA has been on providing techniques to access factual
knowledge held by relational and RDF databases. The onto-
logical knowledge is often expressed using data-tractable de-
scription logics [Calvanese et al., 2007; Baader et al., 2008;
Eiter et al., 2012] or suitable fragments of existential rules /
Datalog± [Baget et al., 2011; Calı̀ et al., 2012].

In data-intensive applications, however, the database to ac-
cess can be composed of key-value (KV) records in JSON
format. This data can be sourced from the Web or produced
and then analyzed within an organization. In addition to
widespread of JSON as a format for data storage and ex-
change, the recent development of key-value stores (a fam-
ily of NOSQL data-management systems) makes possible to-
day to efficiently query JSON records [Cattell, 2010]. These
data-management systems feature a set of low-level optimiza-
tions tailored for the format, which results in fast and scalable
data access without requiring any translation to a relational
system, which was one of the prominent solutions to handle
semi-structured data [Chasseur et al., 2013].

From an OMQA perspective, a natural question is how to

integrate JSON records in the setting and, more precisely,
how to design OMQA systems directly on top of KV-stores,
thereby exploiting the store’s native query engine capabilities.
The evaluation of ontological queries over key-value stores
has received only little attention so far, with the exceptions of
[Mugnier et al., 2016; Botoeva et al., 2016] (see last section).

A prominent family of OMQA techniques adapted to query
JSON records are those based on query reformulation1. The
idea is to reformulate the input query by incorporating the
relevant information from the ontology in such a way that
the answers to the reformulated query over the input database
are exactly the answers to the initial query over the virtual
knowledge base. By contrast, the approach of materialization
involves the generation of the whole virtual knowledge base.
The main advantage of query reformulation is that it leaves
the data untouched, which is often a desirable characteristic.

Contributions. We propose a rule language for JSON
records that i) allows one to express ontological knowledge
in terms of hierarchies of properties, path inclusions, and
mandatory paths ii) admits tractable query answering, and
iii) enables a query reformulation mechanism implementable
over KV-stores. We consider core navigational queries sup-
ported by KV-stores, namely get and check queries [Mugnier
et al., 2016]. Our setting has a natural first-order logic se-
mantics. This allows us to identify relationships to existing
ontology languages, namely existential rules and description
logics, which yield decidability of query answering, but only
provide rough upper complexity bounds because of the speci-
ficities of the shape of JSON records and ontology rules.

A distinctive feature of our language are contextual rules.
Because JSON records are tree structures, a given value can
assume a different meaning depending on the context (of the
record) where it is employed. From an ontology modeling
perspective, this means that it is interesting to have available
rules with context that apply selectively on the record struc-
ture. Nevertheless, we show that this important feature makes
the combined complexity of query answering jump from
NLogSpace-complete (without contexts) to PSpace-complete
(with contexts). Then, independently from contextual rules,
the tree shape of JSON records also impacts the data com-
plexity of query answering, which is PTime-hard if we con-

1 We use ‘query reformulation’ rather than the more common
‘query rewriting’ to avoid any confusion with ‘word rewriting’.



sider arbitrary data instances but in NLogspace in our setting.
While PTime-hard problems are considered as probably in-
herently sequential, this last result gives us hope that OMQA
can be efficiently parallelized.

Finally, we are able to establish an interesting and non-
trivial connection with word rewriting systems. This allows
us to import and extend existing techniques, thereby deriv-
ing tight complexity bounds for query answering. Beside the
theoretical interest, these techniques allow us to represent the
(possibly infinite) set of reformulations of an input query with
a regular expression, which in turn can be evaluated over KV-
stores by unfolding or using simple auxiliary structures like
data-guides.

2 The Framework
We start by formalizing JSON records, core queries, and rules
we consider, together with their first-order logic semantics.
JSON records. Let CONST and NULLS be (infinite) sets of
constants and (labeled) nulls, respectively, and let KEYS be a
finite set of keys. A JSON record, or key-value record, is a
finite set of key-value pairs. A value is recursively defined as
(i) an element of CONST∪NULLS (i.e., a terminal value), (ii)
a sequence [e1 . . . en] where each ei is a value and n ≥ 1, or
(iii) a record r of the form {(k1, e1) . . . (kn, en)}where each
ki ∈ KEYS and each ei is a value, with n ≥ 1 and ki 6= kj
for i 6= j. A KV-store I is a set of records. A record can
be associated with a rooted labeled tree, in which edges are
labeled by keys, leaves are labeled by constant or null values,
and all other internal nodes are unlabeled. A key-value pair
(k, e) where e is a sequence is represented by several edges
labeled by k leading to the nodes that represent the elements
of e. 2 To illustrate, consider the following JSON record
which describes a teaching department, containing its name,
a professor, and two courses.

{ dept :

{ name : “CS”,
prof : {name : “Bob” , boss : “Alice”, phone : “5-256” } ,
course : [“AI”, “Logic”] } }

The tree associated with this record is depicted in Figure 1.
From now on, a record will be identified with its associated
tree. Hence a path in a record is a path in the associated tree,
which is defined as usual. A path (v0 . . . vn) is rooted if v0

is the root of the tree. It is valued if vn is a leaf labeled by
a constant. Its associated sequence of keys is K = k1 . . . kn
where ki is the label of the edge (vi−1, vi). For convenience,
we will sometimes denote a path by v0Kvn (emphasizing the
associated sequence of keys) and, when the path is valued,
replace vn by its label, e.g. v0Kc where c ∈ CONST. We
denote by paths(r) the set of all paths in a record r.

Queries. We consider two types of queries, which capture
the core of the native query languages of KV-stores, namely
get and check queries. These are evaluated from the root of a

2 In this simplified data model, we do not represent the ordering
on the elements of a sequence, since the considered queries will not
exploit this order. Moreover, a sequence nested in a sequence is seen
as a constant as core queries will not go through them either.
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Figure 1: Tree associated with the record and rule application.

record. A get query is used to retrieve all constant values that
lie at the end of a rooted and valued path. A check query is a
Boolean expression yielding true when a rooted path is found.
On the example, the query get(dept.course) returns all
courses provided by the department (here: “Logic”,“AI”),
while the query check(dept.prof.phone) verifies whether
at least a professor in the department has a phone.

Formally, a query Q has the form get(K) or check(K)
with K a sequence of keys. The set of answers to Q over a
record r is denoted by Q(r) and defined as follows. Let r0

be the root of r. Then, get(K)(r) = {c ∈ CONST | r0Kc ∈
paths(r)} and check(K)(r) = {true} if there is r0Kv ∈
paths(r), otherwise check(K)(r) = ∅. Finally, the set of
answers to Q over a store I , denoted by Q(I), is the union of
Q(r) for all r ∈ I .

Rule language. We now present a novel rule language for
expressing ontological knowledge on key-value records. In
the OMQA setting we define, KV-records are naturally the
language for expressing factual knowledge on the application
domain. We make an important distinction between the inter-
nal and the leaf nodes of the record’s tree. We consider that
internal nodes represent individuals, while leaf nodes hold
the constants associated by properties. This choice is simi-
lar to that of the RDF language, where entities are URIs and
values are literals. Building on this, we see the keys within
records as binary relations (like roles in description logics),
which hold either between a pair of individuals, or between
individuals and constants. Another important aspect to con-
sider when dealing with hierarchically organized information
is the fact that the semantics of a value is determined by its
position within the tree structure. We thus provide a mech-
anism to select a node based on the key-path defined by its
ancestors, that we call a context.

The general form of a KV-rule is Context : Body→Head.
Specifically, KV-rules can be of three types:

(A) K : k1 → k2 (inclusion between keys)

(B) K : K1.val→ K2 (inclusion between valued paths)

(C) K : K1 → ∃K2 (mandatory path)

where k1, k2 are keys and K, K1, K2 are sequences of keys.
We allow the context K to be empty, which is denoted by ε.
Moreover we also allow the body path K1 of type (C) rule to
be empty, but at the only condition that the context K is not.
The contextK defines where the rule can be possibly applied.
Note that K does not need to start at the root of a record as
(in contrast with queries) rules apply at any level.



Type (A) rules define inclusions between keys, hence al-
lowing to organize them hierarchically. Type (B) rules define
inclusions between valued paths. They specify multiple ways
of accessing a constant value in the record. Finally, type (C)
rules are mandatory path assertions. These allow one to ex-
press that some path exists in the structure, even if its extrem-
ity is unknown. Importantly, since the body of the type (C)
rules is possibly empty, these can be used to add properties to
all individuals within a certain context.

To illustrate, consider the following KV-rules, whose eval-
uation on the example record is illustrated in Figure 1.

σ1 = phone→ contact
σ2 = course.val→ prof.teaching
σ3 = dept : prof.boss.val→ director.name
σ4 = dept : director→ faculty
σ5 = dept.faculty : ε→ ∃phone

Rule σ1 says that the key phone is a particular case
of the key contact (key inclusion). The application
of this rule creates an edge labeled with contact with
the same end nodes as the edge labeled with phone.
In the example, this allows us to positively answer the
query check(dept.prof.contact) whose answer other-
wise would be false. Rule σ2 states that each course is taught
by a professor. The .val in the rule body indicates that this
applies only to valued paths (i.e., course keys pointing only
towards constant values). The application of this rule cre-
ates a new valued path in the tree ending with a node la-
beled with the course name. Because of σ2, the answer set
of the query get(dept.prof.teaching) includes that of
get(dept.course). Contextual rules are exemplified by the
last three rules. Rules σ3 and σ4 model the fact that, within
a department, the boss of a professor is always the director,
and that director is a particular case of faculty, respec-
tively. It is then possible to answer “Alice” to the query
get(dept.faculty.name). Rule σ5 is a mandatory path
rule asserting that a key phone is always present within the
context dept.faculty. Rules σ1 and σ5 make true the an-
swer to the query check(dept.director.contact). Note
that σ5 has an empty body, as indicated by the presence of ε,
hence it applies regardless of the actual sub-record content.

Finally, we conclude remarking that our language can also
be seen as a constraint language, as studied in databases (see
the related work section), in which case enforcing constraints
on incomplete data may also lead to infer new data. In the
same way, tuple-generating dependencies [Abiteboul et al.,
1995] can be seen either as constraints, or as ontological
knowledge under the name of existential rules.
Rule application. As illustrated in Figure 1, rule appli-
cation does not strictly preserve the tree-shape of records,
since key inclusions replace keys by sets of keys (e.g.,
phone, contact). To formally define rule application we
will thus consider trees with multi-edges (i.e., allowing for
several edges with the same end nodes), called multi-trees.
Similarly, paths with multi-edges will be called multi-paths.

We say that a rule σ = K : K1[.val] → [∃]K2 (optional
parts between brackets) is applicable to a multi-tree r, if there
exists a path vKv0K1v1 ∈ paths(r), which must be valued
if [.val] is used. The effective application of σ at v0 (with
respect to v1) consists of adding to the multi-tree a new path

v0K2v2, where i) v2 = v1 if σ is of type (A), ii) v2 is a fresh
node labeled as v1 if σ is of type (B), otherwise iii) v2 is a
fresh node labeled by a fresh null (σ is of type (C)).

Due to space restriction, we do not define the semantics
of KV-stores and rules in terms of interpretations (those can,
however, be obtained from the logical translation provided
later). Instead, we define the notion of the saturation of a
record r by a set of rules Σ, which can be seen as a canon-
ical model of (Σ, r), representative of all models of (Σ, r),
similarly to the chase on existential rules (see later). The
breadth-first saturation of a multi-tree r by a set of KV-
rules Σ, denoted by Sat(Σ, r), is inductively defined as fol-
lows: Sat0(Σ, r) = r and, for any i > 0, Sati(Σ, r) is ob-
tained from ri−1 = Sati−1(Σ, r) by performing in parallel
all possible rule applications on ri−1; finally, Sat(Σ, r) =⋃
i≥0 Sat

i(Σ, r). This notion is well-defined since the order
in which the rule applications are performed at each level has
no incidence on the result (up to the choice of labeled nulls).

Ontological query answering. A knowledge base (KB) is
a pair K = (I,Σ), where I is a KV-store and Σ is a set of
KV-rules. The notion of a (certain) answer is defined as fol-
lows. Given a query Q and a tree r, a value e belongs to
Q(({r},Σ)) if e ∈ Q(Satk(Σ, r)), for some k ≥ 0. The
set of answers to a query Q over K, is defined as Q(K) =⋃
r∈I Q(({r},Σ)).
Note that materializing the saturation of a tree has several

disadvantages of both practical and theoretical nature. First,
it produces multi-trees, that are supported by some systems
only. Second, the saturated tree may be infinite (e.g., the
record r = {k : a} with rule σ : k.val → k.k gener-
ates an infinite set of paths). In the remainder of the paper
we will therefore consider the following query reformula-
tion problem. Given a KB K = (I,Σ) and a check or get
query Q, compute a set of queries {Q1, . . . , Qn} such that
Q(K) =

⋃
iQi(I). Before tackling this question, we give a

logical counterpart of our framework.

First-order logic translation. The framework translates
naturally into first-order logic (FO). To a record we assign an
existentially closed formula. E.g., for the example record:
∃x0, x1(root(x0 ) ∧ dept(x0 ) ∧ name(x0 ,CS) ∧ const(CS) . . .∧
prof (x0 , x1 ) ∧ name(x1 ,Bob) ∧ const(Bob) ∧ . . .). Note that
the root and the constant leaves are marked by atoms of the
form root(−) and const(−) respectively.

A query get(K) translates into a conjunctive query of the
form ∃x0(root(x0) ∧ FO(K,x0, xn) ∧ const(xn)), where
FO(K,x0, xn) is the translation of the key sequence K
into a FO formula with free variables x0 and xn. A query
check(K) translates into a Boolean conjunctive query of the
form ∃x0∃xn(root(x0) ∧ FO(K,x0, xn)). Finally, we illus-
trate the translation of KV-rules on the example, omitting uni-
versal quantifiers for conciseness:

1. phone(x0, x)→ contact(x0, x)
2. course(x0, x) ∧ const(x)→ ∃z0 prof (x0, z0) ∧ teach(z0, x)
3. dept(x1, x0) ∧ prof (x0, y1) ∧ boss(y1, x) ∧ const(x)

→ ∃z0director(x0, z0) ∧ name(z0, x)
4. dept(x1, x0) ∧ director(x0, x)→ faculty(x0, x)
5. dept(x1, x2) ∧ faculty(x2, x0)→ ∃zphone(x0, z)



We observe that KV-rules are actually translated into ex-
istential rules, which are positive and conjunctive rules of
the form ∀x∀y(Body[x,y] → ∃zHead[x, z]). Moreover,
the notions of a rule application and of an answer in the KV
framework coincide with the same notions in the existential
rule framework. This allows us to obtain the following result
(where |= denotes classical logical entailment, and FO(Q)
and FO(K) are the FO translations of Q and K).

Proposition 1 (Soundness and Completeness). Let K =
(I,Σ) be a KB. For any query Q=check(K), we have
Q(K) 6= ∅ iff FO(K) |= FO(Q). For any query Q=get(K)
and constant value a, we have a ∈ Q(K) iff FO(K) |=
FOxn 7→a(Q), where xn 7→ a is the substitution of xn by a.

As already mentioned, our saturation notion corresponds to
the fundamental (breadth-first) chase tool on existential rules.

To study decidability and complexity, we consider the fol-
lowing decision problems: Given a KB K and a check query
Q, isQ(K) 6= ∅? Given a KBK, a get queryQ and a constant
a, does a ∈ Q(K) hold?

We first point out that the restriction of path inclusions to
valued paths is crucial for decidability. Were we to remove
this restriction, query answering would become undecidable,
as already observed in several contexts [Abiteboul and Vianu,
1999; Buneman et al., 2000; Calvanese et al., 2016; Mugnier
et al., 2016].
Relation to existing ontology languages. By slightly mod-
ifying the FO translation of path inclusion rules (without in-
cidence on query entailment), we see that KV-rules can be
translated into a fragment of existential rules with decidable
query answering, namely frontier-guarded existential rules,
in which an atom from the rule body (called a guard) con-
tains all the frontier variables, which are the variables shared
by the body and the head of the rule [Baget et al., 2011]. To
do so, for any rule σ of type B, FO(σ) = ∀x0∀x(B → H) is
replaced by |CONST[I]| rules obtained by substituting x with
each constant c ∈ CONST[I] (where CONST[I] is the restric-
tion of CONST to I). A closer look at our objects allows to
recast our problem as atomic query answering over fixed-arity
guarded rules, which provides an upper bound for combined
complexity, namely EXPTIME [Calı̀ et al., 2013]. Since the
translation to frontier-guarded rules is not data-independent,
it does not yield any useful upper bound for data complexity.

Even though KV-rules are based on paths, their logical
translation does not fit into any known DL dialect, due to the
presence of contextual key inclusions (rules of type A). Were
we to consider only context-free key inclusions, then the
preceding translation into frontier-guarded existential rules
would be expressible in the DL ELHIO (where role inclu-
sions capture the key inclusions, nominals allow us to speak
of constants, and inverse roles are used to capture contexts in
rules of type B and C). However, this correspondence does
not yield improved complexity results.

3 Resolution through Word Rewriting System
Our approach to the query answering problem is to reformu-
late an input query into a pointed regular path query (PRPQ)
[Abiteboul and Vianu, 1999] which represents in a succinct

way the (possibly infinite) set of reformulations of a check or
get query. A PRPQ is defined by a regular language, which
also is pointed, in the sense that it is evaluated from a fixed
node (for JSON, this is always the root of the record). The
semantics of a PRPQ over JSON records is as follows. Let L
be (the language of) a PRPQ and r be a tree corresponding to
a JSON record, then we say that a node v in r is an answer to
the query if there exists a word K belonging to L such that
root(r).K.v is a path in r. In the remainder, we suppose the
reader to be familiar with regular languages.

We want to show that the problem of computing the PRPQ
reformulations of check and get queries can be reduced to
that of computing the (regular) language of ancestors in a
word rewriting system. Towards this goal, starting from a set
of KV-rules Σ, we first define a word rewriting system RΣ

which simulates the forward-chaining application of the rules
in Σ. Then, computing the language of ancestors of words
derived byRΣ will mimic the reformulation into PRPQs.
Word rewriting systems. A word (or string) rewriting sys-
temR over a finite alphabet A consists of a finite set of word
rewriting rules of the form (u1, u2) ∈ A∗×A∗, where u1 and
u2 are respectively the left and right hand side of a rule. We
say that a word w rewrites to w′ following the rule (u1, u2) if
w = w1 ·u1 ·w2 andw′ = w1 ·u2 ·w2, where “·” denotes word
concatenation. We denote by →R the single-step rewrit-
ing relation and by →∗R its reflexive and transitive closure.
We write w→∗R w′ if there exists a (possibly empty) word
sequence (w =)w1, . . . , wn(= w′) such that wj rewrites to
wj+1 following a rule of R. Given a regular language L, we
denote by AncR(L) the set of ancestors of L byR, which is
defined as AncR(L) = {w | ∃w′ ∈ L,w→∗R w′}.

An important family of rewriting systems we are interested
in are suffix rewriting systems. Intuitively, these are rewriting
systems restricting the application of rules thereby allowing
them to rewrite only the suffixes of words. Formally, we say
that w1 · u2 · w2 is a suffix rewriting of w1 · u1 · w2 with the
rule (u1, u2) whenever w2 is empty. It is well known that, if
only suffix rewritings are allowed, then AncR(L) is a regular
language [Büchi, 1962; Caucal, 2000].

At this point, it is not difficult to see that, for the case of
context-free KV-rules, word rewriting can mimic the refor-
mulation of KV-rules of type (A) and suffix word rewriting
that of KV-rules of type (B). To capture the full reasoning ca-
pabilities of KV-rules we need however to introduce a more
general notion of rewriting system, that we call an extended
rewriting suffix system (ERS). An ERS contains two types
of rules, namely relabeling and suffix rules. Intuitively, the
former type of rules replace a single letter, while the latter
are used for suffix rewriting. Furthermore, we consider suffix
rules made of pairs of regular languages (rather than simply
pairs of words) which will allow for a more concise repre-
sentation of rewriting rules. Conceptually, a rule (L,R) with
L and R regular languages means that any word belonging
to L can be replaced by any word of R. Finally, all types of
rules in an ERS are associated with a context restricting their
application. This is necessary to mimic the behaviour of KV-
rules with contexts. As before, contexts are written as regular
languages and make a rule selectively applicable only to sub-
words that are preceded by a word defined by the context.



Formally, an ERS is made of:

• contextual relabeling rules of the form C : a 7→ b where
C is a regular language, and a and b two letters. Their
semantics is a follows: u1 · a · u2 rewrites to u1 · b · u2

by such type of rule if u1 belongs to C;

• contextual extended suffix rules of the form C : L 7→ R
with C,L,R regular languages. Their semantics is a fol-
lows: u1 · l rewrites to u1 · r by such type of rule if u1

belongs to C, l belongs to L, and r belongs to R.

To illustrate, (c1 | c2)+ : a 7→ b is a contextual relabeling rule
replacing awith b in a word, whenever this is preceded by any
(non-empty) sequence of c1 and c2. By this rule, c1 · c1 · c2 ·a
rewrites to c1 · c1 · c2 · b, while a · a does not rewrite to any
word. To illustrate suffix rewriting rules, consider c : b 7→ a∗.
With this rule, c ·b ·c has no rewriting, while c ·b ·c ·b rewrites
to all words of the form c · b · c · a · · · a.

Simulating KV-rules with ERS. We now build an ERS
which simulates the forward-chaining application of KV
rules. This is possible because KV-rules actually reason
on the paths of the input tree, and therefore we can see
a path root(r).k1 . . . kn.v of the saturated tree as a word
k1 · k2 · · · kn obtained by applying the ERS rules. We have
however to be careful that KV-rules of type (B) and (C) do
not interact, because the former rules cannot be applied on a
branch generated by the latter rules. We do so by introduc-
ing two novel symbols “$” and “]” to be employed for words
within our ERS. Any path root(r).K.v in the tree will be rep-
resented by the wordK ·$ if v is (a leaf) labeled by a constant,
and by the word K · ] otherwise (that is, v is an internal node
or a leaf labeled with a null possibly produced by a type (C)
rule). When simulating type (B) KV-rules with ERS rules, we
will make these apply only to suffix rules ending with $.

A technical aspect of our construction is that to model the
structure of multi-trees, we consider that letters in an ERS are
sets of keys. We will consider a new alphabet P = 2KEYS \
∅. From now on, for clarity we denote by a,b, c ∈ P the
(complex) letters belonging to this set and by u, v,w ∈ P∗
the (complex) words made with these letters. For instance,
let a = {a1, a2}, b = {b}, and c = {c1, c2} then u = a ·
b · c = {a1, a2} · {b} · {c1, c2}. The set of complex words
that “enable” a word w = a1 · · · an, is defined as En(w) =
{a1 · · · an ∈ P∗|ai ∈ ai}. For example, we have that En(a ·
b) = {(a∪{a})·(b∪{b}) | a,b ∈ P} (note that we may have
a = {a} or b = {b}). Note that P∗ and En(w) are regular
languages over P , which we will employ within ERS rules.

Given a word over KEYS∗ it will be handful to represent
its corresponding (complex) element over P∗. We define the
function Sg() (standing for “singleton”) which given a (non-
empty) word of the form w = a1 · · · an yields its complex
version with sets of letters made of a single element Sg(w) =
{a1} · · · {an}. Finally, we denote by P∗ · (] + $) the set
of words of P∗ extended with the ] or $ symbol. Here “+”
denotes the union operator for regular languages.

A set of KV-rules Σ is associated with an ERSRΣ = Ψ(Σ)
containing all possible rules obtained by instantiating the fol-
lowing rules.

(A) inclusion between keys: a rule K : k1 → k2 is associ-
ated with the relabeling (meta-)rule

(P∗ · En(K)) : a ∪ {k1} 7→ a ∪ {k1, k2} (∀a ∈ P)

(B) inclusion between valued paths: a ruleK:K1.val→ K2

is associated with the suffix “valued” rule

(P∗ · En(K)) : (En(K1) · $) 7→ Sg(K2) · $

(C) mandatory path: a rule K : K1 → ∃K2 is associated
with the suffix rule

(P∗ · En(K)) : (En(K1) · P∗ · (]+ $)) 7→ Sg(K2) · ]

To illustrate the construction, we give the ERS associated
with the example used in the previous section.

Ψ(σ1) =

 P∗ : {phone} 7→ {phone, contact}
P∗ : {prof, phone} 7→ {prof, phone, contact}
. . .

Ψ(σ2) = P∗ : En(course) · $ 7→ {prof}.{teaching}.$

Ψ(σ3) = P∗·En(dept) : En(prof ·boss)·$ 7→ {director}·{name}·$

Ψ(σ4) =

 P∗ · En(dept) : {dir.} 7→ {dir., faculty}
P∗ · En(dept) : {prof, dir.} 7→ {prof, dir., faculty}
. . .

Ψ(σ5) = P∗ · En(dept · faculty) : P∗ · (]+ $) 7→ {phone}.]
We can easily see that ERS rules mimic KV-rules. Consider

for example the word {dept} · {prof} · {boss} · $ which cor-
responds to a path in the input tree of Figure 1 ending on the
value “Alice”. This rewrites to {dept}·{director}·{name}·$
by Ψ(σ3) and then to {dept}·{director, faculty}·{name}·
$ by Ψ(σ4). Then, Ψ(σ5) gives {dept}·{director, faculty}·
{phone} · ] and Ψ(σ1) gives {dept} · {director, faculty} ·
{phone, contact} · ]. All of these words exactly correspond
to some multi-paths inferred in Figure 1. Note also that the
initial word representing a valued path ends with $ while the
final word ends with the ] symbol. This is correct, since only
check queries have some answers on this multi–path of the
saturated tree in Figure 1.

The following proposition formally states the correspon-
dence between KV-rules and ERS.
Proposition 2. Let Σ be KV-rule set, RΣ its corresponding
ERS, and w ∈ KEYS∗ a word. Let Lc be the set of words u
such that Sg(u)·] or Sg(u)·$ is in AncR(En(w)·P∗ ·($+])).
Then, for each tree r, check(w)(r,Σ) = ∪u∈Lc

check(u)(r).
Let Lg be the set of words u such that Sg(u) · $ is in
AncR(En(w) · $). Then, get(w)(r,Σ) = ∪u∈Lgget(u)(r).
Proof sketch. First note that a word in P∗ · (] + $) corre-
sponds to a (multi-)path in a (multi-)tree. We take all maximal
paths in the tree, together with their proper prefixes, and we
associate them with a word ending by ]. Moreover, for all
maximal paths in the tree ending on a leaf node labeled with
a constant, we add a word ending by $. By transforming w
in En(w), we generate all multi-paths enabling w. We can
check that each rewriting step is correct, in the sense that if
a word w corresponds to a multi-path in Sat(r,Σ) then its
ERS rewritings by R do as well. Conversely, applying one
saturation step can be simulated by rewriting the word corre-
sponding to a multi-path. �



Computing the language of ancestors. We now turn to the
problem of effectively computing the language of ancestors.
In the following, we suppose that the reader is familiar with
finite automata (NFAs). Let us first recall that the size of the
alphabet P is exponential w.r.t. the size of KEYS. An NFA
A is represented by a 5-tuple, (P,Q,∆, I, F), with P the al-
phabet, Q the set of states, ∆ the set of transitions, and I and
F the set of initial and final states, respectively. We denote
ε-transitions with (q, ε, q′). We omit P when it is clear from
the context and denote by L(A) (resp. LA(q)) the language
recognized by A (resp. by A with q as initial state).

The automaton defining Lc (as defined in Proposition 2)
can be computed in polynomial time in the size of the NFAs
defining AncR(En(w) · P∗ · ($ + ])) by considering only
transitions labeled with letters of the form Sg(a) ∈ P , mak-
ing final all the states reaching ] or $. Finally, to get back to
the alphabet KEYS, each letter Sg(a) is transformed into a.
Similarly, the automaton defining Lg can be computed from
AncR(En(w) · $), with this time the final states reaching $.
The next proposition presents how to compute the two lan-
guages.

Proposition 3. Let Σ be KV-rule set, RΣ its corresponding
ERS, and w ∈ KEYS∗ a word. Then there exist NFAs defining
AncR(En(w) · P∗ · ($ + ])) and AncR(En(w) · $) whose
number of states is in O(2|KEYS|∗(M+1) ∗ (|w|+ |Σ|)), where
M is the maximal length of contexts in Σ, |Σ| is the size of Σ,
and |w| the size of w.

Proof sketch. The construction consists in four steps:

First, starting from the word w = w1 · · ·wn in the input
query, we construct an automaton Aw = (Qw,∆w, sI,Fw)
recognizing (En(w) · P∗ · ($ + ])) (or similarly (En(w) · $)).
The construction is standard: the set of states is {i | 0 ≤
i ≤ |w| + 1}, ∆w = {(i, a, i + 1) | i < |w|, wi+1 ∈ a} ∪
{(|w|, a, |w|) | a ∈ P}∪{(|w|+1, $, |w|+1), (|w|+1, ], |w|+
1)}; 0 (resp. |w|+ 1) is the initial (resp. final) state.

Secondly, we define the notion of a context automaton for
a set of KV-rules Σ: it is an NFA Ac = (Qc,∆c, sc,Qc) able
to check (P∗ · En(K)) for each key sequence K defining a
context. So, for each K there exists a set of states FK ⊆ Qc
such that L(Qc,∆c, sC, FK) recognizes (P∗ · En(K)). The
set of states Qc corresponds to the set of words over P whose
length is at most M and we write qu for the state associ-
ated with the word u. So, the size of Qc is bounded by
2|KEYS|∗(M+1). We use suffixM (u) to denote the suffix of the
word u whose length isM , and u itself when |u| ≤M . Then,
we write qu for the state associated with the word u. Then,
∆c = {(qu, a, qsuffixM (u·a)) | qu ∈ Qc, a ∈ P}. The initial
state sc corresponds then to qε. FK is the set of states qu such
that u ∈ P∗ · En(K).

Thirdly, in the same way, for each suffix rule (Ci : Li 7→
Ri) we build an NFAALi

recognizingLi withO(|Li|) states.
The last step is the most technical one, and requires ex-

tended automata completion techniques for constructing in
polynomial time a new automaton B which can recognize
AncR(En(w) · P∗ · ($ + ])) and AncR(En(w) · $).

We first initialize B as the product of Ac with the union of

Aw together with all of the ALj :

B = ( (Qw∪(∪jQLj
))×Qc , (s, sc) , ∆ , (Fw∪(∪jFLj

))×Qc )

We initialize the automaton with the following tran-
sitions ∆ = {((q, qc), a, (q′, q′c))|(q, a, q′) ∈ ∆w ∪
(∪j∆j), (qc, a, q′c) ∈ ∆c} and complete it as follows:

1. for all relabeling rules C : a 7→ b in RΣ, qc in FC , and
((q, qc),b, (q′, q′c)) in ∆, we add ((q, qc), a, (q′, q′c));

2. for all suffix rules Cj : Lj 7→ Rj in RΣ, qc in FCj
, add

((q, qc), ε, (sj , qc)) when LB((q, qc))∩Rj is non empty.
As the number of states stays the same, the construction is
polynomial in A and B. �

When there is no relabeling, the construction is much sim-
pler: the alphabet P is not needed and the number of states is
inO(|Σ|)× (|w|+ |Σ|)). Similarly, when there are relabeling
rules but no context, a context automaton is no more needed
and the number of states is in O(|w|+ |Σ|).

4 Complexity of OMQA with KV-Rules
In the preceding section, we showed how to construct, using
word rewriting techniques, query reformulations in the form
of pointed RPQs. By analyzing the construction, we obtain
the following complexity upper bounds:
Theorem 1. Query answering on KV-stores is:
• in NLSpace for data complexity;
• in PSpace for combined complexity;
• in NLSpace for combined complexity without contexts.

Proof sketch. Membership in NLSpace for data complexity
follows directly from the (data-independent) reformulation
into RPQs (which can be evaluated in NLSpace).

For the PSpace upper bound, we cannot explicitly construct
the automata provided by the proof of Prop. 3, as they may
be exponentially large. However, the states of the NFA can
be stored in polynomial space, and we can test on the fly
whether a given transition belongs to the automaton. The idea
is then to simulate, using a non-deterministic PSpace Turing
machine, a run of the NFA, keeping only the current posi-
tion and state in memory. The only real difficulty is handling
epsilon transitions, created by a suffix rule (Point 2 in the
construction of the automaton B). Indeed, we need to verify
whether L((q, qc)) ∩ Rj is non-empty. Such non-emptiness
checks can be carried out in PSpace, as emptiness testing is
in NLSpace in the size of the automaton (which here is of
exponential size). The NLSpace upper bound for combined
complexity in the context-free case proceeds similarly, except
that now we are working with a polysize automaton.

We have matching lower bounds for combined complexity.
Theorem 2. Query answering on KV-stores is PSPACE-hard
for combined complexity, and NLSpace-hard for combined
complexity when restricted to context-free rules.
Proof sketch. NLSpace hardness is a simple reduction from
directed reachability, so we concentrate on the PSpace hard-
ness result. The proof is by reduction from the word problem
for polynomially space-bounded deterministic Turing ma-
chines. Let M = (Q,A, δ, qi, qf ) be such a Turing machine,



where Q is the set of states, A is the alphabet, δ is the transi-
tion function, qi is the initial state and qf the final one. Given
M and an input word w, the problem is whether M accepts
w. Let n be the bound on the number of tape cells used by
M on input w. Configurations can be captured by words of
length n over the alphabet Θ = A ∪ (A × Q), where a ∈ A
signifies that a tape cell contains a, and (a, q) signifies that
the cell contains a, is under the head, and the current state is
q. Using the keys (i, β) where i is in {1, · · · , n} and β ∈ Θ,
we can straightforwardly encode configurations as sequences
of keys (1, σ1) . . . (n, σn).

Our initial KV-store is a record whose only path en-
codes the initial configuration, i.e., it is of the form r0Kv,
with K = (1, (w1, qi)).(2, w2) . . . (k,wk).(k+1, b) . . . (n, b)
where w = w1 . . . wk and b denotes the blank symbol.

We then define KV-rules that allow us to build the full se-
quence of configurations of the run on w. First, for every
key (i, a), we include the type (A) rule (i, a) → C, where
C is a new key, denoting ‘any cell’. We next include rules
that, from the previous configuration, construct the current
configuration cell by cell, by ‘appending’ it at the end of the
previous configuration. Note that the label of the i-th cell
in the current configuration only depends on the three cells
at positions (i − 1), i and (i + 1) in the previous config-
uration (with the first and last cells depending on only two
cells). Therefore, we add the following contextual rules for
each i ∈ {2, . . . , n− 1}:
(i− 1, α).(i, β).(i+ 1, γ).Cn−3 : (i− 1, ξ)→
∃(i− 1, ξ).(i, T rans(α, β, γ))
where Trans(α, β, γ) returns the new label for cell i assum-
ing that cells i− 1, i, i+ 1 are respectively labelled α, β, γ in
the previous configuration. Intuitively, the context goes from
cell (i − 1) in the previous configuration to the cell that pre-
cedes cell (i− 1) in the current configuration, and a new path
that encodes cell i−1 followed by cell i in the current config-
uration is created. Similar rules are introduced to handle the
first and last tape cells.

Finally, we use rules of the form (i, (α, qf )) → ∃Ok to-
gether with C.Ok→ ∃Ok to propagate upwards the fact that
we have reached an accepting configuration. It is easily veri-
fied that M accepts w iff check(Ok) returns true.

The question of the lower bound for data complexity re-
mains open, as the specific shape of the data may play a
role. Indeed, the following results show that the complex-
ity is higher over arbitrary data instances than over KV-stores
(assuming NLSpace 6= PTime):
Proposition 4. Query answering in the logical fragment
associated with KV-rules (resp. context-free KV-rules) and
check/get queries is PTime-hard for data complexity (resp.
combined complexity) over arbitrary datasets.

5 Discussion and Related Work
Evaluating ontology-mediated queries over KV-stores.
We have shown that our query answering task can be recast as
(1) computing a regular path expression corresponding to the
ancestors of a word encoding the query in an extended rewrit-
ing suffix system associated with the KV-rules (2) evaluating
this expression on the KV-store. However, the evaluation of

regular expressions is not directly supported by KV-stores na-
tive languages. Nevertheless, as records have bounded depth
d, one can still generate all check/get queries whose length
is bounded by d, thereby making query answering complete.
In practice, however, this may be inefficient when the regu-
lar expression contains a Kleene-∗ or large disjunctions, as
many queries could be generated. This is a known issue for
semi-structured data-management systems, which is tackled
by relying on a concise structural summary of the tree, such
as data-guides [Goldman and Widom, 1997]. In our case, by
relying on a structure that simply lists all maximal paths in
the tree, one can select those belonging to the language of the
regular expression, which suffices to ensure complete query
answering. Note that the list of maximal paths in a record can
be computed off-line in a single traversal of the record. More-
over, path-membership for regular expressions can be tested
in linear time.

Related work. Two different approaches to OMQA over
KV-stores have been recently proposed by [Mugnier et al.,
2016] and [Botoeva et al., 2016]. The approach of [Mug-
nier et al., 2016] is similar to ours in the sense that they pro-
pose a rule language, with rules of the form K1 → K2, that
are directly applicable to KV-stores. However, the expres-
sivity of this language makes OMQA undecidable in general,
hence restrictions are imposed: either the rules have a body
restricted to a single key, or they have a head restricted to a
single key, both kinds of rules being incompatible. Moreover,
there is no correspondence with first-order-logic, hence the
semantics remains operational. The work of [Botoeva et al.,
2016] extends the data integration-oriented approach known
as Ontology-Based Data Access to KV-stores (and specially
MongoDB). The ontology and the queries are expressed at a
‘conceptual level’ (in OWL 2 and SPARQL) and JSON-to-
RDF mappings allow one to define a virtual RDF view of
JSON data. Query reformulation is performed at the concep-
tual level, then the rewritten query is translated into a KV-
query via the mappings.

In the domain of semi-structured databases, several con-
straint languages have been proposed. In particular, the works
of [Abiteboul and Vianu, 1999] and [Andre et al., 2007] study
the implication problem for inclusion constraints expressed
by regular-path expressions. These capture as a special case
the context-free rules of type (B) studied here. In [Buneman
et al., 2000] path inclusions with contexts and inverses are
studied. Finally, [Calvanese et al., 2016] studied the exten-
sion of Description Logics with path-constraints.

As for future work, we plan to extend the rule language
to represent concepts associated with nodes and investigate
query reformulation with richer KV-queries, such as tree
queries as provided for instance in MongoDB.
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