
HAL Id: lirmm-01632224
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01632224v1

Submitted on 9 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Answering Conjunctive Regular Path Queries over
Guarded Existential Rules

Jean-François Baget, Meghyn Bienvenu, Marie-Laure Mugnier, Michaël
Thomazo

To cite this version:
Jean-François Baget, Meghyn Bienvenu, Marie-Laure Mugnier, Michaël Thomazo. Answering Con-
junctive Regular Path Queries over Guarded Existential Rules. IJCAI: International Joint Conference
on Artificial Intelligence, Aug 2017, Melbourne, Australia. �lirmm-01632224�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01632224v1
https://hal.archives-ouvertes.fr


Answering Conjunctive Regular Path Queries over Guarded Existential Rules

Jean-François Baget
Inria, France

baget@lirmm.fr

Meghyn Bienvenu
CNRS, France

meghyn@lirmm.fr

Marie-Laure Mugnier
Univ. Montpellier, France

mugnier@lirmm.fr

Michael Thomazo
Inria, France

michael.thomazo@inria.fr

Abstract
Ontology-mediated query answering is concerned
with the problem of answering queries over knowl-
edge bases consisting of a database instance and
an ontology. While most work in the area fo-
cuses on conjunctive queries (CQs), navigational
queries are gaining increasing attention. In this
paper, we investigate the complexity of answering
two-way conjunctive regular path queries (CRPQs)
over knowledge bases whose ontology is given by
a set of guarded existential rules. We first consider
the subclass of linear existential rules and show that
CRPQ answering is EXPTIME-complete in com-
bined complexity and NL-complete in data com-
plexity, matching the recently established bounds
for answering non-conjunctive RPQs. For guarded
rules, we provide a non-trivial reduction to the lin-
ear case, which allows us to show that the complex-
ity of CRPQ answering is the same as for CQs,
namely 2EXPTIME-complete in combined com-
plexity and PTIME-complete in data complexity.

1 Introduction
In ontology-mediated query answering (OMQA), a database
is enriched with an ontological layer that expresses domain
knowledge, and queries are answered by taking into account
the information from both the data and ontology. Two main
families of ontology languages are considered in this setting,
namely description logics (DLs) and existential rules (see e.g.
the survey chapters [Ortiz and Simkus, 2012; Kontchakov et
al., 2013; Bienvenu and Ortiz, 2015] on OMQA with DLs
and [Calì et al., 2009a; Mugnier and Thomazo, 2014] for ex-
istential rules).

Although most work on OMQA to date has focused on
the fundamental class of conjunctive queries (CQs), navi-
gational queries are gaining increasing attention. The sim-
plest such queries are regular path queries (RPQs, [Florescu
et al., 1998]), which ask for paths defined by a given regular
language, hence allowing for a controlled form of recursion
over binary predicates. Many extensions of RPQs have been
considered, including conjunctive regular path queries (CR-
PQs) which generalize both RPQs and CQs. In particular,
SPARQL 1.1, the new W3C standard for querying RDF data,

extends its core queries, which roughly correspond to CQs, to
CRPQs.

In recent years, such queries have been investigated for
a variety of description logics, ranging from highly expres-
sive DLs of the Z family [Calvanese et al., 2007; 2009;
2014], to Horn DLs like Horn-SROIQ [Ortiz et al., 2011]
and lightweight DLs of the DL-Lite and EL families [Ste-
fanoni et al., 2014; Bienvenu et al., 2015].

When the data are not only graphs, as in RDF and DL fact
bases, but more generally hypergraphs, or, in logical terms,
sets of facts with any predicate arity, navigational queries
are still very relevant as binary relations remain central in
data and ontological modeling. While the complexity land-
scape for answering navigational queries in the presence of
DL ontologies is now quite clear, the combination of navi-
gational queries and existential rules has only just recently
begun to be explored. In [Bienvenu and Thomazo, 2016], the
authors studied the complexity of RPQ answering over lin-
ear existential rules, a natural generalization of DL-LiteR. It
was shown that the problem complexity remains the same as
for DL-LiteR in terms of data complexity (NL-complete) and
combined complexity with bounded predicate arity (PTIME-
complete). However, in the unbounded arity case, the com-
bined complexity rises to EXPTIME-complete. Interestingly,
in DL-LiteR, RPQ answering is easier than CQ answering for
combined complexity (P- vs. NP-complete [Bienvenu et al.,
2015]), while the opposite holds for linear rules without ar-
ity restriction (CQ answering being PSPACE-complete [Calì
et al., 2009a]).

In this paper, we make a step towards a better understand-
ing of the complexity of answering CRPQs over existential
rule bases, focusing on a central class of existential rules,
namely guarded rules, of which linear rules are a special case
[Calì et al., 2008; 2009b]. Note that the problem is already
known to be decidable (from [Rudolph and Krötzsch, 2013]).

Summary of the contributions. We obtain tight complex-
ity results for both combined and data complexities over
guarded rules and their linear subclass. Namely, CRPQ an-
swering in the linear case is EXPTIME-complete in com-
bined complexity, PSPACE-complete in combined complex-
ity with bounded arity and NL-complete in data complexity
(Thm 1); hence, it is not more difficult than RPQ answering,
except for combined complexity with bounded arity (in which



case the complexity is again the same as for DL-LiteR). In
the guarded case, CRPQ answering is 2EXPTIME-complete
in combined complexity, EXPTIME-complete in combined
complexity with bounded arity, and PTIME-complete in data
complexity (Thm 2); hence, it is not more difficult than plain
CQ answering.

To achieve these results, we first investigate the case of
linear rules and provide a CRPQ answering algorithm that
uses RPQ answering as an oracle and runs within the men-
tioned complexity classes. The matching lower bounds come
from earlier results on RPQ and CQ answering. We next pro-
vide a non-trivial reduction of the guarded case to the linear
case. This translation involves a double exponential blow-up
of the rule base (while the instance only grows exponentially
in the predicate arity). However, a careful analysis of the al-
gorithm provided for linear rules shows that it actually runs in
2EXPTIME with respect to the input guarded knowledge base
(and in EXPTIME in the case of bounded-arity rules).

2 Preliminaries
We consider a vocabulary composed of a finite set of pred-
icates and an infinite set of constants. A (standard) atom α
has the form r(t) where r is a predicate of arity n and t is a
tuple of terms (i.e., variables or constants) with |t| = n. For
1 ≤ i ≤ |t|, we denote by α[i] the term at position i in α.
We denote by terms(α) the set of terms in α and extend the
notation to a set of atoms.

A ground atom contains only constants. An instance is a
finite set of facts, which are grounds atoms. A conjunctive
query (CQ) has the form q(x) = ∃y.B where x and y are
disjoint tuples of variables, and B is a conjunction of atoms
such that terms(B) = x ∪ y. A tuple of constants a = π(x),
where π denotes a substitution, is a certain answer to q(x)
over I if I |= q(a), where q(a) = ∃y.π(B) and |= denotes
classical logical entailment. A CQ is Boolean if x = ∅.

We often identify (the existential closure of) a conjunction
of atoms with the set of these atoms. Given two sets of atoms
A and B, a homomorphism from B to A is a substitution π of
the variables in B by the terms in A such that π(B) ⊆ A. It
holds that A |= B iff there is a homomorphism from B to A.
Given a (possibly infinite) set of atoms A and a set of terms
T , A|T denotes the subset of A containing the atoms whose
arguments are a subset of T .

Existential Rules An existential rule (or simply rule) is of
the form ∀x∀y.[B(x,y) → ∃z.H(y, z)] where B and H
are non-empty conjunctions of atoms on variables, respec-
tively called the body and the head of the rule, and x,y and
z are pairwise disjoint. The variables of z are called existen-
tial variables. For brevity, quantifiers are often omitted, and
we write B → H . We will make the classical assumption
that the head of a rule is restricted to a single atom. A set of
atoms G is guarded if it contains an atom α (called a guard)
such that terms(α) = terms(G). Since G may have several
guards, we use the notation (G,α) to specify that α is the
considered guard. A rule is guarded if its body is guarded. A
rule is linear if its body contains a single atom. A knowledge
base (KB) is of the form K = (I,R), where I is an instance

and R a set of existential rules. Let K = (I,R) be a KB
and q(x) be a CQ. A certain answer to q over K is a tuple of
constants a such that I,R |= q(a).

A rule R = B → α is applicable to a set of atoms A if
there is a homomorphism π fromB toA. The result of the ap-
plication of R on A according to π is the atom πs(α), where
πs extends π by assigning a distinct fresh variable (called a
null) to each existential variable. The application is said to
generate the set of atoms A ∪ πs(α), which is uniquely de-
fined up to the choice of nulls.

The chase is the fundamental tool on existential rules.
Starting from the instance, it performs rule applications in a
breadth-first manner. Several variants of the chase are known.
We consider here the simplest variant, known as the oblivious
chase, which at each breadth-first step performs all new rule
applications, and proceeds until no rule is applicable accord-
ing to a new homomorphism. All the chase variants compute
a so-called universal model of the KB, i.e., a possibly infinite
set of facts seen as a classical logical interpretation, which is
a model of the KB that maps by homomorphism to any other
model of the KB. The result of the chase is also called chase.
It follows that for any K = (I,R) and CQ q, (I,R) |= q iff
the chase of K is a model of q iff there is a homomorphism
from q to the chase of K.

(Conjunctive) Regular Path Queries A regular language
can be represented either by a regular expression or by a non-
deterministic finite automaton (NFA). Let Σ be a finite set of
symbols. A regular expression E over Σ is defined by the
grammar: E → ε | a | E · E | E + E | E∗, where a ∈ Σ
and ε denotes the empty word. An NFA over Σ is a tuple
A = (S,Σ, δ, s0, F ), where S is a finite set of states, δ ⊆
S ×Σ× S is the transition relation, s0 ∈ S is the initial state
and F ⊆ S is the set of final states.

We denote by P2 the binary predicates in our vocabulary
and set P±2 = P2 ∪ {r− | r ∈ P2}. A path atom takes the
form Λ(t, t′), where Λ is a regular language over P±2 and t, t′
are terms. Note that standard atoms with binary predicates
are a special case of path atoms. We assume w.l.o.g. that au-
tomata associated with distinct path atoms have disjoint sets
of states.

A conjunctive two-way regular path query (CRPQ1) has
the form q(x) = ∃y.B and is defined as a CQ except that B
is a conjunction of standard and path atoms.

We extend the usual definition of an interpretation I =
(∆, .I) being a model of a conjunction of atoms by saying
that, for a regular language Λ, (d, d′) ∈ ΛI if there are
r1 . . . rn ∈ Λ and (d = d0, . . . , dn = d′) ∈ ∆n+1 such
that ∀1 ≤ i ≤ n, if ri ∈ P2 then (di−1, di) ∈ rIi , otherwise
ri = s−i and (di, di−1) ∈ sIi . We call p = d0r1d1 · · · rndn a
path in I. A match for a Boolean CRPQ q in an interpretation
I = (∆, .I) is a mapping π from the terms in q to elements of
∆ such that (i) π(a) = aI for each constant a; (ii) π(t) ∈ rI
for each standard atom r(t) in q; and (ii) (π(t), π(t′)) ∈ ΛI

for each path atom Λ(t, t′) in q. Note that the restriction of π
to the standard atoms of q is a homomorphism. Then I is a

1As we only consider the two-way variant, we will use the ab-
breviation (C)RPQ instead of the more traditional (C)2RPQ.



model of q if and only if there is a match for q in I. Certain
answers are defined in the same way as for CQs. Since the
chase of K = (I,R) is a universal model, and CRPQs are
closed by homomorphism, I,R |= q if and only if there is a
match π of q in the chase of K. A path of terms in the chase
is the natural translation of a path in an interpretation.

The CRPQ Answering problem asks, given a KB K =
(I,R), a CRPQ q(x) and a tuple of constants a whether a
is an answer to q w.r.t. K. The CRPQ Entailment problem
asks, given a KB K = (I,R) and a Boolean CRPQ q, if
I,R |= q. Both problems are classically polynomially re-
ducible one to another. To simplify the presentation, we will
study the CRPQ Entailment problem.

3 Chase Graph of Linear Rules
With the chase is naturally associated a derivation graph, in
which nodes are labelled by atoms and edges represent rule
applications, i.e., there is an edge (ν, ν′) if the application
of a rule to the atom that labels ν has produced the atom
that labels ν′. In the case of linear rules, this graph is a
forest. Several derivation graphs can be associated with the
same chase, since the same atom may be produced in differ-
ent ways. However, in our proofs we need to be independent
from a particular graph and to have an edge (ν, ν′) if and only
if a rule application to the atom that labels ν can produce
the atom that labels ν′. Hence, we will consider a particu-
lar graph that encodes all derivations associated with a given
chase. This graph is still a forest.
Definition 1 Let I be an instance and R be a set of linear
rules. The chase graph associated with (I,R), denoted by
CG(I,R) (and simply CG if the context is clear), is a possibly
infinite node-labeled directed forest built as follows (we use `
for the labeling function):
• the roots are in bijection with I via `;
• for every node ν and rule R ∈ R applicable to `(ν),

there is exactly one edge from ν to a node ν′ labeled by
the atom resulting from this rule application.

Note that an atom can label two distinct nodes, effectively
encoding two different ways of generating that same atom.
Given (I,R), the chase graph is uniquely defined, up to the
choice of nulls. We formally define the chase as the set of all
atoms that label CG(I,R). We denote it by chase(I,R).

We can now express a fundamental property of linear rules:
each atom from the instance can be ‘chased’ independently.
Property 1 Let R be a set of linear rules and I be an in-
stance. Then chase(I,R) = ∪α∈Ichase({α},R).

For ν and ν′ in the same tree of CG, glb(ν, ν′) denotes their
greatest lower bound (i.e., their deepest common ancestor).

An essential property of the chase graph is that, for any
null z, the nodes labeled by the atoms that contain z form a
connected component. This is also true for the initial terms
inside each tree. In the next proposition, to distinguish be-
tween undirected paths in CG and the previously introduced
paths (on terms in the chase), we call the former atom-paths.
Proposition 1 (Connectivity property) Let ν1 and ν2 be
two nodes of CG(I,R) and t ∈ terms(`(ν1)) ∩ terms(`(ν2)).
Then:

b(a1, a2, a3, a4) t(a1)

h(a2, a3, a4, z1)

b(a3, a4, z1, z2)

r(a2, a1)r(a4, a1)

s(a3, a2)n(a4, z1)

r(a4, a3)r(z2, a3)

n(z1, z2)

Figure 1: Part of CG(Ie,Re)

• either t is contained in I and there are atom-paths P1

from ν1 to a root ν′1 and P2 from ν2 to a root ν′2 such
that for every node ν ∈ P1 ∪ P2, `(ν) contains t;

• or there is an atom-path P from ν1 to ν2, and it is such
that for every node ν ∈ P , `(ν) contains t.

The next proposition specifies the relationships between a
path in the chase and an atom-path in the chase graph. It
strongly relies on the connectivity property.

Proposition 2 Let ν1 and ν2 be two nodes in CG under a
common root. Let p = t1 . . . tp be a path in the chase such
that t1 occurs in `(ν1) and tp occurs in `(ν2). Then for any
node ν on the atom-path from ν1 to ν2 in CG, `(ν) contains a
term ti from p.

Example 1 LetRe contain the following rules:

b(x, y, z, t)→ h(y, z, t, u) h(x, y, z, t)→ b(y, z, t, u)

b(x, y, z, t)→ r(y, x) h(x, y, z, t)→ s(y, x)

b(x, y, z, t)→ n(z, t) h(x, y, z, t)→ n(z, t)

b(x, y, z, t)→ r(t, x)

Part of CG(Ie = {b(a1, a2, a3, a4), t(a1)},Re) is repre-
sented in Fig. 1. For clarity, we represent directly the
atoms that label nodes (here, the labeling is injective). The
terms ai are constants while the terms zi are nulls. Let
us consider the following path of terms in the chase: p =
a4 n z1 n z2 r a3 s a2 r a1. We can see that the structure
associated with p has no direct connection with the structure
of the chase graph. However, Prop. 2 allows us to make a
connection: if we take any pair of nodes ν1 and ν2 labeled
by atoms that respectively contain a4 and a1, we can see that
along the atom-path between ν1 and ν2 all the nodes contain
at least a term from p. Now, consider the following Boolean
CRPQ q (existential quantifiers omitted):

b(x1, x2, x3, x4) ∧ (n∗(rsr)∗)(x4, x5) ∧ t(x5)

There is a match of q to the partial chase: x1 7→ a1, x2 7→ a2,
x3 7→ a3, x4 7→ a4, x5 7→ a1. Note that (n∗(rsr)∗)(x4, x5)
is mapped to the path p. The atoms of the chase graph in-
volved in this match are underlined.

4 CRPQ Entailment over Linear Rules
In this section, we describe a method for CRPQ entailment
in the presence of linear rules, which allows us to pinpoint



the worst-case complexity of this problem. Throughout this
section, we let I be an instance, R a set of linear rules, and q
be the Boolean CRPQ we wish to answer.

As it will be important to keep track of the paths in the
chase that link the terms of a pair of atoms, we define the set
of transitions between two atoms.
Definition 2 Let α1 and α2 be two atoms of chase(I,R)
of arities k1 and k2 respectively. The transitions from α1

to α2, denoted by Tq,I,R(α1, α2), is the set of quadruples
(i1, s1, i2, s2) such that 1 ≤ i1 ≤ k1, 1 ≤ i2 ≤ k2, and
there exists an automaton A in q and a path p in chase(I,R)
going from α1[i1] to α2[i2] such that λ(p) takes A from s1
to s2. More generally, by transition, we will mean a quadru-
ple (i1, s1, i2, s2) where s1, s2 are states appearing in q, and
i1, i2 do not exceed the maximum predicate arity in I ∪R.

We now introduce the key technical notion underlying our
approach, namely, proof schemes. Formally, a proof scheme
is a directed forest whose nodes are atoms, together with
transitions for different pairs of atoms occurring in the proof
scheme. Intuitively, proof schemes correspond to a subset of
chase atoms, with the transitions placing requirements on the
paths linking these atoms.
Definition 3 A proof scheme is a pair P = (F , T ) such that:
• F = (V,E) is a directed forest;
• V is a set of atoms;
• for each null n, the set of nodes in which n occurs form

a connected subgraph of F;
• T is a set of pairs (τ, (α1, α2)), where τ is a transition,
α1 and α2 belong to V ;
• for each (τ, (α1, α2)) ∈ T , either α1 = α2, (α1, α2) ∈
E, (α2, α1) ∈ E, or both α1 and α2 are roots.

The terms of a proof scheme, denoted by terms(P), is the
union of all the terms of atoms in V .

We next define valid proof schemes. The validity con-
ditions enforce that the proof scheme behaves as intended:
its atoms can be mapped into the chase graph in a way that
respects the forest structure, and the transitions in the proof
scheme are indeed realized in the chase. Note that valid proof
schemes are not far, in essence, from the proof generators
used in [Gottlob et al., 2015] for deciding CQ entailment in
linear rule KBs; however, the presence of transitions and their
interactions with linear rules make the validity check much
more complex. The idea is to consider the following brute-
force algorithm for CRPQ answering: enumerate all proof
schemes, check whether the considered proof scheme is valid
w.r.t I,R and q and whether there is a ‘match’ of q in the
proof scheme. To obtain our complexity results, we will up-
per bound the size of the proof schemes that need to be con-
sidered and the complexity of the validity check.

To formalize the notion of a valid proof scheme, we need
the classical notion of the type of an atom, as well as the no-
tion of isomorphic atoms with respect to a bijection, which
allows us to identify atoms that ‘act the same’.
Definition 4 The type of an atom r(t1 . . . tk) is the pair
(r,P) where P is the partition of {1, . . . , k} induced by term
equality (i.e., i and j are in the same class of P iff ti = tj).

Definition 5 Two atoms α1 and α2 are isomorphic with re-
spect to a bijection b from a set of terms T1 to a set of terms T2
if they have the same type (r,P) and, for any class C of P , if
α1[C] ∈ T1 then α2[C] = b(α1[C]), otherwise α2[C] 6∈ T2,
and α1[C] and α2[C] are both nulls.

Definition 6 A proof scheme P = (F , T ) with F = (V,E)
is valid w.r.t. (I,R, q) if there is an injective mapping w from
terms(P) to terms(chase(I,R)) such that:

• for each root atom α ∈ V , w(α) = α and α ∈ I;

• for each atom α ∈ V , w(α) belongs to chase(I,R);

• for each atom α ∈ V , α and w(α) are isomorphic with
respect to the identity function on terms(I);

• for each edge (α1, α2), it holds that:

– α2 andw(α2) are isomorphic with respect to the bi-
jection b from terms(α1) to terms(w(α1)) induced
by their common type;

– CG(I,R) contains nodes ν1, ν2 such that ν1 ≺ ν2,
`(ν1) = w(α1), `(ν2) = w(α2).

• for each (τ, (α1, α2)) ∈ T : τ ∈ Tq,I,R(w(α1), w(α2)).

In a proof scheme, transitions label pairs of atoms (α1, α2)
such that α1 = α2, or both atoms are roots, or one is the par-
ent of the other in a tree. Saturation builds all the transitions
that can be obtained by composing these transitions:

Definition 7 Let P=(F , T ) be a proof scheme. The satu-
ration of T is the smallest set T ′ such that T ⊆ T ′ and
{((i1, s1, i2, s2), (α1, α2)), ((i2, s2, i3, s3), (α2, α3))} ⊆ T ′
implies ((i1, s1, i3, s3), (α1, α3)) ∈ T ′.

After saturating the transitions of P, one may not keep a
proof scheme as new transititions may label any pair of atoms,
however if P is valid, the validity conditions remain satisfied.

We next define the notion of a match of a query in a proof
scheme to formalize what it means for a query to be mapped
into the part of the chase represented by a valid proof scheme.

Definition 8 Let P = (F , T ) be a proof scheme with F =
(V,E). We say that there is a match of q in P if there is a
mapping π from vars(q) to terms(P) such that:

• if α is a standard atom in q, then π(α) ∈ V ;

• if α = Λ(x, y) is a path atom in q with associated NFA
A, then there is a pair ((ix, s, iy, f), (αx, αy)) in the sat-
uration of T such that π(x) = αx[ix], π(y) = αy[iy]
and s (resp. f ) is an initial (resp. final) state of A.

Note that the problem of deciding if there is a match from
given q in given P is NP-complete. The next proposition
shows that CRPQ answering reduces to the existence of a
match in a valid proof scheme.

Proposition 3 I,R |= q if and only if there exists a match of
q in some valid proof scheme.

Proof Sketch: Suppose I,R |= q, and let π′ be a match of q in
chase(I,R). Let V1 be the set of images of the standard atoms
of q, as well as the atoms in which the image of the terms of
q has been created. Let V ′1 contain for each α ∈ V1 a node
να ∈ CG such that `(να) = α. Define V ′2 = V ′1∪{glb(ν, ν′)},



where the union is performed over all (ν, ν′) ∈ V ′1 × V ′1 such
that ν and ν′ have the same root in CG. Let F be the forest
structure induced by CG over V ′2 . We define V as {`(ν) | ν ∈
V ′2}, andE as the pairs (`(ν), `(ν′)) for any edge (ν, ν′) inF .
We then define T as the transitions from α1 to α2 such that
one is the child of the other, or both are roots, or α1 = α2.
One can check that π′ is a match of q in P = ((V,E), T ).
The main argument is as follows: by Prop. 2, the saturation
of P contains all the transitions that hold between an atom and
its descendants. As the glb of any two nodes with the same
root also belongs to F , the saturation of P also contains all
the transitions that hold between any pair of atoms of P. As
the mapping of standard atoms is direct, π′ is a match of q in
P. The converse direction follows from the definitions. �

Importantly, the size of the valid proof scheme built in the
previous proof is polynomial in the size of q, so it is only nec-
essary to consider polynomial-size proof schemes. It remains
to show how to test whether a given proof scheme is valid.
We will make use of the following lemma, which shows how
transitions between an atom in the chase graph and an an-
cestor atom can be computed using the transitions relating its
parent atom to the same ancestor, together with the transitions
that can be obtained by considering the atom in isolation.

Lemma 1 Suppose ν2 is a descendant of ν1 in CG(I,R), ν3
is a child of ν2, and αi = `(νi) for 1 ≤ i ≤ 3. Then:

1. (i1, s1, i3, s3) ∈ Tq,I,R(α1, α3) iff there exist
(i1, s1, i2, s2) ∈ Tq,I,R(α1, α2) and (i′2, s2, i3, s3) ∈
Tq,{α3},R(α3, α3) such that α2[i2] = α3[i′2]

2. (i1, s1, i3, s3) ∈ Tq,I,R(α3, α1) iff there exist
(i1, s1, i

′
2, s2) ∈ Tq,{α3},R(α3, α3) and (i2, s2, i3, s3) ∈

Tq,I,R(α2, α1) such that α2[i2] = α3[i′2]

3. (i1, s1, i4, s4) ∈ Tq,I,R(α3, α3) iff there exist
(i1, s1, i

′
2, s2) ∈ Tq,{α3},R(α3, α3), (i2, s2, i3, s3) ∈

Tq,I,R(α2, α2), and MB: fixed typo: (i′3, s3, i4, s4) ∈
Tq,{α3},R(α3, α3) such that α3[i′2] = α2[i2] and
α3[i′3] = α2[i3]

We now exploit this lemma and existing complexity results
on RPQ answering to design a procedure for checking valid-
ity of a proof scheme, with the following complexity:

Proposition 4 Checking the validity of a proof scheme can
be done in single exponential time, in polynomial space if
predicate arity is bounded, and in NL if q andR are fixed.

Proof Sketch: First observe that if α, α′ are root atoms of P,
we can compute Tq,I,R(α, α′) by calling an RPQ entailment
oracle. We then work from the roots to the leaves, guess-
ing for each edge (α1, α2) in P, a sequence of rule appli-
cations that take α1 to α2, which ensures the satisfaction of
the fourth validity condition. Importantly, we can bound the
length of this sequence by noticing that after exponentially
many rule applications, we will have generated two atoms
β1, β2 that ‘behave the same’ (roughly: they are isomorphic
w.r.t. terms(α1) and have the same transitions w.r.t. α1 and
w.r.t. themselves). To check the fifth validity condition, we
leverage Lemma 1 to inductively construct the set of transi-
tions between α1 and α2, and between α2 and itself. Note
that we can directly compute Tq,{α2},R(α2, α2) using RPQ

entailment. The procedure we have sketched runs in non-
deterministic polynomial space (constant space if q and R
are fixed) with access to an RPQ entailment oracle. It then
suffices to recall that RPQ entailment is in EXPTIME, in P
for bounded-arity rules, and in NL if q andR are fixed. �

Since all polysize proof schemes can be enumerated in
polynomial space, by Prop. 4 we obtain that the brute-force
algorithm runs in EXPTIME in the general case, in PSPACE
if the arity is bounded, and in NL if q and R are fixed (in
which case the number of proof schemes and their size are
constants, and checking the existence of a match is in con-
stant time). Matching lower bounds are inherited from RPQ
answering with linear rules [Bienvenu and Thomazo, 2016],
or CRPQ answering in DL-LiteR [Bienvenu et al., 2015].

Theorem 1 CRPQ entailment under linear rules is
EXPTIME-complete in combined complexity, PSPACE-
complete in combined complexity with bounded-predicate
arity, and NL-complete in data complexity.

5 Extension to Guarded Rules
We reduce CRPQ answering under guarded rules to CRPQ
answering under linear rules. For simplicity, we assume that
all the predicates in I also occur inR (however, the reduction
is easily extended to drop this restriction). We first explain the
ideas that underly the reduction. Prop. 1, which states that,
under linear rules, facts can be chased independently, fails
for guarded rules. However, a kind of independence can be
recovered if instead of single fact we consider the (maximal)
subset of the chase guarded by this fact, as expressed by Prop.
5, which also applies to non-necessarily ground atoms.

Proposition 5 For any set of atoms F , it holds that
chase(F,R) is equivalent to

⋃
α∈F chase(F ∗α,R), where

F ∗α = chase(F,R)|terms(α).

By recursively using Prop. 5, one can devise the following
alternative chase procedure. Let F = I; (i) Compute F ∗
the restriction of chase(F,R) to terms(F ); this can be done
by calling an oracle for each candidate atom on terms(F ) to
decide if it is entailed by chase(F,R); (ii) For each α ∈ F ∗
and G the maximal subset of F ∗ guarded by α (i.e., G =
F ∗α), for each rule ρ ∈ R, let π be the homomorphism from
body(ρ) to G that maps the guard of ρ to α: (ii-1) apply ρ to
G by π and let Gρ,π be the restriction of the generated set to
the subset guarded by πs(head(ρ)); (ii-2) Perform steps (i)
and (ii) with F = Gρ,π; (iii) The chase is the union of all the
F ∗ built at Step (i).

Now, let (I,R) be the original KB, where R is a set of
guarded rules, and (I ′,R′) be the translated KB, whereR′ is
a set of linear rules. Roughly, the reduction allows to simu-
late the alternative chase outlined above, with the translation
being as follows: (i) we build I ′ from (I,R) by replacing
each α ∈ I by an atom that represents chase(I,R)|terms(α)
and, (ii) we buildR′ by replacing each rule ρ ∈ R by a set of
linear rules, each representing an application of ρ to a distinct
guarded subset of chase(I,R). This construction will require
new predicates associated with guarded sets of atoms. We
will show that chase(I,R) and chase(I ′,R′) are homomor-
phically equivalent when restricted to the original predicates,



which implies that chase(I ′,R′) can be used to answer CR-
PQs as these are closed under homomorphism.

To obtain a finite number of guarded sets (hence a finite set
of new predicates, which will ensure the finiteness of the set
of rules R′), we have to rename them in a canonical way. To
that end, we consider a new set of canonical variables X =
{T1, . . . , T2w}, where w is the maximal predicate arity (2w
will be the maximal number of terms in a rule fromR′).
Definition 9 Let α be an atom which may contain both clas-
sical terms and canonical variables. The canonical renaming
Φα,Y of α w.r.t Y ⊆ X is a substitution from terms(α) to X
such that Φα,Y(ti) = ti if ti ∈ X , otherwise Φα,Y(ti) = Tj
where j is the smallest integer such that Tj 6∈ Y , Tj does not
occur in α, and Tj 6= Φα,Y(tk) for all k < i. If Y = ∅, we
simply write Φα.

We denote by G the set of guarded atoms over canonical
variables. Note that G is finite. For any guarded set (G,α), it
holds that (Φα(G), Φα(α)) ∈ G. To each guarded set (G,α)
in chase(I,R) can be assigned a complex predicate, of the
form pΦα(G) with the same arity as α. As G is finite, so is
the set of complex predicates. The canonical atom associated
with a guarded set (G,α) is can(G,α) = pΦα(G)(terms(α)).

Definition 10 The guarded translation of I w.r.t. R is I ′ =
{can(G(α, I,R)) | α ∈ I}, where G(α, I,R) denotes the
guarded set (chase(I,R)|terms(α), α).

Example 2 Consider Ex. 1, where Ie = {α1, α2}, with α1 =
b(a1, a2, a3, a4) and α2 = t(a1). In the following, we under-
line the guard in a guarded set. G(α2, Ie,Re) = {t(a1)},
hence can(G(α2, Ie,Re)) = p{t(T1)}(a1). G(α1, Ie,Re) =

{b(a1, a2, a3, a4), r(a4, a1), r(a2, a1), s(a3, a2), n(a3, a4),
r(a4, a3)}, hence can(G(α1, Ie,Re)) = pG′(a1, a2, a3, a4),
where G′ is obtained by a canonical renaming of
G(α1, Ie,Re) (here, each ai is simply replaced by Ti).

The set R′ is composed of two kinds of linear rules: rules
that rebuild atoms on the original vocabulary (reconstruction
rules) and rules that simulate the chase (complex rules).
Definition 11 Let (G,α) ∈ G. The set of reconstruction
rules associated with (G,α) contains for each β ∈ G the
(range-restricted) rule of the form can(G,α)→ β.

Definition 12 Let (G,α) ∈ G and ρ ∈ R be applicable to G
by π. Let α′ = πs(head(ρ)) and Φα′,terms(α) be the canonical
renaming of α′ w.r.t. terms(α). The complex rule associated
with G, ρ and π is: can(G,α)→ can(G′, Φα′,terms(α)(α

′))
where G′ = Φα′,terms(α)(chase(G ∪ {α′},R)|terms(α′)).
Example 3 Consider Re from Ex. 1 and G =
{b(T1, T2, T3, T4), p(T1)} a guarded set in G. The rule
b(x, y, z, t) → h(y, z, t, u) is applicable to G through π =
{x 7→ T1, y 7→ T2, z 7→ T3, t 7→ T4}. Hence, we build the
complex rule p{b(T1,T2,T3,T4),p(T1)}(T1, T2, T3, T4) →
pG′(T2, T3, T4, T5), where G′ = {h(T2, T3, T4, T5),
n(T3, T4),n(T4, T5), s(T3, T2),r(T4, T3), s(T5, T4)}.

We finally obtain R′ = Rr ∪ Rc, where Rr (resp Rc) is
the set of all reconstruction (resp. complex) rules. To prove
the correctness of the reduction, we rely on the notion of the
expansion of an atom.

Definition 13 The expansion of a complex atom α is defined
as expansion(α) = chase(α,Rr)\α. The expansion of a set
of complex atoms is the union of the expansions of its atoms.

Observe that the expansion of chase(I ′,R′) is equal to its
restriction to atoms with predicates in the original vocabulary.

We thus focus on the correspondence betweenRc andR.

Lemma 2 Let (G,α = r(t)) be a guarded set of atoms. The
following two statements hold:

• let ρ ∈ R be applicable to G by π, and let F = G ∪
πs(head(ρ)). There exists a complex rule ρ′ applicable
to pΦα(G)(t) by π′ such that:
expansion(pΦα(G)(t) ∪ π′s(head(ρ′))) |= F .

• let ρ′ ∈ Rc be applicable to G′ = pΦα(G)(t) by π′,
and let F ′ = G′ ∪ π′s(head(ρ′)). There exists ρ ∈ R
applicable to G, generating F , such that:
chase(G,R)|terms(F ) |= expansion(F ′).

Lemma 2 allows us to show that
expansion(chase(I ′,Rc)) ≡ chase(I,R).

Proposition 6 Given (I,R), I ′ andR′ as defined above can
be computed in 2EXPTIME in combined complexity, EXP-
TIME when the arity is bounded, and in PTIME in data com-
plexity. The number of types whose predicate appears in R′
is at most a double exponential in I andR (exponential when
the arity is bounded, and constant w.r.t. the data).

The next theorem follows from the provided reduction and
our results for linear rules. Let us remark that the reduction to
linear rules not being polynomial, we do not directly obtain
the desired upper bounds. However, by carefully analyzing
the algorithm for linear rules, we can show that it actually
runs polynomially in the number of types.

Theorem 2 CRPQ entailment under guarded rules is
2EXPTIME-complete in combined complexity, EXPTIME-
complete in combined complexity with bounded-predicate ar-
ity, and PTIME-complete in data complexity.

6 Conclusion
We have made an important step in understanding the com-
plexity of answering navigational queries over existential
rules, by determining the precise complexity of answering
CRPQs under linear and guarded rules, two central subclasses
of existential rules. Our results are quite positive, as we
showed that answering CRPQs under guarded rules is not
harder than answering the more well-known CQs, under both
combined complexity (with or without arity restrictions) and
data complexity. For linear rules, we proved that moving
from RPQs to CRPQs does not incur any additional compu-
tational cost, and for bounded-arity rules, we have the same
complexity as for DL-LiteR. We believe that the simulation
of guarded rules by linear rules is of independent interest.

Acknowledgements
We thank Swan Rocher for fruitful discussions. This work
was supported by the French ANR project PAGODA (ANR-
12-JS02-0007).



References
[Bienvenu and Ortiz, 2015] Meghyn Bienvenu and Mag-

dalena Ortiz. Ontology-mediated query answering with
data-tractable description logics. In Reasoning Web, pages
218–307, 2015.

[Bienvenu and Thomazo, 2016] Meghyn Bienvenu and
Michaël Thomazo. On the complexity of evaluating
regular path queries over linear existential rules. In
Web Reasoning and Rule Systems - 10th International
Conference, RR 2016, Aberdeen, UK, September 9-11,
2016, Proceedings, pages 1–17, 2016.

[Bienvenu et al., 2015] Meghyn Bienvenu, Magdalena Ortiz,
and Mantas Simkus. Regular path queries in lightweight
description logics: Complexity and algorithms. J. Artif.
Intell. Res. (JAIR), 53:315–374, 2015.

[Calì et al., 2008] Andrea Calì, Georg Gottlob, and Michael
Kifer. Taming the infinite chase: Query answering under
expressive relational constraints. In Proc. of KR, pages
70–80, 2008.

[Calì et al., 2009a] Andrea Calì, Georg Gottlob, and Thomas
Lukasiewicz. Datalog extensions for tractable query an-
swering over ontologies. In Semantic Web Information
Management - A Model-Based Perspective, pages 249–
279. 2009.

[Calì et al., 2009b] Andrea Calì, Georg Gottlob, and Thomas
Lukasiewicz. A general datalog-based framework for
tractable query answering over ontologies. In Proc. of
PODS, pages 77–86, 2009.

[Calvanese et al., 2007] Diego Calvanese, Thomas Eiter, and
Magdalena Ortiz. Answering regular path queries in ex-
pressive description logics: An automata-theoretic ap-
proach. In Proc. of AAAI, pages 391–396, 2007.

[Calvanese et al., 2009] Diego Calvanese, Thomas Eiter, and
Magdalena Ortiz. Regular path queries in expressive de-
scription logics with nominals. In Proc. of IJCAI, pages
714–720, 2009.

[Calvanese et al., 2014] Diego Calvanese, Thomas Eiter, and
Magdalena Ortiz. Answering regular path queries in ex-
pressive description logics via alternating tree-automata.
Inf. Comput., 237:12–55, 2014.

[Florescu et al., 1998] Daniela Florescu, Alon Levy, and
Dan Suciu. Query containment for conjunctive queries
with regular expressions. In Proc. of PODS, 1998.

[Gottlob et al., 2015] Georg Gottlob, Marco Manna, and An-
dreas Pieris. Polynomial rewritings for linear existential
rules. In Q. Yang and M. Wooldridge, editors, Proceed-
ings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, Buenos Aires, Ar-
gentina, July 25-31, 2015, pages 2992–2998. AAAI Press,
2015.

[Kontchakov et al., 2013] Roman Kontchakov, Mariano
Rodriguez-Muro, and Michael Zakharyaschev. Ontology-
based data access with databases: A short course. In
Reasoning Web, pages 194–229, 2013.

[Mugnier and Thomazo, 2014] Marie-Laure Mugnier and
Michaël Thomazo. An introduction to ontology-based
query answering with existential rules. In Reasoning Web,
pages 245–278, 2014.

[Ortiz and Simkus, 2012] Magdalena Ortiz and Mantas
Simkus. Reasoning and query answering in description
logics. In Reasoning Web, pages 1–53, 2012.

[Ortiz et al., 2011] Magdalena Ortiz, Sebastian Rudolph,
and Mantas Šimkus. Query answering in the Horn frag-
ments of the description logics SHOIQ and SROIQ. In
Proc. of IJCAI, 2011.

[Rudolph and Krötzsch, 2013] Sebastian Rudolph and
Markus Krötzsch. Flag & check: data access with monad-
ically defined queries. In Proceedings of the 32nd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2013, New York, NY, USA -
June 22 - 27, 2013, pages 151–162, 2013.

[Stefanoni et al., 2014] Giorgio Stefanoni, Boris Motik,
Markus Krötzsch, and Sebastian Rudolph. The complex-
ity of answering conjunctive and navigational queries over
OWL 2 EL knowledge bases. J. of Art. Intell. Res. (JAIR),
51:645–705, 2014.


