
HAL Id: lirmm-01651247
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01651247

Submitted on 31 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance and Energy Assessment of Last-Level
Cache Replacement Policies

Pierre-Yves Péneau, David Novo, Florent Bruguier, Gilles Sassatelli,
Abdoulaye Gamatié

To cite this version:
Pierre-Yves Péneau, David Novo, Florent Bruguier, Gilles Sassatelli, Abdoulaye Gamatié. Performance
and Energy Assessment of Last-Level Cache Replacement Policies. EDiS: Embedded and Distributed
Systems, Dec 2017, Oran, Algeria. 1st international conference on Embedded

Distributed Systems, 2017, <https://sites.google.com/view/edis2017>. <lirmm-01651247>

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01651247
https://hal.archives-ouvertes.fr


Performance and Energy Assessment of Last-Level
Cache Replacement Policies

Pierre-Yves Péneau, David Novo, Florent Bruguier, Gilles Sassatelli and Abdoulaye Gamatié
LIRMM (CNRS & Université de Montpellier), Montpellier, France

first.last@lirmm.fr

Abstract—The Last-Level Cache (LLC) is a critical compo-
nent of the memory hierarchy which has a direct impact on
performance. Whenever a data requested by a processor core
is not found in the cache a transaction to the main memory is
initiated, which results in both performance and energy penalties.
Decreasing LLC miss rate therefore lowers external memory
transactions which is beneficial both power and performance-
wise. The cache replacement policy has a direct impact on the
miss rate. It is responsible of data eviction of cache lines whenever
the cache runs full. Thus, a good policy should evict data that will
be re-used in a distant-future, and favour data that are likely to be
accessed in the near-future. The most common cache replacement
policy is the Least-Recently Used (LRU) strategy. It has been used
for years and is cheaper in terms of hardware implementation.
However, researchers have shown that LRU is not the most
efficient policy from a performance point of view, and is further
largely sub-optimal compared to the best theoretical strategy. In
this paper, we analyze a number of cache replacement policies
that have been proposed over the last decade and carry out
evaluations reporting performance and energy.

I. INTRODUCTION

Computing systems are composed of several processing
cores on the same chip and their performance is growing
every year. In particular, this is a critical requirement in the
High Performance Computing domain (HPC), where best-
effort computation is highly desired. On the other hand, core
computation capacity increases faster than memory capacity,
leading to the well-known memory wall problem. It is widely
accepted that the issue in such systems is no longer the
computation but the memory access.

Therefore, an efficient memory system is key to providing
compute systems with high performance capabilities. A key
component of the memory hierarchy is the Last-Level Cache,
or LLC. It is the last on-chip memory buffer where data can
be stored before data exchanges reaches the off-chip levels,
particularly the main memory. Data accesses that occur beyond
the LLC are usually time and energy-consuming. Thus, an
efficient LLC should decrease main memory access count.
Such efficiency is directly related to the cache replacement
policy of the LLC. This policy is responsible for deciding
which cache line / data is to be evicted for other useful data
to be cached. Thus, it is critical to suitably select which data
must be discarded and which data should stay in a given cache
level so as to maximize the amount of useful data in the cache.

In this paper, we review four popular cache replacement
policies that have been proposed during the last decade in the
literature. In order to support our analysis, we compare their

performance against the classical Least-Recently Used (LRU)
and the Random cache replacement policies. Furthermore, we
evaluate the impact of each policy on the energy consumption
of the LLC. To the best of our knowledge, no existing work
provides a comprehensive comparison of these policies includ-
ing energy consumption. In order to carry out our study, we
use the ChampSim [1] simulator and the SPEC CPU2006 [2]
benchmark suite. The energy model for the LLC is obtained
by using the popular CACTI tool [3].

The remainder of this paper is organized as follows: Sec-
tion II presents the metrics used to assess the cache replace-
ment policies; Section III reviews the considered policies; Sec-
tion IV details the experimental setup used for their evaluation,
then discusses the obtained results; and finally, Section V gives
some concluding remarks.

II. BACKGROUND

A. Common metrics for replacement policy assessment

We review some commonly-used metrics for assessing the
efficiency of CPUs and memory hierarchy. In the present
paper, upper (or higher) cache levels correspond to those
which are closer to the CPU. Thus, the L1 cache is the upper
level and the main memory is a lower level in the memory
hierarchy. A classical LLC cache organization supporting LRU
is depicted by Figure 1, where the data structures used together
with the LLC are illustrated. By default, the LRU cache
replacement policy covers the components that are outside
of the dashed box. The remaining components are used in
the cache replacement policies presented later in this paper. In
order to understand how the different policies affect the system
performance, we introduce a few useful evaluation metrics.

One prominent issue in current compute systems lies is
memory response time that cores must accommodate. This
time has to be reduced as much as possible for performance
reasons. A non negligible part of this time is due to misses in
the LLC which often result in stalling of program execution
until data is retrieved from the main memory. Thus, an efficient
LLC helps reducing these expensive off-chip accesses such
that execution can be resumed as early as possible.

A commonly used metric to assess the cache efficiency is
the Miss Per Kilo Instructions metric, or MPKI, defined by
formula (1). When assessing a replacement policy, the number
of executed instructions remains the same, but the number of
misses varies. As mentioned previously, a good policy should



Fig. 1: Data structures for the LLC. Default configuration for LRU is
outside the dashed box. SRRIP only uses RRPV; DRRIP uses RRPV,
Set-Dueling and Global Counter; SHiP uses Sampler, Predictor
and SRRIP structures; Hawkeye uses OPTgen in addition to SHiP
structures.

reduce the number of cache misses. Thus, the MPKI should
be decreased accordingly.

MPKI =
Total Miss

Total instructions/1000
(1)

Another common metric used to evaluate replacement policies
is the Instruction Per Cycle (IPC), which describes the effi-
ciency of the CPU. As the number of executed instructions
should stay identical while evaluating different replacement
policies, only the number of cycles required by the execution
of the instructions may be different. This number relies on the
memory efficiency since a non-negligible part of the execution
time is wasted waiting for data, even more so when the fetch
extends all the way to the external memory, which is the
critical path. An efficient LLC policy should reduce the MPKI,
which decreases the probability for a request to follow the
critical path, and finally shortens the overall time required for
the computation. If this objective is reached, the IPC increases,
as expressed in the following equation:

IPC =
Total Instructions

TotalCycles
(2)

B. Re-use distance and memory pattern

The replacement policy is responsible of block eviction on
cache lines when they are full. Upon a miss, a block is selected
as the victim and is discarded. Such a decision is based on
heuristics that the LLC builds during the system execution. A
heuristic has to predict accurately when a block will be re-
used in the future, also called the re-use distance. When the
re-use distance is in the near future, the block should stay in
the cache so as to avoid a miss. Otherwise, the block should
have a high priority candidate whenever eviction is required.

Thus, the heuristic of cache replacement policy has to avoid
wrong decisions as much as possible.

Application workloads generally have memory access pat-
terns that have a varying impact on the efficiency of re-
placement policies. These patterns are divided into four cat-
egories [4]: recency-friendly, trashing, streaming and mixed,
respectively denoted by the formulas (3), (4), (5) and (6):

(a1,a2, ...,ak,ak−1,ak−2, ...,a2,a1)
N for any k (3)

(a1,a2, ...,ak)
N for k > cache size (4)

(a1,a2,a3, ...,ak) for k = +∞ (5)

{(a1, ...,ak)
APε(a1,a2, ...,ak,ak+1, ...,am)}N

for k< cache size, m> cache size, 0 < ε < 1,{A,N} ≥ 1
(6)

With a recency-friendly pattern, blocks have a near-immediate
usage. A trashing pattern leads to a cyclic access to K blocks
that repeats N times. A streaming pattern occurs when blocks
have no locality in their usage (also referred to as scan pattern).
Finally, mixed patterns are a combination of the other three.

III. EVALUATED CACHE REPLACEMENT POLICIES

A. Least-Recently Used

The Least-Recently Used (LRU) cache replacement policy
sorts the blocks of a line according to their usage over time.
More precisely, they are ordered from 0 to N− 1, where N
is the cache associativity. Then, when a block B is used, it
becomes the block number 0 and each block position between
1 and the last position of B is incremented by 1. Upon an
eviction, the block N− 1 becomes the victim. This heuristic
predicts a short re-use distance for blocks that are recently
used. Conversely, blocks with high position, i.e., near N, in the
LRU list have a long distance re-use prediction. This policy
works well with recency-friendly access pattern, and also with
trashing pattern when the number K of blocks is less or equal
than the number of blocks in the cache.

B. Static Re-Reference Interval Prediction

Proposed by Jaleel et al. [4], the goal of the Static Re-
Reference Interval Prediction (SRRIP) cache replacement pol-
icy is to predict the usage interval of blocks to avoid filling the
cache with blocks that have a distant re-use interval. For this
purpose, a Re-Reference Prediction Value (RRPV) is assigned
to each block of the cache (see Figure 1). This value is coded
on M bits, and varies between 0 and 2M−1. When RRPV ≤ 1,
the usage interval of the corresponding block is predicted as
immediate. When RRPV = 2M − 1, the usage interval of the
block is predicted as distant. Between these two cases, it
is predicted as intermediate. On a block insertion, a RRPV
value of 2M−2 is assigned to the block. Upon an access, the
SRRIP cache replacement sets RRPV to 0. Then, the block
is predicted to be re-used in a near-immediate future. Upon
an eviction, the SRRIP policy looks for a block such that
RRPV = 2M−1, i.e., a distant usage interval prediction. If no
such a block exists in the line, each RPPV is incremented
by 1 and the process is restarted until one RRPV at least



reaches this requirement. The advantage of inserting with an
intermediate usage interval prediction of 2M−1 is to give more
time to the SRRIP policy to learn the access pattern of a block,
since its RRPV value is not enough for an eviction. The main
disadvantage is that SRRIP can be polluted by blocks that
have only two accesses, since it predicts a near-immediate
usage interval on a hit. Thus, with SRRIP, a block that has
been used only once is more likely to be evicted compared to
a re-used block, even though this happened less recently.

This policy is scan-resistant (i.e., efficient when dealing with
scan cache access pattern), since non temporal accesses do not
pollute the LLC. It is also trash-resistant when the number k
of blocks is less or equal to the cache size.

C. Dynamic Re-Reference Interval Prediction

When the usage interval of blocks is larger than the cache
size, i.e., a trashing access pattern with a number of blocks
k > associativity, the above SRRIP policy becomes inefficient
and causes more misses. To prevent this situation, Jaleel et
al. [4] proposed the Dynamic Re-Reference Interval Prediction
(DRRIP) cache replacement policy, as an extension of SRRIP.

Upon an insertion, the RRPV of a block is more likely to
be set to 2M − 2. However, RRPV can be sometimes set to
the maximum value 2M− 1. Then, for applications that have
a trashing access patterns, each inserted block is evicted after
its use and does not pollute the cache. Blocks that are re-
used are set to 0 and stay in the cache. To accurately detect
the memory access pattern of an application, authors used the
Set-Dueling techniques [5] (see also Figure 1). They dedicated
32 lines of the LLC to the SRRIP policy only and 32 lines to
the DRRIP policy only. A global counter, initialized to zero,
is incremented or decremented by 1 respectively upon a cache
miss on SRRIP or DRRIP dedicated cache lines. When the
value of the counter is higher than 0, it means that the SRRIP
policy leads to more cache misses than DDRIP. Conversely,
when the counter is less or equal to 0, the DRRIP policy
is less efficient. The cache uses the above global counter
to dynamically adapt its replacement policy and to choose
between SRRIP and DRRIP. This enables to select the most
efficient replacement policy among the two when dealing with
either scan or trashing pattern. One issue with DRRIP is the
granularity of the prediction. According to the global counter,
the entire cache has to follow the selected policy, i.e., the
prediction is not at block granularity.

D. Signature-based Hit Prediction

One limitation of the SRRIP policy is that predictions made
upon block insertion in the cache are static. The DRRIP policy
addresses this issue by randomly alternating between two
possibilities. This also relies on static choices upon a block
insertion, and the learning phase is done after. The insertion
strategy does not take into account the past activity of the
cache. The Signature-based Hit Predictor (SHiP) policy [6]
tackles this aspect by making predictions according to each
block’s access pattern. Authors added near the LLC a table
of saturating counters, indexed by a hash called signature

(see Figure 1). They evaluated signatures based on memory
addresses, instruction sequences and program counters (PCs).
Results show that the most efficient is the PC-based approach.

From a technical point of view, two fields are added in
the cache meta-data: the signature and the outcome bit, both
initialized to 0. Upon a block insertion, the corresponding
signature is updated. Upon a hit on that block, the outcome
bit is set to 1, meaning that since its insertion, this block has
been re-used at least once. If a cache access results in a hit,
the corresponding entry in the predictor is incremented by 1.
In case of a cache miss, it is left unchanged. The entry is
decremented when a block is evicted from the cache and its
outcome bit is set to zero, i.e., this block has never been re-
used since it was inserted. Hence, the PCs that generate a lot of
misses are identified and can be treated. When inserting a new
block, the predictor is checked. When its signature points at an
entry with the value of 0, the re-use interval is predicted as a
distant interval. Any other value is considered as intermediate.
Thus, the re-use interval prediction is dynamically predicted
according to the PC responsible for the access.

Assigning a signature to each cache blocks is unrealistic for
hardware resource requirement reason. Hence, the proposed
implementation samples 64 lines of the LLC in order to train
the predictor. The predictor is updated only upon a cache
access to one of these 64 lines, while it is consulted on each
access. Thus, a small portion of the cache activity steers the
predictions over the entire cache.

This policy offers two main contributions. Firstly, the pos-
sibility to make predictions on application behavior thanks to
program counters. Secondly, each block has its own signature,
making the prediction more accurate than with SRRIP or
DRRIP policies, which affect all cache blocks. The SHiP
policy has been used to improve the SRRIP mechanism [6].
Instead of always predicting intermediate re-use interval, SHiP
is applied to take decisions. This makes SRRIP more resistant
to trashing pattern thanks to the signature-based prediction.

E. Hawkeye Approach

The Hawkeye policy [7] is based on Belady’s MIN [8]
algorithm. For a given set of cache accesses, MIN classifies
blocks in two categories: hit blocks and miss blocks. This
classification has been proved optimal [9], hence the number
of misses found with MIN cannot be reduced.

Upon a block eviction in a cache, one can know if this is
a good decision only after the victim block is later re-used.
For example, given a cache with a capacity of 2 blocks per
line and only 1 line containing B0 and B1. B1 is the victim
block upon the insertion of a new block B2 and the next
access to the cache is B1. The MIN algorithm would detect
that B1 should not be evicted and would classify B1 as a ”hit
block”. Jain et al. [7] proposed a mechanism called OPTgen
that is able to reconstruct the MIN algorithm on past cache
accesses (see Figure 1). Past accessed blocks are separated
into two groups with the assumption that what happened is
probably what will happen in the future. They verified this
experimentally on the SPEC CPU2006 benchmark suite and



found that MIN’s decisions for a block remains the same 90%
of the time on average during an entire execution. Then, they
used MIN predictions on the past to guide future decisions.

The Hawkeye predictor uses the same sampling idea as
that of Wu et al. [6]. A subset of the LLC is monitored in
order to minimize the implementation hardware cost, while
still having an accurate representation of the cache activity.
The predictor is only trained when these lines are accessed. A
table of saturating counters is used, which is indexed by PCs
that are updated on each OPTgen prediction. When OPTgen
predicts a cache hit, the corresponding entry is incremented
by 1. When OPTgen predicts a cache miss, meaning that
whatever is the victim choice, the next access to this block
will result in a cache miss under optimal replacement policy,
the corresponding entry is decremented by 1. Thus, such a
block can be discarded and replaced by a useful data. Blocks
within the cache are ordered according to their corresponding
RRPV values. A high RRPV value corresponds to a high
cache eviction priority, while the opposite is for low eviction
priority. Blocks that are predicted to miss in the future are set
to RRPV = 2M−1, i.e., the maximum value. Those predicted
to hit in the future are set to RRPV = 0. Upon a block insertion
(i.e., a miss), if the block is predicted to hit in the future, each
RRPV on the line are aged, i.e. incremented by 1. Blocks that
are predicted to hit in the future can never reach the maximum
RRPV value. Thus, those predicted to miss will always have
the higher priority for eviction. If no such blocks exist, the
block with the highest RRPV value is evicted.

This policy is efficient when dealing with scan, trash and
mixed patterns. In fact, thanks to Belady’s MIN algorithm
which is able to accurately predict the future of blocks, each
block behavior is detectable and can be anticipated. Thus, only
useful cache blocks remain in the cache.

F. Summary

More generally, the data structures required by the above
policies are summarized Figure 1. Rectangles with stripes in
the LLC are the monitored lines. They are copied in the sam-
pler, illustrated on the left of the LLC. The sampler contains
meta-data about lines like tag or PCs. Upon an incoming
request, the LLC is accessed and the sampler checks if the
access is done on one of the sampled lines. If so, it is updated.
The sampler is connected to the predictor. When the former
is accessed, the later is updated. The Hawkeye policy requires
an extra step between the sampler and the predictor called
OPTgen. This step reproduces the MIN algorithm presented
in Section III-E. The result is used to train the predictor. The
predictor is used to change the value of the heuristics depicted
by the three columns at the right of the LLC. The LRU updates
the LRU bits only. SRRIP, DRRIP, SHiP and Hawkeye update
the RRPV value. Set-Dueling mechanism is highlighted by the
shaded rectangles. Rectangles in the LLC are the monitored
lines and according to their activity, i.e hit or miss, the global
counter (GC) is modified.

On the other hand, the reviewed cache replacement policies
can be classified into two families: coarse-grained granularity

Receny
resistant

Trash
resitant

Scan
resistant

Mixed
resistant

Set-
Dueling Sampling HW

budget
LRU +++ + + + 16KB

Random + + + + 0KB
SRRIP +++ ++ + + 12KB
DRRIP ++ +++ ++ + x x 13.6KB

SHiP +++ +++ +++ ++ x 35KB
Hawkeye +++ +++ +++ +++ x 31.8KB

TABLE I: Summary of reviewed cache replacement policies. Hard-
ware budget corresponds to a 16-associative 2MB LLC.

versus fine-grained granularity. SHiP, SDBP and Hawkeye are
considered as fine-grained prediction policies due to their us-
age of Program Counters that make prediction for each block.
Conversely, LRU, SRRIP and DRRIP are considered as coarse-
grained policies because they do not use an identification
mechanism such as PC, and make a global prediction for the
overall cache. The hardware implementation cost is however
higher, even though sampling is used to reduce the storage
overhead. Table I summarizes cache replacement policies w.r.t.
their efficiency against the memory access patterns mentioned
in this paper. Two features are also mentioned, i.e., Set-
Dueling and Sampling, which enable to reduce the hardware
overhead and to improve the accuracy in the implementation
of the policies. We also report the hardware budget evaluated
in the specific experimental setup used for our current study
(thus, it may differ from the cost found in the corresponding
literature). As an example, our SHiP implementation uses
sampling on 256 lines while Wu et al. mentioned 64 lines.

IV. EXPERIMENTAL SETUP AND RESULTS

We evaluate the previous cache replacement policies by
considering the ChampSim simulator [1] used during the
Cache Replacement Championship at ISCA’17 conference.
ChampSim models out-of-order (OoO) CPUs, a 3-level cache
hierarchy and a main memory. This architecture is based on
an Intel Core i7 system. More technical details are given in
Table II. We executed 20 traces of the SPEC CPU2006 bench-

L1 (I/D) 32KB, 8-way, LRU, Private, 4 cycles
L1 D prefetcher next line
L2 256KB, 8-way, LRU, Unified, 8 cycles
L2 prefetcher PC based
L3 2MB, 16-way, Shared, 20 cycles
L3 energy/access 0.217 nJ
L3 static power 79.34 mW
CPU number 1
CPU clock Out-of-Order, 4GHz
DRAM size 4GB, hit: 55 cycles, miss: 165 cycles

TABLE II: Experimental setup configuration

mark suite. Traces are obtained by isolating a single region
of interest of 1 billion instructions with SimPoint [10] and
collected with Pin [11]. Cores execute 1 billion instructions,
with a warm-up period of 200 millions instructions. Average
IPC is computed by applying a geometric mean on the IPCs
measured for the 20 considered applications, as in previous
work [7]. As the Random cache replacement policy is not
deterministic (unlike the other policies), it is run 10 times
and the resulting geometric mean and average value for IPC



1.22

1.201.291.31

Random
SRRIP
DRRIP

SHiP
Hawkeye

S
p

e
e
d

u
p

 w
.r

.t
 L

R
U

0.90

0.95

1.00

1.05

1.10

1.15

(a) Prefetching disabled
1.19

Random
SRRIP
DRRIP

SHiP
Hawkeye

S
p

e
e
d

u
p

 w
.r

.t
 L

R
U

0.90

0.95

1.00

1.05

1.10

1.15
G

e
m

sF
D

T
D

a
st

a
r

b
w

a
ve

s

b
zi

p

ca
ct

u
sA

D
M

g
cc

g
o
b

m
k

g
ro

m
a
cs

lb
m

le
sl

ie
3

d

li
b

q
u

a
n

tu
m

m
cf

m
il

c

o
m

n
e
tp

p

p
e
rl

b
e
n

ch

so
p

le
x

sp
h

in
x3 w
rf

xa
la

n
cb

m
k

ze
u

sm
p

G
e
o
m

e
a
n

(b) Prefetching enabled

Fig. 2: IPC speedup w.r.t. LRU for a monocore platform without and with prefetching.

and MPKI are reported. The energy model for the LLC is
based on CACTI [3], a cache latency and power modeling
tool. We use a leakage/area optimization with a temperature of
350K. The considered technology is 32nm. Data array cells are
Low Standby operating Power (LSTP) and Mat interconnect is
aggressive. Dynamic and static energy are computed according
to the following formulas:

Edyn = (Nread +Nwrite)×Eaccess (7)

Estat = ExecTime×Wleak (8)

where Edyn and Estat respectively denote the dynamic and static
energy; Nread and Nwrite are the total numbers of reads and
writes on the LLC respectively; Eaccess is the energy of either
a read or a write on the LLC; ExecTime is the execution time
and Wleak represents the static power.

Two architectures are addressed: a) monocore without
prefetching and b) monocore with prefetching. Given these
two architectures, we evaluate the performance and energy
consumption of the LLC with the following policies: LRU,
Random, SRRIP, DRRIP, SHIP and Hawkeye.

Figure 2a depicts IPC results with a monocore configuration
without prefetching. On average, all policies outperform the
LRU. The most efficient is Hawkeye, with an average speedup
of 1.04. Applications that are memory-intensive such as lbm,
mcf or soplex exhibit a greater speedup than others. The
best performance improvement is achieved on the sphinx3
application. Random, SRRIP, DRRIP, SHiP and Hawkeye
policies respectively perform a speedup of 1.22, 1.06, 1.31,
1.29 and 1.20. In addition, Hawkeye provides consistent results
with no performance loss for any of the benchmarks, unlike
others such as for zeusmp. Performance results on a single-
core configuration with prefetching w.r.t. LRU are shown
in Figure 2b. Similar trends are observed, but the speedup
is lower compared to the configuration without prefetching.
Moreover, the Random policy no longer outperforms LRU.

The average speedup for the four considered policies varies
between 1.01 (for SRRIP) and 1.03 (for Hawkeye).

However, the cache is more efficient when prefetching is
activated. Indeed, Figure 3 shows that the average MPKI is
drastically reduced by 48.2% in this case. This improvement
affects the IPC, which is increased by 16% on average for all
replacement policies. Thus, an important insight here is that
prefetching has a positive effect on both MPKI and IPC. We
also notice that this positive impact on IPC and MPKI is more
visible on LRU compared to the other policies, as shown in
Figure 3. Thus, cache replacement policies can make eviction
decisions that are in conflict with the prefetcher, then benefit
less from the positive effect of the latter.

IPC MPKI Energy

Im
p

ro
ve

m
e
n

t 
o
ve

r 
n

o
 p

re
fe

tc
h

 (
%

)

0

5

10

15

20

25

30

35

40

45

50

55
60

LRU Random SRRIP DRRIP SHiP Hawkeye Average

Fig. 3: IPC, MPKI and energy improvement w.r.t. a configuration
without prefetching.

One reason for this observation lies in the fact the prefetch-
ing system generates extra traffic in the memory hierarchy,
which is hardly tractable for the prediction system that heavily
relies on Program Counters. In such a situation it becomes
challenging to predict block usage. Moreover, except Hawk-
eye, all policies analyzed in this paper do not take into account
prefetched blocks. As a result, the LLC can be polluted
by blocks that are wrongly prefetched, or prefetched blocks
can be inadequately evicted due to lack of information. Yet,
Figure 3 shows that SRRIP, DRRIP and SHiP benefit more



Random
SRRIP
DRRIP
SHiP
Hakweye

E
n

e
rg

y 
re

d
u

ct
io

n
 o

ve
r 

L
R

U
 (

%
)

−10

0

10

20

30

IPC improvement over LRU (%)

−5 0 5 10 15 20 25

(a) Prefetching disabled

Random
SRRIP
DRRIP
SHiP
Hakweye

E
n

e
rg

y 
re

d
u

ct
io

n
 o

ve
r 

L
R

U
 (

%
)

−10

0

10

20

30

IPC improvement over LRU (%)

−5 0 5 10 15 20 25

(b) Prefetching enabled

Fig. 4: IPC and energy improvement of evaluated policies over LRU
for the 20 considered applications.

from the prefetching than Hawkeye in terms of IPC despite
its advanced mechanisms. This suggests that there is room for
improvements about the adequate exploitation of prefetching
with advanced cache replacement policy.

The energy impact of cache replacement policies has been
studied only marginally in the literature. Yet, this is an
important topic that deserves a deeper understanding. These
policies try to reduce the number of cache misses in general.
Thus, the computation can be faster while the static energy
can be reduced. Figure 4a shows the IPC improvement as
a function of the energy improvement, w.r.t. LRU. A linear
trend is observed: when the IPC is improved, the energy
consumption is reduced accordingly. This can be explained by
a faster computation reducing the static energy of the LLC.

Figure 4b shows that a prefetching system has less impact
on the energy consumption, compared to a similar configura-
tion without prefetching. Moreover, the linear trend observed
previously is less pronounced. This is mainly due to two
factors. Firstly, the prefetching is poorly (or not) managed
by the covered replacement policies. As depicted in Figure 3,
despite its advanced features, the Hawkeye policy benefits less
from prefetching than the other policies in terms of energy
reduction. Secondly, prefetching increases the dynamic energy
of the cache since more memory access requests have to be
processed. For example, it increases by 40% the amount of
requests received by the LLC for the mcf application, with

all policies. On the one hand, the average static energy, which
represents 78.4% of the energy consumption, is reduced by
9.4% thanks to a faster execution. On the other hand, the
average dynamic energy is increased by 37.2%. Finally, the
total energy consumption is reduced by only 5.5%.

V. CONCLUSION AND FUTURE DIRECTION

In this paper, we reviewed four popular cache replacement
policies proposed in the literature during the last decade. These
policies are not currently implemented in real systems-on-
chip, as they require extra hardware which comes with an
additional design complexity. We considered their implemen-
tation models within the ChampSim simulator for a cross-
evaluation. We assessed their impact on the performance and
energy consumption of the LLC by measuring their induced
Instructions Per Cycle, and their static and dynamic energy
improvements. The SPEC CPU2006 benchmark suite has been
considered in the experiments. While the obtained results
confirmed the improvement of the evaluated policies over
the commonly used LRU policy, an important gained insight
is that their combination with the prefetching mechanism in
modern architectures is very challenging for reaching im-
proved performance. Moreover, the energy analysis shows
that Hawkeye, the best replacement policy in the literature in
terms of performance, benefits less from prefetching than other
policies regarding energy improvement. Thus, future cache
replacement policies should consider this issue in order to
achieve the best performance/energy trade-off.

ACKNOWLEDGEMENTS

This work has been funded by the French ANR agency
under the grant ANR-15-CE25-0007-01, within the framework
of the CONTINUUM project.

REFERENCES

[1] “The ChampSim simulator,” https://github.com/ChampSim/ChampSim.
[2] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM

SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.
[3] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:

A tool to model large caches,” HP Laboratories, pp. 22–31, 2009.
[4] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High perfor-

mance cache replacement using re-reference interval prediction (RRIP),”
in ACM SIGARCH Comp. Arch. News, vol. 38, no. 3, 2010, pp. 60–71.

[5] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive
insertion policies for high performance caching,” in ACM SIGARCH
Computer Arch. News, vol. 35, no. 2, 2007, pp. 381–391.

[6] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely, and
J. Emer, “SHiP: Signature-based hit predictor for high performance
caching,” in Int’l Symp. on Microarch. (MICRO), 2011, pp. 430–441.

[7] A. Jain and C. Lin, “Back to the future: leveraging Belady’s algorithm
for improved cache replacement,” in Int’l Symp. on Computer Architec-
ture (ISCA), 2016 ACM/IEEE 43rd Annual. IEEE, 2016, pp. 78–89.

[8] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems journal, vol. 5, no. 2, pp. 78–101, 1966.

[9] L. A. Belady and F. P. Palermo, “On-line measurement of paging
behavior by the multivalued min algorithm,” IBM Journal of Research
and Development, vol. 18, no. 1, pp. 2–19, 1974.

[10] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program phase analysis,” Journal of Instruction Level
Parallelism, vol. 7, no. 4, pp. 1–28, 2005.

[11] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in ACM SIG-
PLAN Notices, vol. 40, no. 6. ACM, 2005, pp. 190–200.


