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Abstract

We deal with three competitive location problems based on the classical
Maximal Covering Location Problem. The environment of these problems
consists of an open market with two non-cooperative firms (leader and fol-
lower), several customers and locations where facilities can be located. In
order to capture the demand of the customers, the leader enters the market
by locating a set of facilities knowing the potential locations where the fol-
lower can locate her facilities after the leader’s decision. We consider here
three pairs of objective functions for the leader/follower previously studied in
the literature: maximizing/minimizing the demand captured by the leader,
minimizing/maximizing the regret of the leader, maximizing the demand

Email addresses: josegentile@terra.com.br (Jose Gentile),
artur@producao.uff.br (Artur Alves Pessoa), marcos.producao.uff@gmail.com
(Marcos Costa Roboredo), michael.poss@lirmm.fr (Michael Poss)

Preprint submitted to European Journal of Operational Research January 18, 2017



captured by each firm (also known as Stackelberg). For each model, we pro-
pose an linear integer programming formulation with a polynomial number
of variables and an exponential number of constraints. The formulations are
solved by branch-and-cut algorithms where the constraints are generated on
demand by solving appropriated separation problems. We report extensive
computational experiments realized on instances inspired by those from the
literature, comparing our algorithms with the exact and heuristic algorithms
previously published for these problems.

Keywords: Maximal Covering Location Problem, Competitive Location,
Integer Programming, Stackelberg problem

1. Introduction

Location decision is a crucial issue in the strategic planning of a firm.
A large part of research about location theory does not consider a potential
competitor offering the same service or goods. In many real situations, it
is vital to consider competition in the location decisions which leads to the
competitive location problems (CLP). In these problems, two or more non-
cooperative firms compete to capture customers from a given market. The
demand of each customer is partially or totally served by the facilities located
by the firms according to some given rule. Various types of CLP have been
studied, which are often classified according to the structure of the decision
space (discrete or continuous) and the temporal relations among the decisions
(sequential or simultaneous). Different objective functions can be pursued by
each firm when they decide where to locate its facilities. For example, they
might seek to maximize their own market share, their own profit, their own
number of customers served, among others. A review of competitive location
problems can be found in Eiselt and Laporte (1989); Friesz et al. (1988);
Eiselt et al. (1993); Eiselt and Laporte (1997); Kress and Pesch (2012).

This paper deals with three CLP variants that adds competition to the
classical maximal covering location problem (MCLP) proposed by Church
and Velle (1974). In MCLP, a firm should decide where to locate its facili-
ties. After this decision, the demand of each customer in this market is said
covered if there is a facility located by the firm within a threshold distance
from the customer. In this context, the firm wishes to maximize the total
covered demand.

In order to add competition to the MCLP, we consider two non-cooperative
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firms named leader and follower. The leader enters the market by locating
her facilities knowing that the follower will react by doing the same. Af-
ter the location decisions, each customer demand is covered by the closest
facility that is located within a threshold distance from the customer. We
consider three pair of objective functions for the leader and the follower,
following Plastria and Vanhaverbeke (2008): the leader maximizes her cov-
ered demand and the follower minimize that value (worst case criterion), the
leader minimizes her regret while the follower maximizes that value (regret
criterion), and both the leader and the follower maximize their respective
covered demands (stackelberg criterion). We refer to those three problems
as WC-CMCLP, RE-CMCLP and ST-CMCLP, respectively.

The WC-CMCLP and the RE-CMCLP were proposed by Serra et al.
(1996) where the authors proposed an Integer Linear Programming (ILP)
formulation for each problem considering a small number of possibilities for
the follower’s responses. The ST-CMCLP was proposed by Serra and ReVelle
(1994) where a simple heuristic was proposed for the problem. The three
problems were revisited in Plastria and Vanhaverbeke (2008) where a MILP
formulation was proposed for each problem for the particular case where the
follower is restricted to locating a unique facility. Recently, Seyhan (2012)
proposed a heuristic for the ST-CMCLP for the case where the decision space
of the follower is constrained by linear constraints, refereed to as the general
case hereafter.

Contributions. To the best of our knowledge, no exact algorithm had been
proposed for any of the three problems in the general case, prior to the cur-
rent manuscript. Hence, our main contributions lie in presenting MILP-based
algorithms that can solve these problems for the general case. Specifically,
we propose for each variant a MILP formulation with a polynomial number
of variables and an exponential number of constraints. The constraints are
then generated on demand in the course of branch-and-cut algorithms by
solving MILP separation problems. While the MILP formulations derived
for WC-CMCLP extend rather naturally the previous work from Roboredo
and Pessoa (2013), those presented for RE-CMCLP and ST-CMCLP require
new insights on the problems studied. We provide numerical experiments as-
sessing the efficiency of our algorithms on instances generated similarly to the
procedure described in Plastria and Vanhaverbeke (2008). We also compare
our method with the formulations proposed in Plastria and Vanhaverbeke
(2008) for the particular case where the follower locates a single facility and
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we also compare our algorithm for the general case of ST-CMCLP with the
heuristic proposed in Seyhan (2012).

Structure of the paper. We present in the next section a formal definition of
the three variants considered in the paper, including a numerical toy example.
Section 3 complements the above literature review. Section 4 contains the
main contributions of the paper, namely, the MILP formulations for the three
problems as well as for the separation problems. The algorithmic details are
provided in Section 5 and thorough numerical experiments are presented in
Section 6, and in the supplementary material available online. The paper is
finally concluded in Section 7.

2. The problems

We define next the three problems formally. We consider three sets: the
set of customers, denoted J , the set of leader potential facilities, denoted
L, and the set of follower potential facilities, denoted F . Let xl ∈ {0, 1}|L|
and xf ∈ {0, 1}|F | be binary decision variables indicating which facilities are
located by the leader and the follower, respectively. We restrain the sets of
facilities that can be located by the leader and the follower by X l ⊆ {0, 1}|L|
and X f ⊆ {0, 1}|F |, respectively. Sets X l and X f can, for instance, be
defined by one ore more budget constraints. Specifically, locating facility
i ∈ L ∪ F would incur a cost of κi and the leader and the follower would
dispose of budgets Bl and Bf , respectively. We could also suppose that X l

(resp. X f ) contains incompatibility constraints, forbidding the leader (resp.
the follower) to simultaneously locate pairs of given facilities. For each pair
(i, j) ∈ (L ∪ F ) × J , we denote by dij the distance between facility i and
customer j. Finally, each facility i ∈ L ∪ F has a radius of δi that restrains
the customers that it can attend. Each customer’s demand wj is totally
served by the closest facility i ∈ L∪F that satisfies δi ≥ dij. Ties are broken
in favor of the follower’s facilities, and ties between facilities of the same firm
are broken arbitrarily.

The difference among the problems lie in the objective functions of the
leader and the follower. In the WC-CMCLP, the leader aims to maximize its
market share while the follower aims to minimize the leader market share. In
the RE-CMCLP, the leader aims to minimize its maximum regret while the
follower aims to maximize the leader’s maximum regret. The regret of the
leader is given by the difference between the maximum demand served by

4



the leader, if the follower’s decision were previously known, and the demand
actually served by this firm. Finally, in the ST-CMCLP both the leader and
the follower aim to maximize their own market share.

The three problems can be cast as special cases of the following Bilevel
Integer Programming Problem (BIP). Let us denote the objective functions
of the leader and the follower by gl(xl, xf ) and gf (xl, xf ), respectively.

max gl(xl, xf ) (1)

s.t. xl ∈ X l (2)

xf ∈ arg max gf (xl, xf ) (3)

s.t. xf ∈ X f . (4)

To ease the definition of the functions gl and gf used in each of the
three variants studied in the paper, we introduce sets J l(xl, xf ) ⊆ J and
Jf (xl, xf ) ⊆ J that denote the sets of customers that are served by the
leader and the follower, for the locating (xl, xf ), respectively. We consider
the following specific functions gl and gf :

WC-CMCLP: gl(xl, xf ) =
∑

j∈J l(xl,xf )wj and gf (xl, xf ) = −gl(xl, xf ).

RE-CMCLP: Let x∗(xf ) ⊆ {0, 1}|L| denote the leader best response know-
ing that the follower will locate the facilities indicated by xf . Hence,
the regret of the pair (xl, xf ) is given by

Regret(xl, xf ) =
∑

j∈J l(x∗(xf ),xf )

wj −
∑

j∈J l(xl,xf )

wj, (5)

yielding the objective functions gl(xl, xf ) = −Regret(xl, xf ) and gf (xl, xf ) =
−gl(xl, xf ).

ST-CMCLP: gl(xl, xf ) =
∑

j∈J l(xl,xf )wj and gf (xl, xf ) =
∑

j∈Jf (xl,xf )wj.

Let us make some observations on the structure of the three variants of
CMCLP defined above. First, when each pre-specified distances δi is large
enough to cover all customers, we have that J l ∪ Jf = J so that the WC-
CMCLP and ST-CMCLP are equivalent. In general however, we have that
J l ∪ Jf ⊂ J and these problems are different, see the toy examples below.
Second, for WC-CMCLP and RE-CMCLP, we have gf (xl, xf ) = −gl(xl, xf )
so that both problems can be reformulated as

max
xl∈X l

min
xf∈X f

gl(xl, xf ). (6)
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Table 1: Total demand served by the leader and the follower for each pair of strategies of
the leader and the follower.

Follower
F1 F2 F3

Leader
L1 (5, 4) (4, 5) (5, 6)
L2 (3, 7) (7, 2) (5, 6)

Reformulation (6) better sheds light on the names worst-case and regret
used to refer to these problems. Notice also that while (6) resembles robust
min max optimization, the integrality restriction in X f make the problem
fundamentally different from robust optimization wherein the inner optimiza-
tion problem is defined over real variables. The integrality of the optimization
vector xf also implies that the algorithms described in this paper, based on
constraint generation with MILP separation problems, are not related to
Benders’ decomposition, which relies on LP separation problems. Differently
from Benders’ decomposition, our approaches crucially rely on the fact that
the feasibility set X l (resp. X f ) does not depend on xf (resp. xl), which
allows us to propose in Section 4 models containing specific constraints for
each vector in X f .

We illustrate below the above formal definition on a toy example in which
J l∪Jf ⊂ J . The example contains twelve customers (|J | = 12), each having
a demand of one unit, two potential facilities for the leader (L = {L1, L2})
and three potential facilities for the follower (F = {F1, F2, F3}). Sets X l and
X f are characterized by the fixed costs κi and the budgets Bl and Bf are
unitary. In other words, both the leader and follower can locate a unique
facility. The distances dij between the potential facilities and the customers,
the radius δi and the demands wj are given by Table 1 implicitly. That table
shows the total demand served by the leader and the follower in this order
for each possible pair of strategies of the leader and the follower.

According to table 1 if the leader locates the facility L2 and the follower
locates F1 then the leader serves a total demand of three units while the
follower serves a total of seven units. Note that in the worst case, the leader
serves at least four and three units when she locates L1 and L2, respectively.
Hence, when we consider the WC-CMCLP, the leader locates the facility
associated to the maximum of these two numbers, L1.
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Table 2: Regret of the leader for each pair of strategies of the leader and the follower.

Follower
F1 F2 F3

Leader
L1 0 3 0
L2 2 0 0

In the ST-CMCLP the leader’s location decision is made in the following
way. On the one hand, if the leader locates L1 then the follower locates F3,
which is the facility that maximizes her market share. Hence, the leader
would serve four units. On the other hand, if the leader locates L2 then
the follower locates F1. Consequently, the leader would serve three units.
Observing the two cases, the leader locates L1. Note that, while the leader
locates L1 in the optimal solutions to WC-CMCLP and ST-CMLP, the de-
cisions of the follower are different, locating F2 in the former and F3 in the
latter.

To identify which strategy would be used by the leader in the RE-CMCLP,
we first construct Table 2 containing the values of Regret for each pair of
strategies of the leader and the follower. The table is filled in the following
way. Suppose that the leader locates the facility L2 and the follower locates
F1. Hence, the leader serves a total demand of three units but she could have
served five units if she had located L1. Hence the leader’s regret is 5− 3 = 2
units for the pair (L2, F1). The purpose of the leader is to minimize her
maximal regret. If the leader locates L1, the greatest regret is 3 (follower
locates F2). If the leader locates L2, the greatest regret is 2 (follower locates
F1). Therefore the leader should locate L2, remaining with a regret of at
most 2.

3. Review of the literature

The WC-CMCLP, the RE-CMCLP and the ST-CMCLP can be seen
as special Bilevel Integer Programming Problems where the first level de-
cision consists of choosing where the leader locates her facilities while the
second level is associated with the follower’s location decisions. Yet, the
WC-CMCLP and the RE-CMCLP are very special cases of BIP since they
can be rewritten as min max optimization problems. The literature is rather
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scarce when it comes to exact methods for general BIPs. Branch-and-bound
algorithms for linear BIP were proposed by Moore and Bard (1990) and Bard
and Moore (1992). However, these are able to solve only instances with up
to 10 general integer variables and 35 binary variables for the first level prob-
lem. Other approaches are based on specific characteristics of the optimiza-
tion problem under study such as a decomposition method based on super
valid inequalities, see Israeli and Wood (2002); O’Hanley and Church (2011),
cutting plane algorithms Taşkın et al. (2009), among others. Recently, Fis-
chetti et al. (2016) have proposed generic algorithms to solve larger BIP to
optimality, relying on intersection cuts.

Coming back to the CMLP, Plastria and Vanhaverbeke (2008) revisited
the three aforementioned variants and proposed a MILP formulation for each
of them considering the particular case where the follower locates a unique
facility. In order to show the robustness of the formulations, the authors pre-
sented several numerical results for randomly generated instances. Although
the results are able to solve instance of moderate size efficiently, it does not
seem possible to extend their formulations to the more general problems con-
sidered herein. Recently, Seyhan (2012) considered the general case of the
ST-CMCLP and propose a greedy heuristic for the problem. That heuristic is
based on a MILP formulation where a set of variables and linear constraints
are used to compute the follower response in a greedy heuristic way.

A closely related problem is the discrete (r|p)-centroid problem, proposed
by Hakimi (1983). In the (r|p)-centroid problem, the coverage radii are
infinite, δi = +∞, and all fixed costs κi are unitary. In other words, each
customer is covered by one of the facilities and there is a fixed number of
facilities to be located by the leader and the follower. Since Noltemeier
et al. (2007) proved that the (r|p)-centroid problem is Σp

2-hard, the previous
observation implies that both the WC-CMCLP and the ST-CMCLP are Σp

2-
hard. Moreover, some techniques used for the (r|p)-centroid problem can
be adapted for the WC-CMCLP and ST-CMCLP. Specifically, the algorithm
used in this paper for the WC-CMCLP is an adaptation of the branch-and-
cut algorithm proposed by Roboredo and Pessoa (2013) for the (r|p)-centroid
problem.

4. MILP Formulations for the problems

In this section, we present for each of the three problems a MILP for-
mulation with a polynomial number of variables and a exponential number
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of constraints together with a compact MILP formulation for separating the
exponential number of constraints.

We use the following notations in the formulations: let Sf be the set
that contains the ground sets of all vectors in X f , that is, the set of feasible
strategies for the follower. Formally, each S0 ∈ Sf represents a subset of F
such that the vector xf defined by xfi = 1 for i ∈ S0 and xfi = 0 otherwise
belongs to X l. Furthermore, for each customer j ∈ J and for each S0 ∈ Sf ,
we define d(S0, j) = min {dkj|k ∈ S0}. Finally, for each customer j ∈ J , the
sets L′(j) = {i ∈ L|dij ≤ δi} and F ′(j) = {i ∈ F |dij ≤ δi} contain the
facilities of the leader and the follower that can potentially cover customer
j.

4.1. MILP formulation for the WC-CMCLP
Let zwc be a non-negative continuous variable indicating the total demand

served by the leader after the follower’s response. For each j ∈ J and i ∈ L,
the binary first level variable ylij is equal one if and only if the facility i is
located by the leader to try to serve customer j. The formulation follows.

max zwc (7)

s.t. ylij ≤ xli, ∀j ∈ J,∀i ∈ L (8)∑
i∈L

ylij = 1, ∀j ∈ J (9)

zwc ≤
∑
j∈J

∑
i∈L′(j)

dij<d(S0,j)

wjy
l
ij ∀S0 ∈ Sf (10)

ylij ∈ {0, 1} , ∀i ∈ L, ∀j ∈ J (11)

zwc ≥ 0, (12)

xl ∈ X l. (13)

The objective function (7) maximizes the total demand served by the
leader after the follower’s response. Constraints (8) ensure the consistency
between variables xl and yl. Constraints (9) indicate that for each customer
j, the leader locates exactly one facility to try to serve customer j. To explain
constraints (10), consider a given set S0 ∈ Sf and a customer j ∈ J . Then,∑

i∈L′(j)
dij<d(S0,j)

wjy
l
ij
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is equal to wj only if the facility chosen by the leader is closer than the closest
admissible facility of the follower in strategy S0. Hence, summing up over j
yields the revenue of the leader for the follower strategy S0 and writing the
constraint for each S0 ∈ Sf yields the worst-case among all strategies possible
for the follower. Note that (10) is composed of an exponential number of
constraints. Hence, it is necessary to solve the separation problem associated
to (10) in order to include in the formulation only the necessary constraints.

Given a relaxed leader solution (zwc, x
l, yl) ∈ R+ × [0, 1]|I| × [0, 1]|I|×|J |

possibly violating some of the constraints in (10), the separation problem for
the constraints (10) consists of finding the follower’s strategy that minimizes
the total demand served by the leader. That strategy can be found by solving
the integer programming model described below.

Recall that, for each k ∈ F , xfi is a binary variable indicating whether the
follower locates facility k. Similarly, for each j ∈ J and k ∈ F , let the binary
variable yfkj indicate if the facility k is the closest facility of the follower to
customer j. The formulation follows.

min
∑
j∈J

∑
k∈F ′(j)

wj ∑
i∈L′(j)
dij<dkj

ylij

 yfkj (14)

s.t. yfkj ≤ xfk , ∀j ∈ J,∀k ∈ F (15)∑
k∈F

yfkj = 1, ∀j ∈ J (16)

yfkj ∈ {0, 1} , ∀k ∈ F, ∀j ∈ J (17)

xf ∈ X f . (18)

The objective function (14) minimizes the total demand served by the
leader. Constraints (15) ensure the consistency between the variables yf and
xf . Constraints (16) indicate that for each customer j, the follower locates
exactly one facility to try to serve customer j.

The formulation (7) – (12) for the leader problem and the formulation
(14) – (18) for the separation problem were adapted from the formulations
presented by Roboredo and Pessoa (2013) for the (r|p)-centroid problem.
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4.2. MILP formulation for the RE-CMCLP

We present below a MILP formulation for the RE-CMCLP. The variables
xf , yf used below have the same meaning as in (7) – (12). Let zre be a non-
negative continuous variable indicating the worst regret for the leader. For
each S0 ∈ Sf we define z∗(S0) as the largest demand served by the leader if
she knows that the follower strategy is S0. Recalling the definition (5) from
Section 2, we can define z∗(S0) formally as

z∗(S0) =
∑

j∈J l(x∗(xf0 ),x
f
0 )

wj,

where xf0i = 1 for i ∈ S0 and xf0i = 0 for i ∈ F \ S0. The formulation follows.

min zre (19)

s.t. ylij ≤ xli, ∀j ∈ J,∀i ∈ L (20)∑
i∈L

ylij = 1, ∀j ∈ J (21)

zre ≥ z∗(S0)−
∑
j∈J

∑
i∈L′(j)

dij<d(S0,j)

wjy
l
ij ∀S0 ∈ Sf (22)

ylij ∈ {0, 1} , ∀i ∈ L, ∀j ∈ J (23)

zre ≥ 0, (24)

xl ∈ X l. (25)

The above formulation is similar to the formulation provided in the pre-
vious section, with the following differences. First, the objective function
(19) minimizes the worst regret zre, while objective function (7) maximizes
the worst revenue. Second, and more importantly, constraints (22) involve
a constant term, z∗(S0), that is not present in (10). Again, the number of
constraints in (22) is typically exponential so that the constraints are gen-
erated on demand in a branch-and-cut algorithm. The separation problem
associated to (22) is defined in the following way. Given a relaxed leader
solution (zre, x

l, yl) ∈ R+× [0, 1]|I|× [0, 1]|I|×|J | possibly violating some of the
constraints in (22), the separation problem for the constraints (22) consists of
finding the feasible follower strategy that maximizes the regret of the leader.
That strategy can be found by solving the a MILP model introduced next.
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Recall that the regret of the leader is given by a difference of two terms
where the first one is associated to the best leader strategy given a feasible
follower strategy. From now on, we refer to that leader as the virtual leader.
According to the notations introduced before, for each i ∈ L, the binary
variable x∗i is equal one if and only if the virtual leader locates facility i. For
each j ∈ J and i ∈ L, the binary variable y∗ij is equal one if and only if
facility i is used by the virtual leader to serve customer j. Before proceeding
with the definitions used in the formulation, let us make a simple, yet crucial,
observation. In the separation problem, variables x∗ and xf purse the same
objective, that is, maximizing the regret. Hence, although the separation
problem involves decision variables for the (virtual) leader and the follower,
it is not a BIP. As we show below, the separation problem can in fact be
modeled quite naturally as a MILP with polynomial numbers of variables
and constraints.

For each j ∈ J and k ∈ F , the binary variable vfkj is equal to is equal to

1 if and only if the follower does not locate facility k (xfk = 0) and there is

no facility located by the follower closer to customer j than k (xfk′ = 0,∀k′ ∈
F |dk′j < dkj), otherwise the variable is equal to 0. Finally the separation
model also relies on variables xf and yf already defined for the formulation
(7) – (12). In the formulation below, we also use the constant θ(k, j) to
denote the k-th potential facility of the follower closer to customer j, for
each customer j ∈ J and each follower potential facility k ∈ F .

max
∑
j∈J

∑
i∈L′(j)

wjy
∗
ij −

∑
j∈J

∑
k∈F ′(j)

wj ∑
i∈L′(j)|dij<dkj

ylij

 yfkj (26)
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s.t. yfkj ≤ xfk , ∀j ∈ J,∀k ∈ F

(27)∑
k∈F

yfkj = 1, ∀j ∈ J

(28)

y∗ij ≤ x∗i , ∀j ∈ J,∀i ∈ L
(29)∑

i∈L

y∗ij = 1, ∀j ∈ J

(30)

y∗ij +
∑

k∈F ′(j)|dkj≤dij

yfkj ≤ 1, ∀j ∈ J,∀i ∈ L′(j)

(31)

vfθ(1,j)j = 1− xfθ(1,j), ∀j ∈ J
(32)

vfkj ≤ 1− xfk , ∀k ∈ F, ∀j ∈ J
(33)

vfθ(k,j)j ≥ vfθ(k+1,j)j, ∀k ∈ {1, ..., |F | − 1} , ∀j ∈ J
(34)

yfθ(1,j)j = 1− vfθ(1,j)j, ∀j ∈ J
(35)

yfθ(k,j)j = vfθ(k−1,j)j − v
f
θ(k,j)j, ∀k ∈ {2, ..., |F |} , ∀j ∈ J

(36)

yfkj ∈ {0, 1} , ∀j ∈ J, ∀k ∈ F ′(j)
(37)

y∗kj ∈ {0, 1} , ∀j ∈ J, ∀i ∈ L′(j)
(38)

xf ∈ X f , (39)

x∗ ∈ X l. (40)

The objective function (26) maximizes the leader regret. Constraints (31)
ensure that if y∗ij is equal 1, all facilities located by the follower are further
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from j than facility i. Consider then constraints (32) – (36) and suppose that
these constraints are removed from the formulation. Then, the virtual leader
and the follower can falsely increase the optimal solution cost by letting the
follower try to capture the customer by a distant facility instead of assigning
her closest facility. This increases the profit of the virtual leader and reduces
the profit of the follower, thus falsely increasing the optimal solution cost.

Constraints (32) ensure that if the follower locates her closest facility from
customer j, then the corresponding component of v is equal to 0. Otherwise,
the component of v is equal to 1. Constraints (33) ensure that if the follower
locates facility k, vfkj is equal to 0, for each customer j. Constraints (34)

ensure that if the variable vfkj corresponding to the k-th closest facility from
customer j is equal to 0, then the subsequent (from k+ 1 until |F |) variables
are also equal to 0. Constraints (35) and (36) ensure the consistency between
the variables yf and v. Constraints (35) ensure that if follower locates the
closest facility from customer j, then yfkj is equal to 1 and vfkj is equal to 0.

Otherwise, yfkj is equal to 0 and vfkj is equal to 1. Constraints (36) ensure that
if the k-th potential facility closest from customer j is the facility located by
the follower closest to customer j, then yfθ(k,j)j is equal to 1, vfθ(k−1,j)j is equal

to 1 and vfθ(k, j)j is equal to 0.
It is worth noting that constraints (32) – (36) can be relocated by

yfkj + xfk′ ≤ 1, ∀j ∈ J,∀k ∈ F ′(j), ∀k′ ∈ F ′(j)|dk′j < dkj, (41)

eliminating the variables v from the formulation. However, despite having
a simpler description than the previous ones, constraints (41) corresponds
to O(|J ||F |2) inequalities. Unreported results showed that constraints (32)
– (36) are numerically more efficient than constraints (41) for the large in-
stances.

4.3. MILP formulation for the ST-CMCLP

We present next a MILP formulation for the ST-CMCLP. Differently from
the formulations proposed for the previous two problems, the formulation
proposed here for the ST-CMCLP contains variables related to both the
leader and the follower strategies. As before, these variables are respectively
denoted by xl and yl, and xf and yf , respectively. In addition, we introduce
binary variable zlj (resp. zfj ) that is equal to one if and only if costumer
j is served by the leader (resp. follower). We also define the vector of
optimization variables vl and the constants λ, which are the counterpart of
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v and θ for the leader’s strategy. The variables ensure that yl is set to 1 for
the closest facility. The formulation follows.

max
∑
j∈J

wjz
l
j (42)

subject to:

ylij ≤ xli ∀j ∈ J, ∀i ∈ L (43)

yfkj ≤ xfk ∀j ∈ J, ∀k ∈ F (44)∑
i∈L

ylij = 1 ∀j ∈ J (45)∑
k∈F

yfkj = 1 ∀j ∈ J (46)

zlj + zfj ≤ 1 ∀j ∈ J (47)

zlj ≤
∑
i∈L′(j)

ylij ∀j ∈ J (48)

zfj ≤
∑

k∈F ′(j)

yfkj ∀j ∈ J (49)

zlj ≥
∑

k∈L′(j)|dkj≤dij

ylkj −
∑

k∈F ′(j)|dkj≤dij

yfkj ∀j ∈ J,∀i ∈ L′(j) (50)

zfj ≥
∑

k∈F ′(j)|dkj≤dij

yfkj −
∑

k∈L′(j)|dkj≤dij

ylkj ∀j ∈ J,∀i ∈ F ′(j) (51)

vlλ(1,j)j = 1 − xlλ(1,j) ∀j ∈ J (52)

vlij ≤ 1 − xli ∀j ∈ J,∀i ∈ L (53)

vlλ(i,j)j ≥ vlλ(i+1,j)j ∀j ∈ J,∀i = 1, ..., L− 1 (54)

ylλ(1,j)j = 1 − vlλ(1,j)j ∀j ∈ J (55)

ylλ(i,j)j = vlλ(i−1,j)j − vlλ(i,j)j ∀j ∈ J,∀i = 2, ..., L (56)
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∑
j∈J

wjz
f
j ≥

∑
j∈J:

S0∩F ′(j)6=∅

wj

(
1−

∑
i∈L′(j):

dij<min{dkj |k∈S0}

ylij

)
∀S0 ∈ Sf (57)

ylij, y
f
kj, z

l
j, z

f
j ∈ {0, 1} ∀j ∈ J,∀i ∈ L,∀k ∈ F,

(58)

xl ∈ X l, (59)

xf ∈ X f . (60)

The objective function (42) maximizes the leader market share. The
constraints (43)–(46) are identical to those introduced in the previous for-
mulations. Constraints (47) ensure that each costumer j be served either by
the leader or the follower. Constraints (48) (resp. (49)) ensure that if a cos-
tumer is served by the leader (resp. follower), the nearest facility from this
costumer located by the leader (resp. follower) is within the coverage radius.
Constraints (50) ensure that if costumer j is not covered by the leader (resp.
follower), the nearest facility from this costumer, located within coverage by
the leader, is not closer to those located within coverage by the follower (resp.
leader). Constraints (52) – (56) are the counterparts of constraints (32) –
(36) for the leaders variables. As in the RE-CMCLP, these 5 group of con-
straints could be relocated by a single one which corresponds to O(|J ||F |2)
inequalities. Again, unreported experimental results showed that the use of
constraints (52) – (56) obtained better results for large instances. There was
also a quick explosion of the constraint number in the case where a single
group of constraints is used.

Finally, constraints (57) ensure that the follower chooses her best location.
In other words, the constraints ensure that, given the strategy taken by the
leader, the follower will pick up the one which maximizes her covered demand.
Note that the right-hand side of constraints (57) shows the demand served by
the follower, given her strategy S0 and the leader strategy defined by variables
yl. More explicitly, this demand is the difference between all demand that
the follower could cover and the demand taken by the leader due to her closer
facilities. There is a constraint (57) for each feasible strategy for the follower
S0. As this number of constraints tends to be exponential, the constraints
are added on demand during a branch-and-cut algorithm. We propose below
an exact ILP formulation problem to separate the cuts (57) in the line of
those proposed in for the other two variants.

Given a relaxed leader solution (xl, yl, zl) ∈ [0, 1]|I| × [0, 1]|I|×|J | × [0, 1]|J |
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for the model (42) – (58) possibly violating some of the constraints (57), the
separation problem amounts to find the follower strategy that maximizes the
violation of the constraint, which is to maximize the right side of (57).

max
∑
j∈J

∑
k∈F

wj ∑
i∈L′(j)|dkj≤dij

ylij

 yfkj (61)

s.t. yfkj ≤ xfk , ∀j ∈ J,∀k ∈ F (62)∑
k∈F

yfkj = 1, ∀j ∈ J (63)

yfkj ∈ {0, 1} , ∀k ∈ F, ∀j ∈ J (64)

xf ∈ X f . (65)

5. Details of the branch-and-cut algorithms

The exact algorithms for the WC-CMCLP, the RE-CMCLP and the ST-
CMCLP are built on the top of the branch-and-cut algorithms that solve the
models given by, respectively, (7) – (12), (19) – (25) and (42) – (58) using
commercial solvers. Constraints (10), (22) and (57) are added through cut
callbacks by solving, respectively, the separation problems (14) – (18), (26)
– (40) and (61) – (64). Notice that our separation algorithms can be used to
separate cuts over fractional solutions along the branch-and-bound tree. We
did it only for the ST-CMCLP where it improved the results significantly.
More specifically, we separate cuts over fractional solutions at the root node
until the relative difference between the current relaxation and the best in-
teger solution found so far drops below a given threshold ε. We also limited
the number of separations over fractional solutions to 200.

For the three problems, we also used the following technique to obtain
quickly feasible integer solutions. Every time we reach an integer branch-
and-bound node that violates some of the missing constraints, the algorithm
inserts the following incumbent solution: the leader variables are set to their
values in the current node, while the follower variables are set to their values
in the optimal solution of the separation problem. Note that the time spent
by this strategy is negligible.

For the ST-CMCLP, we observed that it takes too much time to find good
integer solutions even using the previous technique. Therefore, we propose
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the following procedure able to transform fractional solutions into feasible
integer ones. Whenever a fractional relaxed solution does not violate any
missing inequality, we take the solution of the follower obtained from solving
the separation problem and compute the leader strategy that maximizes her
covered demand. This amounts to solve a MILP very close to formulation
(61) – (64), exchanging the roles of the leader and the follower. In a second
step, we find a new follower solution running model (61) – (64) based on
the leader solution from the previous step. The strategies of the leader and
follower found in the previous two steps form a feasible integer solution to
the problem, which is fed to the algorithm. Note that the computational
time of this procedure require solving two MILP formulations.

6. Computational Results

In this section, we present our computational results. The tests were
coded in C++, using CPLEX 12.5.1, and the experiments were conducted
on a computer with an Intel core i7-4790 3.60GHz CPU and 16 GB of memory
running the windows 8 operating system. A single thread was used for the
tests. All instances used in this paper are available in www.logis.uff.br/

~roboredo/instances.
We tested our three methods on randomly instances generated similarly

to Plastria and Vanhaverbeke (2008). Specifically, the coordinates of the cus-
tomers and facilities are randomly distributed on square grids, where each
grid cell has integer positive coordinates. There are not common potential
facilities for the leader and for the follower (L ∩ F = ∅). The potential
facilities for the follower (set F ) are those cells for which sum of the coor-
dinates is a multiple of 3 while the potential facilities for the leader (set L)
consists of all other cells, so approximately |L| ≈ 2|F |. We considered the
euclidean distances between customers and facilities. Customer demands wj
and fixed costs κi were integers uniformly generated in [50, 250] and [5, 10],
respectively. The instance types and their characteristics are summarized in
Table 3.

For each type of instance, we considered the following covering radii,
identical for all facilities: 1,

√
2, 2,

√
5,
√

8, 3,
√

10,
√

13 and 4. Sets X l and
X f are defined by binary restrictions and single budget constraints, defined
by the budgets Bl = Bf ranging in {15, 25, 35}.

In sections 6.1, 6.2 and 6.3 we respectively present average statistics con-
sidering all covering radii for the WC-CMCLP, the RE-CMCLP and the ST-
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Table 3: Instance types and their characteristics

Type Grid |J | |L| |F |
∑
wj

P5 5x5 25 16 9 3542
P7 7x7 49 33 16 6531
P10 10x10 100 67 33 15247
P12 12x12 144 96 48 22977
P15 15x15 225 150 75 31354
P17 17x17 289 192 97 43999
P20 20x20 400 134 266 61910

CMCLP. We provide detailed results in the supplementary material available
online. Section 1 therein presents the comparison between our methods and
the one proposed in Plastria and Vanhaverbeke (2008) for the particular
case where the follower places just one facility. Section 2 therein presents de-
tailed statistics of the branch-and-cut algorithms for each one of the instances
tested. Finally,

6.1. Results for the WC-CMCLP

Table 4 presents several statistics of our method for the WC-CMCLP.
Specifically, for each type of instance and each budget, the table shows aver-
age results considering all covering radii. The following headers are used for
the columns. Column Budget indicates the budget of the firms. Column Type
indicates the type of the instance (according Table 3). Obj indicates the total
demand covered by the leader at the optimal solution, Gap Root(%) indicates
the percentage of the relative difference between the best upper bound ob-
tained at the root node and the optimal solution, Time Root(s) indicates the
CPU times in seconds spent at the root node, #Nodes indicates the total
number of nodes of the B&B tree, #Sep indicates the number of separa-
tion problems solved, #Cuts indicates the total number of cuts generated by
separation problems, #Time Sep(s) and Time total(s) indicate, respectively,
the total CPU time in seconds spent by the separation problems and the
complete branch-and-cut algorithm. If the optimal solution was not found
after 21600 seconds of execution we stopped the algorithm and report the
best feasible solution found.

Observing Table 4 we note that the branch-and-cut algorithm found the
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Table 5: RE-CMCLPC: comparison between smart brute force and our formulation for
instance with Bl = Bf = 15

Grid Smart Our
Size B.F. Formulation

5× 5 0.13 4.52
7× 7 1.16 18.53

10× 10 629.5 260.28
12× 12 10716.7 168.54
15× 15 - 1197.99

optimal solution for almost all instances in reasonable computational time.
The exception was the large instance with budgets Bl = Bf = 35, grid 20×20
and δi =

√
5 where the optimal solution was not found after 21600 seconds

of execution time.

6.2. Results for the RE-CMCLP

For the RE-CMCLPC we did not test instances with grid 20 × 20 or
instances with budgets Bl = Bf = 35. First, we compare our formula-
tion with a brute-force algorithm, testing all possible solutions, in order to
compare with the model and prove its accuracy. The algorithm constructs
all possible combinations for leader, follower and virtual leader strategies.
Some techniques to speed up the process were used, such as quickly dis-
carding the budgets solutions and follower strategies which produce greater
regret than the minimum obtained so far. We tested the algorithm only for
Bl = Bf = 15, given that for Bl = Bf = 25 there would be a combinatorial
explosion, due to the possibility to place four or even five facilities. Table 5
displays the comparison, where each cell indicates the average time in sec-
onds for all coverage radii tested (1,

√
2, 2,

√
5,
√

8, 3,
√

10,
√

13 and 4). We
marked in bold the smallest average time for each type of grid. In addition,
we stopped the brute force algorithm after 21600 seconds of execution for
instances with grid 15 × 15 because the algorithm did not reached the op-
timal solution. The results presented in Table 5 indicate that for instances
with grids greater than or equal to 10 × 10 our model surpasses brute-force
performance.

Table 6 shows for each type of instance and each budget, average results
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for RE-CMCLPC considering all covering radii. This table has two columns
different from Table 4: the columns Virt

∑
wj and Real

∑
wj indicating,

respectively, the total demand served by the virtual leader and the leader
for the best solutions found. Although the latter values could be different
if the instance had more than one optimal solution, this did not happen in
our experiments. The solution for the instance with Bl = Bf = 25, grid
10×10 and radius

√
10 are just feasible because the algorithm could not find

the optimal solution after 21600 seconds of execution. The final gap for that
instance was 32.81%. Besides, our reported means do not consider instances
with coverage radii greater than or equal to

√
10 for types P12, P15 or P17

with Bl = Bf = 25 because no good feasible solution could be found after
21600 seconds of execution.

In Table 6, we observe that the number of separations problems solved as
well as the number of generated cuts are small. Nevertheless, even with few
separations, the running time for some instances was really high. When we
compare the separation time with the total time, we conclude that almost all
of the time is spent solving the MILP separations problems. This is due to the
complex model of the separations, its large number of constraints and the fact
that the objective function is a difference between two terms. We also observe
that the number of cuts is close to the number of separations problems solved,
indicating that for almost all separation problems solved, a cut is added to
the main problem. The average difference between the separation number
and the cut number is three, indicating a feasible solution was obtained in
those cases. This is due to the fact that the separation problem is only solved
for integer relaxed solutions.

6.3. Results for the ST-CMCLP

Comparison with the heuristic from Seyhan (2012). As mentioned before,
Seyhan (2012) proposed a heuristic for the ST-CMCLP. The authors pro-
posed a MILP formulation for the general case of the problem. That follower
response is based on a greedy heuristic. The authors proposed two additional
equivalent formulations to try to improve the relaxation. We implemented
the three heuristic variants in order to compare in a fair way our exact method
with the heuristic proposed by Seyhan (2012).

The instances used for the comparison are generated similarly to Seyhan
(2012). The instances rely on two data sets from Daskin (2011). Both sets
are based on the US 1990 census. The first set includes the geographical
coordinates and populations of 88 cities. These are the 50 largest US cities
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Table 7: ST-CMCLPC: comparison between our method and the heuristic 1 proposed in
Seyhan (2012)

Instance Heuristic 1 proposed in Seyhan (2012) Our exact method
Budgets #opt Gap(%) Time (s) Time (s)
Bl Bf Avg. Max. Avg. Min. Max. Avg. Min. Max.
8 4 39 0.42 3.20 6.42 0.84 41.10 41.78 8.48 141.75
8 5 35 0.55 5.30 20.12 2.11 121.72 69.77 4.00 335.25
8 6 34 0.68 7.31 54.39 4.50 350.42 62.45 2.75 253.14
8 7 32 0.74 6.28 114.84 7.16 475.69 57.22 2.41 339.97
8 8 33 0.68 4.63 219.54 8.47 1495.13 39.36 2.06 278.28

and the 48 continental state capitals, avoiding to count twice any city. The
second set includes the geographical coordinates of the 150 largest US cities.
The customers are represented by the 88 cities of the first data set where
theirs populations represent the customer demands. We considered |L| = 40
and |F | = 20. Those potential facilities are randomly selected among the 150
cities from the second data set in a way that L ∩ F = ∅. For all instances
generated, all fixed costs to open a facility are unitary. We created five
group of instances by varying the values of budgets Bl and Bf . For each
group, we generated 50 instances. Table 7 shows the comparison. In the
table, we present the results associated only to the heuristic 1 because that
heuristic presented the best results for the instances tested. The column
#opt shows the number of optimal solutions found by the heuristic among
the 50 instances generated. In addition, the table presents statistics of the
percentage gap for the heuristic and statistics of the CPU time in seconds
for both methods.

Observing Table 7, we note that the heuristic found a large number of
optimal solutions for all types of instances tested. Moreover, the average per-
centage gap was less than 1%. However, our method was faster for instances
with higher values of the follower budget Bf . In the heuristic, the larger the
Bf , the greater is the number of constraints. In our formulation, increasing
this parameter makes harder the separation problem (61) – (64). Although
the increase of Bf affects both methods, our method was less sensitive to
that parameter.
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Instances from Plastria and Vanhaverbeke (2008). For the ST-CMCLPC,
Table 8 presents for each type of instance and each budget, average results for
ST-CMCLPC considering all covering radii. These tables have tree columns
that are different from Table 4: the columns Follower, #Sols Calc, #Sols
Ins and #Time Heur(s) indicating, respectively, the total demand served
by the follower, the number of calculated solutions, the number of solutions
included and the total time spent by the heuristic that transforms fractional
solutions into feasible integer ones described in section 5. For the budget
Bl = Bf = 15, we set ε = 0.05 while for the budgets Bl = Bf = 25 and
Bl = Bf = 35, we set ε = 0.03. We stopped the method when it reached
21600s of execution. The time limit was reached for instances of the type
P15 with Bl = Bf = 35 and coverage radii greater than or equal

√
8. For

that reason, we did not test any instance of type P20 and Bl = Bf = 25 and
any instance of types P17 or P20 with Bl = Bf = 35.

Observing Table 8, we reach the following conclusions. First, we observe
that the method was able to solve almost all instances in reasonable computa-
tional time. The hardest instances were in the type P15 with Bl = Bf = 35,
where we were not able to obtain the optimal solution in 21600s of execution
for five instances. Another point is that the average root gap was not low in
some instances. This indicates that the total computational time could be
reduced by improving the strength of the formulation. Another important
observation is the low average cumulative time spent by solving the separa-
tion problems, which was small compared to the average total time for most
instances. One last observation concerns the use of the heuristic. Despite
the low number of inserted solutions, those were essential to the speed up
our method. Several instances were not solved within 3 hours of execution
before applying such strategies.

7. Conclusions

This paper presents for the first time ILP formulations for three variants
the competitive location problems that are valid for general sets of facilities
for the leader and the follower. As the formulations typically contain expo-
nentially many constraints, we generated them on the fly in the course of
branch-and-cut algorithms. To show the robustness of the formulations, we
compared each formulation proposed here with the one from the literature
for particular cases of the problems. The results showed that our algorithms
are competitive. Besides we presented results for instances in the general
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case with several sizes, where the formulations could optimally solve large
instances in a reasonable amount of time. For future papers, we intend
to improve the algorithms performance through two ways: proposing meta-
heuristics and finding cuts for both the original and the separation problems.
In addition, it could be very interesting to see how our approaches general-
ize to more general bi-level optimization problems, more particularly for the
regret and the Stackelberg variants.
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Taşkın, Z. C., Smith, J. C., Ahmed, S., Schaefer, A. J., 2009. Cutting plane
algorithms for solving a stochastic edge-partition problem. Discrete Opti-
mization 6 (4), 420–435.

28


	Introduction
	The problems
	Review of the literature
	MILP Formulations for the problems
	MILP formulation for the WC-CMCLP
	MILP formulation for the RE-CMCLP
	MILP formulation for the ST-CMCLP

	Details of the branch-and-cut algorithms
	Computational Results
	Results for the WC-CMCLP 
	Results for the RE-CMCLP 
	Results for the ST-CMCLP 

	Conclusions

