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ABSTRACT

A major goal of synthetic biology is to reprogram living organisms to solve pressing challenges in manufacturing, environmental
remediation, or healthcare. While many types of genetic logic gates have been engineered, their scalability remains limited.
Previous work demonstrated that Distributed Multicellular Computation (DMC) enables the implementation of complex logic
within cellular consortia. However, current DMC systems require spatial separation of cellular subpopulation to be scalable to
N-inputs, and need cell-cell communication channels to operate. Here we present scalable composition frameworks for the
systematic design of multicellular consortia performing recombinase-based Boolean or history-dependent logic, and integrating
an arbitrary number of inputs. The theoretical designs for both Boolean and history-dependent logic are based on reduced
sets of computational modules implemented into specific cellular subpopulations which can then be combined in various
manners to implement all logic functions. Our systems mark a departure from previous DMC architectures as they do not
require either cell-cell communication nor spatial separation, greatly facilitating their implementation and making them fully
autonomous. Due to their scalability and composability, we anticipate that the design strategies presented here will help
researchers and engineers to reprogram cellular behavior for various applications in a streamlined manner. We provide an
online tool for automated design of DNA architectures allowing the implementation of multicellular N-inputs logic functions at:
http://synbio.cbs.cnrs.fr/calin.

Introduction

Reprogramming the response of living cells to chemical or
physical signals is a key goal of synthetic biology that would
support the development of complex manufacturing processes,
sophisticated diagnostics, or cellular therapies1. Researchers
have engineered many types of Boolean logic gates operating
in single cells by using transcriptional regulators2–7, RNA
molecules8, 9, or site-specific recombinases10–12. Recombi-
nases were also used to implement memory devices13, 14 and
time-dependent logic systems that can track the order of occur-
rence of events or execute history-dependent gene expression
programs15–17.

However, scaling-up single-cell logic systems requires solv-
ing multiple engineering challenges. First, when program
complexity increases (number of inputs ≥ 3), the high num-
ber of parts needed can cause metabolic burden and affect
cellular viability. Second, current design methods are mostly
ad-hoc, and each logic function is implemented using a dif-
ferent genetic architecture that needs to be fully character-
ized and optimized to counter any context effects resulting
from new arrangements of genetic components. Despite re-
cent progresses towards predictable gate design6, some gates
simply do not work or are too complex to be implemented
within a single cell. In addition, in order to avoid cross-talk,
single-cell logic systems need to use different components
for every novel signal to be processed. While library of or-
thogonal regulatory components have greatly expanded in

recent years3, 5, 18, 19, their deployment can be challenging and
requires time-consuming optimization.

In nature, division of labor between cellular subpopulations
is a ubiquitous mechanism allowing cellular communities to
accomplish complex functions20, 21. Early efforts to engineer
synthetic multicellular systems led to the construction of pulse
generators22, pattern-forming communities23, predator-prey
ecosystems24, synchronized oscillators25, 26, or distributed
metabolic pathways27. Researchers also realized that prob-
lems faced by logic circuits operating in single cells could be
addressed by distributing the logic program between different
cells28. Because of the spatial separation allowed by cellu-
lar compartments, optimized regulatory components can be
reused in different subpopulations. As the circuit is divided
into smaller sub-circuits, metabolic burden is reduced. Finally,
simple cellular computing modules can be composed in differ-
ent manners and wired via cell-cell communication channels
to obtain different logic functions. One example used spa-
tially separated E.coli containing NOR gates and wired by
quorum-sensing molecules to design all 2-input logic gates29.
In this approach, the architecture strictly followed multilay-
ered circuit designs inspired from electronics, in which only
the cells in the last layer produce an output. However, en-
gineering logic circuits within biological systems does not
necessarily requires a strict transposition of electronic de-
signs. Hence, specific features of biology could be used at
our advantage to engineer logic systems in a more efficient
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manner10, 28, 30. Following this idea, researchers developed an
alternative approach termed Distributed Multicellular Com-
puting (DMC) to reliably implement complex genetic pro-
grams28, 31–33. DMC is based on the decomposition of a logic
function into a sum of logic sub-functions, each performed
by particular subpopulations of cells. DMC allows for the
use of standard computational modules that can be combined
in various manners to realize any given logic function of in-
terest. Importantly, multiple cells are capable of producing
the output which is therefore distributed among the cellular
subpopulations. Recently, Macia and colleagues proposed a
scalable composition framework to implement DMC within a
multicellular consortia by using: (i) cellular computing units
performing elementary IMPLY or NOT functions, (ii) cell-
cell communication channels, and (iii) spatial separation34.
While highly scalable and being able to execute complex logic
programs using simple elements, this design requires spatial
separation between each subpopulations, and therefore cannot
function autonomously.

Here we present two composition frameworks enabling
the systematic design of logic gates performing Boolean or
history-dependent logic within an autonomous multicellular
consortia. We designed our system using site-specific recom-
binases, more specifically serine integrases, which allow for
flexible engineering of complex logic gates within single-layer
genetic architectures10, 11. Because integrase recombination
is irreversible in the absence of cofactors, our systems exhibit
memory, are single use (“one-shot”) and belong to the family
of asynchronous logic devices (i.e. the system can respond to
multiple signals even if they do not arrive simultaneously).

Designs for both asynchronous Boolean logic and history-
dependent logic are based on reduced libraries of cellular
computing units responding to one or multiple inputs that can
be composed at will to implement all desired logic functions
(Fig. 1). We provide theoretical designs for N-inputs asyn-
chronous Boolean logic gates, N-inputs events-order trackers,
and up to 5 inputs gene-expression programs which behaviors
depend on the order of occurrence of inputs.

Our systems mark a departure from previous DMC architec-
tures as they do not require either cell-cell communication nor
spatial separation, greatly facilitating their implementation
and making them fully autonomous. We anticipate that these
composable and scalable multicellular computing systems
will support many applications requiring the implementation
of complex genetic logic programs.

Results
Principle of multicellular asynchronous logic using
integrase switches.
In order to implement a logic program within a multicellular
consortia, we decompose the program into several indepen-
dent subprograms (or subfunctions)34. Each subprogram is
then embedded within and executed by a different cellular
subpopulation, chosen from a library containing a reduced
number of cellular computing units (Fig. 1).

Several multicellular computing schemes have used cell-
cell communication channels as chemical “wires” to connect
the computations performed between different cellular sub-
populations. However, such schemes can be less reliable in
liquid culture29, and can limit future recomposition of the
system. We thus designed our system so that each subcellular
population computes independently of the others, with no cell-
cell communication needed. As a consequence, in our system,
if one of the subcellular population is ON (expression of the
output gene), the global output of the system is considered to
be ON. Because of their reduced number and of the absence
of cell-cell communication, standard cellular computing units
can be extensively characterized and optimized to predictably
implement all desired logic programs within a multicellular
consortia.

We designed our system to be operated using recombinases,
more specifically serine integrases, which are members of the
large serine recombinase family35 and perform site-specific
recombination between attachment sites attB and attP. Re-
combination operates via a double-strand break located at the
central dinucleotide followed by creation of hybrid sites attL
and attR. Depending on the relative orientation of attB and
attP, the recombination reaction leads to excision (parallel
orientation) or inversion (antiparallel orientation) of the DNA
sequence flanked by attachment sites36.

The robustness of serine integrases operation has enabled
the engineering of many logic gates consisting of multiple
recombination-sites disposed in various positions and orienta-
tions10–12, 37. The control signal driving integrase expression
is decoupled from gate operation, so that gate architecture
and components can be conserved even if the control signal
is changed. Contrarily to multilayered gate architectures in-
spired from electronics, integrase-based logic supports the
implementation of complex functions within a single genetic
layer and with a reduced footprint10, 11, 30.

Strain library
Input
program f=f  +f  +f 1 2 3

Decomposition in sub-program f1 f2 
f3 

Multicell
consortium

Figure 1. Distribution of logic programs within a multicellular
consortia. The logic program of interest (either Boolean logic or
history-dependent program) is decomposed as a disjunction (=sum) of
sub-programs. A given function f encoding the program behavior is
decomposed into functions f1, f2 and f3 encoding sub-programs. 3 strains
performing f1, f2 and f3 are selected from the strain library to assemble a
multicellular consortia computing the desired program.

A Hierarchical composition framework for asyn-
chronous Boolean logic.
Logic programs can be written as a Boolean equation (ex:
f (A,B) = A.B). The Boolean equation corresponding to the
output state (1 if output is on, 0 if off) is a function of the input
states (1 if input has been present, 0 if input has never been
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present). We write Boolean functions using the disjunctive
normal form (i.e. as a sum of products of input variables or
their negations)38:

f (x1, ...,x j, ...,xN) =
M

∑
i=1

[
∏

N
j=1 θi, j(xi)

]
Following our program distribution in independent sub-

program, each cellular computing unit performs a subpro-
gram corresponding to a product of simple terms (part of the
Boolean equation). The “sum” of products is performed by
combining the various cellular computing units (Fig. 2A).

For design simplification and robustness, we designed
switches controlled only via integrase-mediated excision (Fig.
2B). Excision-based design reduces the distance between gate
promoter and the gene of interest (see below, nested design
for NOT functions). In addition, as no asymmetric terminator
is needed, those systems might be easier to port into higher
organisms12. We used two basic computational elements,
the NOT and IMPLY functions, to implement sub-programs
within individual cells. We then composed these elements in
different manners to perform products of simple terms (Fig.
2C-F). We designed an IMPLY element by placing a transcrip-
tional terminator flanked by recombination sites between the
promoter and the output gene (Fig. 2C Left panel). Thus, in
the absence of control signal, the output gene is not expressed.
In the presence of signal, the terminator is excised, and the
output gene is expressed (Output state =1). We designed a
NOT element composed of a promoter surrounded by recom-
bination sites in parallel orientation (excision mode) (Fig. 2C,
right panel). In state 0, the promoter drives transcription of
the output gene (Output state = 1). When the control signal is
present, the integrase is expressed, the promoter excised, and
the output gene will not not be expressed anymore (Output
state = 0). We then defined a hierarchical composition frame-
work to combine computational elements into higher-order
computational modules. Each element belonging to similar
or different classes follows specific functional compositions
rules (Fig. 2D-E, and corresponding Fig. legends).

Finally, computational devices performing subprograms
(i.e. products of NOT and IMPLY functions) are obtained by
combining IMPLY and NOT modules in series. The prior-
ity rule specify that NOT modules are positioned upstream
IMPLY modules when the output gene is in 3’ position (Fig.
2F).

Following this hierarchical composition framework, all sub-
programs consisting of products of variables and variable
negations are implementable within a cellular computing unit.
All programs are then executed by a multicellular consortia
containing different cellular computing units.

Implementing all N-inputs Boolean functions from
a reduced set of computational devices.
We aimed to reduce the number of computational devices in
order to simplify our system and allow for extensive char-
acterization of all components. As the connection between

inducible promoters (control signals) and integrases is inter-
changeable, we decided to implement only one computational
device per set of symmetric functions. For example, for the
symmetric functions not(A).B and B.not(A) only the com-
putational device corresponding to the former function is
implemented, while the latter is achieved by exchanging con-
trol signals A and B between the 2 integrases (Fig. S1). By
performing this simplification, we could reduce the number
of computational devices from 26 to 9 computational devices
for all 3-inputs Boolean logic gates (256 functions) and from
80 to 14 for all 4-inputs Boolean logic gates (65 536 func-
tions) (Fig. 3A and Fig. S1). For every additional control
signal (from N-1 to N), only N+1 novel computational devices
are needed while the number of Boolean functions increase
drastically. For example, 7 additional devices are needed to
transition from 5 to 6-inputs (27 devices in total), enabling the
implementation of 1010 additional Boolean logic gates (for a
total of 1019) (Fig. 3B).

To realize N-inputs Boolean logic gates, a maximum of
2N−1 different cellular computing units have to be composed,
corresponding to a culture of 2N−1 different strains: 4 for 3-
inputs and 8 for 4-inputs (Fig. 3B). However, most gates can
be composed using a reduced number of cellular computing
units (an average of 2.3 strains for 3-inputs and 3.6 strains for
4-inputs gates) (Fig. 3C).

Importantly, using a multicellular system to perform
Boolean logic programs reduces the size of genetic circuits
embedded into individual strains. For a N-inputs Boolean
equation, the different cellular computing units do not always
comport N integrases and computational devices responding
to N-inputs. As an example, the 4-inputs Boolean equation
shown in Fig. 3D can be executed using 3 strains containing
respectively 4, 3 and 2 integrases and with different control
signals/integrases connectivity.

In summary, we designed a composable framework based
on a reduced number of standard computational devices that
support the systematic implementation of all N-inputs asyn-
chronous Boolean logic gates within a multicellular popula-
tion.

Integrases-mediated memory for history-
dependent multicellular behavior.
By interlacing target sites for different recombinases, recombi-
nation reactions can be made dependent on each other. Using
this concept, researchers started to implement genetic devices
tracking the order of occurrence of signals, as well as history-
dependent gene expression programs15, 17, 39. We found that a
basic history-dependent motif could be repeatedly distributed
into different cells to straightforwardly implement all input
event-order trackers using a multicellular consortia (Fig. S2,
Table S1). The state of the tracker could be addressed experi-
mentally via multiplexed next-generation sequencing.

Previous methods designed history-dependent gene expres-
sion program using pairs of mutant recombination sites17.
Finding a design to execute a given program relied on com-
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Figure 2. A Hierarchical composition framework for asynchronous Boolean integrase logic. (A) Distribution of a Boolean logic equation within a
multicellular consortia. Boolean logic equations are decomposed into products of variables or their negations. Here an example is depicted in which a Boolean
logic equation is decomposed into three sub-equations and implemented in three separate computing cellular units. (B) Principle of integrase-mediated
excision. Integrase is expressed in response to a transcriptional signal and triggers excision of DNA sequences flanked by attB and attP disposed in parallel
orientation. (C) Elementary computational elements. To obtain an IMPLY function, a transcriptional terminator is flanked by parallel att sites. In the absence
of signal, transcription of the gene of interest is blocked. When the signal is present the terminator is excised, and the output gene is expressed. To obtain a
NOT function, a promoter flanked by parallel att sites. In the absence of signal, the gene of interest is expressed. When the signal is present, the promoter is
excised, and the gene is not expressed anymore. (D) Functional composition of IMPLY elements into IMPLY-s modules. IMPLY elements are composed in
series to obtain product of IMPLY functions. For a 2-inputs IMPLY module, the output gene is expressed only when both inputs have been present and both
terminators excised (corresponds to an AND gate (A.B)). (E) Functional composition of NOT elements into NOT modules. NOT elements are nested to obtain
products of NOT functions. For a 2-inputs NOT module, the output gene is expressed only when none of the inputs has been present (corresponding to a NOR
gate not(A).not(B)). (F) Hierarchical composition framework for Boolean integrase logic. IMPLY-s and NOT-s modules composed from elements are
composed in series, following a priority rule in which the NOT-s module is placed upstream the IMPLY-s module. The device shown here can be scaled to all
logic functions based on product of NOT and IMPLY functions.

putational screening. Despite successful implementation of
several 3-inputs programs, some programs were not accessi-
ble. In addition, the scalability of such systems might be chal-
lenging for several reasons. First, each program is executed
using an ad-hoc design, requiring case-by-case optimization.
Second, it is not clear how many pairs of mutant recombina-
tion sites can be used in parallel in a single-cell without any
non-specific recombination reaction occurring. Third, repeti-
tive DNA sequences often lead to genetic instability through
homologous recombination6, 40 and fourth, highly-repetitive
DNA sequences are notoriously difficult to synthesize.

We thus aimed at designing a composition framework en-
abling all possible history-dependent gene expression pro-
grams for up to 5 inputs to be systematically implemented

within a multicellular consortia. To this aim, we used inte-
grase switches performing site-specific DNA inversion and
excision (Fig. 4A).

Modular scaffold designs for history-dependent
gene expression programs.
Each history-dependent gene expression program can be rep-
resented as a lineage tree (Fig. 4B for 2-inputs) in which
each node corresponds to a state of the system (gene expres-
sion either ON or OFF ) after inputs occurred in a particular
sequence. Each lineage corresponds to a specific order-of-
occurrence of the inputs. The number of lineages is equal
to N! where N is the number of inputs. For instance, for
2-inputs, 2 lineages exist, while for 3 inputs, 6 lineages ex-
ist. In our design, we decompose the history-dependent gene
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Figure 3. Implementing all Boolean logic functions using a reduced number of computational devices. (A) Schematics of all Boolean computational
devices needed to implement for up to 4-inputs functions. We reduced the number of computational devices by connecting all signals to all integrases. Using
this scheme, only one function per set of symmetric functions has to be encoded in a device. (B) Maximum number of strains and number of computational
devices needed to compute all Boolean functions for a given number of inputs. See material and methods for details. (C) Proportion of Boolean functions
implementable with a specific number of strains for 3 and 4-inputs. (D) Example of a biological implementation for a 4-inputs Boolean function. The function
shown here is divided into sum of products (see Fig. 2A). Each product of simple terms is executed using previously defined computational devices into
separated cellular computing units. By combining the different units, the full-logic function is obtained. If at least one of the cellular units is ON, the output is
considered to be present. Of note, inputs are not always connected to the same integrase (as for input D in Cell1 and Cell2), and all integrases and inputs are
not present in all Cells.

expression program into subprograms corresponding to the
different lineages. Each subprogram is then performed by a
different cellular subpopulation (Fig. 4B right panel). Of note,
we consider that the system operates in fundamental mode,
i.e. inputs do not occur simultaneously, but sequentially.

We designed a modular scaffold supporting the execution
of all 2-inputs history-dependent gene expression programs.
The scaffold contains 3 directional cloning positions each sup-
porting expression of a corresponding gene of interest (GOI)
in a particular state of the lineage tree (Fig. 4C). Thus, any
possible combination of gene expression states within a par-
ticular lineage can be achieved by simply inserting the desired
gene at a given position (Fig. 4D). Importantly, depending on
the identity of the different GOIs, the scaffold can be used to
support single or multiple output programs.

Cellular subpopulations containing a scaffold incorporating

different GOIs can be combined to perform multi-lineage his-
tory dependent genetic output (Fig. 4E). If control signals are
exchanged between the different integrases, the same scaffold
can be reused in all lineages. Following a similar principle,
we designed scaffolds for 3, 4, and 5-inputs history dependent
gene expression programs (Fig. 5A to E). The 3 and 4-inputs
scaffolds allow for expression of a different GOI in each state
of a given lineage (Fig. 5C for 3-inputs), while the 5-inputs
scaffold allow expression of a different GOI in each states
except the state 0 (no inputs). An additional strain is needed
if gene expression is required in this condition.

The maximum number of cellular computation units needed
to implement a history-dependent gene expression program is
equal to the number of lineage (N! for N-inputs). For example,
a maximum of 6 strains is needed for 3-inputs programs and
24 strains for 4-inputs programs (Fig. 5F). However, most
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sites are in the opposite orientation (left panel), the DNA sequence flanked by the sites is inversed. If integrase sites are in the same orientation (right panel),
the DNA sequence flanked by the sites is excised. (B) Representation of history-dependent gene-expression programs and decomposition in separate strains.
We represent history-dependent gene-expression programs as a lineage tree. Arrows represent the presence of inputs and nodes represent states of the system
associated order-of-occurrence of the inputs. Gene-expression outputs associated to specific states are represented by a specific color or/and number. As the
response of the system is history-dependent, the combinatorial state A.B (A and B) is separated in A then B (A-B) and B then A (B-A). For decomposition of
the program into separate cells, each lineage of the history-dependent lineage tree is implemented in a different cell. (C) Operation of a 2-inputs
history-dependent device. For each state of the lineage of interest, a different gene is expressed and no gene is expressed for states which are not in the lineage.
Gene 0 is expressed when no input is present. If input A is present first, gene 1 is expressed, if input B which is present first, no gene is expressed (nor will be
expressed) as the promoter is excised. If input B follows input A, gene 2 is expressed. (D) Gene swapping in a 2-inputs scaffold to obtain all possible programs
for a single lineage. In the left panel, all 7 possible history-dependent programs for one lineage are listed. Output is equal to one in a state when the circle
corresponding to this state is black. These programs are implementable based on our 2-inputs scaffold by addition of genes corresponding to the ON state in
the corresponding GOI positions. In the right panel, two examples of biological implementation. For the first one, state 0 and 3 are ON, thus output genes are
placed corresponding GOI positions. Same principle for the second example. (E) Example of implementation of 2-inputs history-dependent gene-expression
programs in a multicellular consortia. As some states are ON in the two different lineages, each lineage is implemented using the 2-inputs scaffold with specific
genes at appropriate positions.

functions are implementable with less than the maximum
number of cells.

As for Boolean logic programs, a reduced number of stan-
dard devices is needed to implement all programs. Each
N-inputs standard device corresponds to the N-inputs scaf-
fold with insertion or not of genes at specific GOI position.
To reduce the number of standard devices and to allow full-
characterization of all devices, we chose to realize specific
lineages by swapping connections between control signals
and integrases instead of changing the position of integrase
sites within the scaffold.

As an example for multiple-outputs programs , for a 3-
inputs/3-outputs history-dependent gene-expression programs,
2 strains are needed, 3 different output genes are placed in the
corresponding GOI positions and the 3-inputs are connected
differently to integrases in the 2 different strains (Fig. 5G). If
multiple outputs would need to be ON at the same time for
a single state, the different output-genes could be positioned
in a polycistronic architecture at the same GOI position. In
summary, our scaffold-based design supports the execution of
up to 5-inputs/N-outputs history-dependent gene-expression
programs within a multicellular population.

Discussion

In this work we developed scalable composition frameworks
to implement asynchronous Boolean and history-dependent
logic as well as N-inputs event-order trackers within a mul-
ticellular consortia. We provide an online (currently beta)
design tool for the systematic design of asynchronous logic cir-
cuits called CALIN (Composable Asynchronous Logic using
Integrase Networks). While these designs are currently the-
oretical, the robustness of integrase-mediated recombination
against various sites permutations and orientations10, 11, 17, 37

should support straightforward experimental implementation.

As serine integrases do not require host-specific cofac-
tors and can operate in many species, Boolean and history-
dependent gene expression programs could be implemented
in many organisms. For instance, history-dependent logic
could be useful to control cellular differentiation41. Logic
programs could also be distributed between different species
operating in concert. In such schemes, researchers could take
advantage of the particular capacities of different organisms
to detect different signals and/or perform specific tasks. Ex-
ample of applications include environmental remediation42, 43,
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Figure 5. Scaling-up history-dependent scaffolds. (A) A 3-inputs lineage tree. The four rows of the lineage tree correspond to a different number of inputs
that have occurred sequentially (from 0 to 3 inputs) and the 6 lineages to a different order-of-occurrence of inputs (example: A-B-C for lineage 1 and B-A-C
for lineage 3). (B) 3-inputs scaffold design. Output genes are introduced at appropriate GOI positions (from 0 to 3) corresponding to the 4 states of a lineage
(from 0 to 3 inputs occurrence) as in Fig 4. (C) Operation of the 3-inputs scaffold for one lineage. For each state of the lineage of interest, a different gene is
expressed and no gene is expressed for states which are not in the lineage. Gene 0 is expressed when no input is present. (D) and (E) 4 and 5-inputs scaffold
designs. Designs follow the same principles as in C. and Fig4. For the 5-inputs scaffold, no gene is expressed when no input is present. (F). Maximum number
of strains and number of computational devices needed to implement all programs for a given number of inputs and single output system (See material and
methods for details). The graph represents number of possible history-dependent programs over the number of inputs. In order to reduce device number, all
devices are based on a single scaffold and the different lineages are implemented by exchanging the signals driving integrase expression. (G) Example of
3-inputs and 3-outputs history-dependent gene-expression program. The lineage tree of interest shows 4 states ON with 3 different types of output in two
different lineages. As two lineages exhibit an ON state, we implement this program in 2 different cell lines. The first cell computes the lineage A then C then B
(Yellow-Purple-blue) with 3 ON states for different outputs. Consequently, different types of output genes are inserted in the corresponding GOI position. For
the second cell, the lineage implemented is C then A then B (Purple-Yellow-blue), as an identical scaffold is used, inputs and integrases are connected to fit the
lineage order.

or microbiome engineering for therapeutic applications44.

By taking advantage of the single-layer architecture of in-
tegrase logic, each subcellular population of the consortia
performs complex logic functions . In consequence, the de-
signs presented here exhibit two significant improvements
over previous DMC systems: (i) no cell-cell communication
channels (i.e. chemical “wires”) are needed, and (ii) cells
do not need to be spatially separated, thereby supporting the
implementation of fully autonomous multicellular consortia
operating without external physical control device.

Another difference between our system and other DMC
is the use of integrases switches that provide memory to the
system and support time-dependent logic15, 17, 39. Because of
recombinase mediated DNA data-storage, the state of the logic
system can be not only be addressed through reporter gene
expression but also via PCR or DNA sequencing11, 15, 45, even
if the cells die. Such properties provide many flexible delayed
readout modalities, and could be useful for applications like

diagnostics or environmental monitoring .

As others DMC systems, for a given number of inputs,
the number of elementary computational devices needed to
compose all logic functions compares very favorably with the
number of possible functions. For example, implementing all
65 536, 4 inputs, or all 4.109, 5-inputs Boolean functions only
requires 14 or 20 computational modules, respectively. For
event-trackers, only 3 strains are sufficient to track the order
of occurrence of 4 inputs (among 65 possible states, table
S1), and 5 strains are required to track all 6-inputs sequence
(among 1957 possible states). For history-dependent gene
expression programs, 63 computational devices are sufficient
to implement all 1098 possible 5-inputs history-dependent
gene-expression programs, a number higher than the estimated
number of atoms in the observable universe (1079,46) (Fig.
5F). Of note, some history-dependent logic programs (e.g.
successive expression of a different gene at each stage of a
specific input sequence) can be implemented by using only
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one scaffold in one cellular strain.
A possible limitation of our system is the high number

of strains that has to operate in concert when the number
of inputs increase (Fig. 3B). For example, some 4-inputs
logic functions require up to 8 strains operating together. Co-
cultivating such high-number of strains could cause several
types of failures. For instance, cells expressing the output
gene(s) could divide slower and be counter-selected from
the population. This problem could be addressed through
meticulous optimization of gene expression levels or by en-
capsulating the different strains into hydrogel beads45. Also,
as the number of strains increase, the output of one subpop-
ulation representing a small fraction of the whole consortia
could become difficult to measure. Also, the output level
in the global population will be different if one or multiple
cellular subpopulation are turned ON. A cell-cell communi-
cation channel could be used to distribute the output within
the whole-population (Fig. S3). Further work should thus
be directed at finding efficient circuit minimization methods,
enabling a reduction in the number of strains by exploiting
existing redundancies within the different tree lineages (Fig.
S4).

Finally, asynchronous Boolean logic might not be suited
for applications requiring “real-time” response and reversibil-
ity. Interestingly, synchronous, real-time logic gates can be
implemented based on reversible recombination reactions per-
formed by integrases coupled with Recombination Direction-
ality Factors (RDFs)10, 30. We thus also designed scalable hi-
erarchical composition frameworks based on integrases/RDFs
systems (Fig S5).

In conclusion, the scalable and composable designs pre-
sented here are a new addition to the toolbox of logic devices
and will support research and engineering applications requir-
ing complex programs to be executed by living cells.
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Methods
Equations for the determination of the number of func-
tions/strains/devices for Boolean logic and History-
dependent logic.

For Boolean logic, the number of Boolean function corre-
sponds to 2 to the power of the number of possible states, as
each states can be equal to 1 or to 0. The number of possible
states is equal to 2 to the power of N with N the number of
inputs. Consequently, the number of Boolean logic function
is equal to (eq1).

Numberboolean f unctions = 22N
(eq1)

Then, the maximum number of strains needed to implement
any Boolean logic function with N inputs is equal to (eq2),
as all N-inputs Boolean equations can be written as a sum of
2N−1 product of variables or their negations38.

Numberstrains = 2N−1(eq2)

The number of different conjunctions (corresponding to a
product of variables or their negations) is equal to (eq3).

Numbercon junctions = ∑
N
i=1 2X

(N
k

)
(eq3)

Then, if we implement all these functions within cells, the
number of standard devices needed is equal to the number of
conjunctions (eq4).

Number devices without simpli f ication = Numbercon junctions =

∑
N
i=1 2X

(N
k

)
(eq4)

This method leads to a high number of devices. There-
fore, we decided to construct only one device per set of sym-
metric functions (ex: A.not(B) is the symmetric function of
not(A).B). This approach reduces the number of standard
devices as in (eq5). In consequence, for a N-inputs function,
devices computing from 1 to N-inputs are needed and N+1
non-symmetric function computing product of N-variables or
its negation exist.

Number devices = ∑
N
k=1(N +1)(eq5)

In first approximation, N sensor-modules in which a a con-
trol signal (i.e. a sensor device responding to an input of
interest) is connected to an integrase are needed for the con-
struction of a N-inputs system. However, as we reduced the
number of devices to a set composed of non-symmetric func-
tions, we need to connect all control signals to all integrases to
enable all functions to be computed. Then, N2 sensor-modules
are needed.

For history-dependent logic, the programs are represented
as a lineage tree. Each node of this tree corresponds to a
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specific state of the system in response to different scenario:
when none of the inputs occurred, when one input occurred,
and when multiple inputs occurred in a particular sequence.
For a N inputs-program, the number of states is equal to (eq6).

Number states = ∑
N
k=0

N!
k! (eq6)

Then, for N-inputs 1-output history-dependent logic programs,
the number of possible programs is equal to 2 to the power
of the number of states (eq7), as all states can have either a
ON or OFF output. Similarly for N-inputs M-outputs history-
dependent logic programs, 2 to the power of the number of
states multiplied by M programs exist (eq8).

Number 1−out put programs = 2Numberstates = 2∑
N
k=0

N!
k! (eq7)

Number M−out puts programs = 2M.Numberstates = 2M ∑
N
k=0

N!
k! (eq8)

The maximum number of strains needed to implement a N-
inputs/M-outputs history-dependent gene-expression program
is equal to factorial of N which corresponds to the number of
lineage in an N-inputs lineage tree.

The number of devices for 1-output/N-input system is equal
to the number of states in one lineage and corresponds to the
number of inputs present which can go from 0 input to N
inputs (eq9).

Number states per lineage = N +1(eq9)

Consequently, the total number of devices needed to con-
struct all N-inputs history-dependent programs is equal to
(eq10).

Number devices = 2Numberstates per lineage=2N+1
(eq10)

As for Boolean logic devices, we construct only standard
history-dependent devices based on one scaffold and then
differentially connect control signals to integrases to encode a
specific lineage. The number of required sensor-modules is
then identical than for Boolean logic.

Automated generation of genetic designs to execute mul-
ticellular Boolean logic and History-dependent gene ex-
pression programs .

We encoded algorithms for N-inputs Boolean logic circuit
designs and up to 5-inputs History-dependent program designs
using Python (Fig. S6). For both algorithms, the input of
the program is a truth table, either a Boolean truth table or a
lineage tree (equivalent to a sequential truth table). The output
is the biological design, which corresponded to the number of
strains needed, the design of each computing device and the
specific integrases-inputs connections for each strain.

For the Boolean logic design (Fig. S6A), the truth table is
transformed into a Boolean logic function in the disjunctive
normal form using the Quine McCluskey algorithm38. We
decompose the function in subfunction corresponding to the
conjunctive terms (product of variables or variable negations).
From each subfunction, we extract two types of informations.
First, based on the numbers of IMPLY and NOT functions,
we identify which Boolean logic devices are needed. Sec-
ond, based on the association of inputs to either IMPLY and
NOT functions, we identify which sensor-modules are needed
among the different connection possibilities between control
signals and integrases. Finally, by combining the designs de-
termined for the different subfunctions, we obtain the global
design for biological implementation of the desired truth table.

For History-dependent logic design (Fig. S6B), the lineage
tree is decomposed in sub-tree composed of single lineage
containing one or multiple ON states. This decomposition
is done subtracting iteratively the lineages containing ON
states. To obtain the lowest number of subprograms, we pri-
oritize among the lineages with ON states the ones for which
the highest number of inputs occured (from the right to the
left of the lineage tree). After decomposition, for each se-
lected lineage, two informations are extracted. First, based
on which states are ON, we directly design the correspond-
ing scaffold by specifically inserting genes at the adequate
GOI positions. Second, the order-of-occurrence of inputs
corresponding to the lineage is used to identify which sen-
sor modules are needed among the different connection pos-
sibilities between control signals and integrases. Then, by
combining the design of the different lineages, we obtain the
global design for biological implementation of the desired
history-dependent gene expression program.

As these methods are straightforward, they support the
obtention, in a reduced time, of biological designs performing
complex programs in response to a large number of inputs.
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