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A structural benchmark for logical argumentation frameworks

This paper proposes a practically-oriented benchmark suite for computational argumentation. We instantiate abstract argumentation frameworks with existential rules, a language widely used in Semantic Web applications and provide a generator of such instantiated graphs. We analyse performance of argumentation solvers on these benchmarks.

Introduction

Amongst the plethora of tools for reasoning in presence of inconsistency, argumentation has always held a particular place because of its proximity with real world interaction [START_REF] Leite | Applications of logical approaches to argumentation[END_REF]. In this paper, we focus on logic based argumentation where abstract argumentation frameworks [START_REF] Minh | On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games[END_REF] are instantiated by constructing arguments and attacks from inconsistent knowledge bases. Logic-based argumentation has been studied with many frameworks proposed: assumption-based argumentation frameworks [START_REF] Bondarenko | An Assumption-Based Framework for Non-Monotonic Reasoning[END_REF], DeLP [García and [START_REF] García | Defeasible Logic Programming: An Argumentative Approach[END_REF], deductive argumentation [START_REF] Besnard | Elements of Argumentation[END_REF] or ASPIC/ASPIC+ [START_REF] Amgoud | Final review and report on formal argumentation system[END_REF][START_REF] Modgil | The ASPIC+ framework for structured argumentation: a tutorial[END_REF].

Despite argumentation being a mature field, practically inspired benchmarks are currently missing. As a rare example of a practical argumentation benchmark consider NoDE 4 , which contains graphs that model debates from Debatepedia 5 , the drama "Twelve Angry Men" by Reginald Rose and Wikipedia revision history. However, the graphs from this benchmark are small (many of them have less than 10 arguments) and their structure is simplistic. The lack of benchmark was acknowledged by the community long time ago, but became obvious with the appearance of the International Competition on Computational Models of Argumentation (ICCMA) 6 . This is why new algorithms are always tested on randomly generated graphs, e.g [START_REF] Nofal | Algorithms for decision problems in argument systems under preferred semantics[END_REF] and [START_REF] Cerutti | Computing preferred extensions in abstract argumentation: A sat-based approach[END_REF].

The goal of this paper is to address this drawback by generating argumentation graphs from knowledge bases and studying their properties empirically (by running the argumentation solvers). We use an existing logic-based argumentation framework [START_REF] Croitoru | What Can Argumentation Do for Inconsistent Ontology Query Answering?[END_REF][START_REF] Croitoru | Introducing Preference-Based Argumentation to Inconsistent Ontological Knowledge Bases[END_REF] instantiated with existential rules. This language was chosen because of its practical interest on the Semantic Web [START_REF] Thomazo | Mixing Materialization and Query Rewriting for Existential Rules[END_REF][START_REF] Thomazo | Compact Rewritings for Existential Rules[END_REF][START_REF] Zhang | Expressive Completeness of Existential Rule Languages for Ontology-Based Query Answering[END_REF]. Existential rules generalise Description Logics fragments (such as DL-Lite, etc.) that are underlying OWL profiles. Therefore, the choice of this language is significant for Semantic Web applications, notably Ontology-Based Data Access (OBDA) applications. Given the amount of ontologies and data sources made available by such applications, the paper positioning within this language demonstrates its practical interest and relevance for benchmarking argumentation frameworks. Existential rules possess particular features of interest for logic-based argumentation frameworks such as n-ary (as opposed to binary only) negative constraints or existential variables in the head of rules.

The contribution of the paper is the first benchmark in the literature that uses graphs generated from knowledge bases expressed with existential rules instead of random graphs. Using a suite of parametrised existential rule knowledge bases, we produced the first large scale practically-oriented benchmark in the literature. Furthermore, we run the top six solvers from ICCMA 2015 on the generated benchmark and show that the ranking is considerably different from the one obtained during the competition on randomly generated graphs.

This paper is of interest to both argumentation community and data analysis community. Indeed, for data analysis, the existence of real benchmarks of arguments could be of interest because it can pave the way for intelligent analysis of such instances. These results could then further our comprehension of argumentation graphs structural properties.

Background Notions

In this paper we use the existential rule instantiation of argumentation frameworks of [START_REF] Croitoru | What Can Argumentation Do for Inconsistent Ontology Query Answering?[END_REF]. The existential rules language [START_REF] Calì | A general datalog-based framework for tractable query answering over ontologies[END_REF] extends plain Datalog with existential variables in the rule head and is composed of formulae built with the usual quantifiers (∃, ∀) and only two connectors: implication (→) and conjunction (∧). A subset of this language, also known as Datalog ± , refers to identified decidable existential rule fragments [START_REF] Gottlob | Datalog+/-: Questions and Answers[END_REF][START_REF] Baget | On rules with existential variables: Walking the decidability line[END_REF]. The language has attracted much interest recently in the Semantic Web and Knowledge Representation community for its suitability for representing knowledge in a distributed context such as Ontology Based Data Access applications [START_REF] Baget | On rules with existential variables: Walking the decidability line[END_REF][START_REF] Thomazo | Mixing Materialization and Query Rewriting for Existential Rules[END_REF][START_REF] Thomazo | Compact Rewritings for Existential Rules[END_REF][START_REF] Magka | Computing Stable Models for Nonmonotonic Existential Rules[END_REF][START_REF] Zhang | Expressive Completeness of Existential Rule Languages for Ontology-Based Query Answering[END_REF]. The language is composed of the following elements. A fact is a ground atom of the form p(t 1 , . . . , t k ) where p is a predicate of arity k and t

i , i ∈ [1, . . . , k] constants. An ex- istential rule is of the form ∀ - → X , - → Y H[ - → X , - → Y ] → ∃ - → Z C[ - → Z , - → X ]
where H (called the hypothesis) and C (called the conclusion) are existentially closed atoms or conjunctions of existentially closed atoms and

- → X , - → Y , - →
Z their respective vectors of variables. A rule is applicable on a set of facts F iff there exists a homomorphism from the hypothesis of the rule to F. Applying a rule to a set of facts (also called chase) consists of adding the set of atoms of the conclusion of the rule to the facts according to the application homomorphism. A negative constraint (NC) is a particular kind of rule where C is ⊥ (absurdum). It implements weak negation. A knowledge base K = (F, R, N ) is composed of a finite set of facts F, a set of rules R and a set of negative constraints N . We denote by C * R (F) the closure of F by R (computed by all possible rule R applications over F until a fixed point). C * R (F) is said to be R-consistent if no negative constraint hypothesis can be deduced. Otherwise C * R (F) is R-inconsistent. Note that different chase mechanisms use different simplifications that prevent infinite redundancies [START_REF] Baget | On rules with existential variables: Walking the decidability line[END_REF]. In fact, C * R (F) is a finite set when we restrict ourselves to recognisable finite extension set classes [START_REF] Baget | On rules with existential variables: Walking the decidability line[END_REF] of existential rules (i.e. those sets of rules that when applied over a set of facts guarantee a finite closure) and use a skolem chase (i.e. the rule application operator that replaces every existential variable with a function depending on the the hypothesis' variables) for saturation [START_REF] Marnette | Generalized schema-mappings: from termination to tractability[END_REF].

Example 1. Consider the following simple knowledge base K: James is a cat. James is affectionate. James is handsome. James is intelligent. All cats are mammals. One cannot be affectionate, handsome and intelligent at the same time7 .

Formally, K = (F, R, N ), where:

F ={cat(James), af f ectionate(James), handsome(James), intelligent(James)}. R ={∀x cat(x) → mammal(x)}. N ={∀x (af f ectionate(x) ∧ handsome(x) ∧ intelligent(x) → ⊥)}.
We can see that the set of facts is R-inconsistent. Indeed, by using solely F we are able to deduce the hypothesis of the negative constraint in N .

An argument [START_REF] Croitoru | What Can Argumentation Do for Inconsistent Ontology Query Answering?[END_REF] in Datalog ± is composed of a minimal (with respect to set inclusion) set of facts called support and a conclusion entailed from the support. The Skolem chase coupled with the use of decidable classes of Datalog ± ensures the finiteness of the proposed argumentation framework [START_REF] Baget | On rules with existential variables: Walking the decidability line[END_REF].

Definition 1. Let K = (F, R, N ) be a knowledge base. An argument a is a tuple (H, C) with H a non-empty R-consistent subset of F and C a set of facts such that:

-H ⊆ F and C * R (H) |= ⊥ (consistency) -C ⊆ C * R (H) (entailment) -H ⊂ H s.t. C ⊆ C * R (H ) (minimality)
The support H of an argument a is denoted by Supp(a) and the conclusion C by Conc(a). If X is a set of arguments, we denote by Base(X) = a∈X Supp(a).

Example 1 (cont.

). An example of an argument is a 1 = ({af f ectionate(James)}, {aff ectionate(James)}) which states that James is affectionate. Moreover, the minimality implies that arguments that possess excess information in their supports like ({af f ectionate(James), cat(James)}, {af f ectionate(James)}) are not considered. Another example of argument is a 2 = ({intelligent(James), handsome(James)}, {intelligent(James), handsome(James)}). The argument a 3 = ({cat(James)}, {mammal(James)}) is another example of an argument.

To capture inconsistencies between arguments, we consider the undermining attack [START_REF] Croitoru | What Can Argumentation Do for Inconsistent Ontology Query Answering?[END_REF] Example 1 (cont.). We have that a 2 attacks a 1 but a 1 does not attack a 2 (as we consider a subset of the support of a 2 we cannot entail a negative constraint). This is an example that shows that the graph is not symmetric, which is due to the presence of n-ary constraints.

The complete graph for the knowledge base of Example 1 is composed of 27 arguments and 144 attacks and is represented in Fig. 1. For example, the argument a 7 0 = ({intelligent(James)}, {intelligent(James)}) is attacked by the argument a 5 2 = ({af f ectionate(James), handsome(James)}, {af f ectionate(James), handsome(James)}).

When considering an argumentation graph AS = (A, C), one is often interested in the several consistent viewpoints (or subsets of arguments) that can be inferred. Let E ⊆ A and a ∈ A. We say that E is conflict-free iff there exists no arguments a, b ∈ E such that (a, b) ∈ C. E defends a iff for every argument b ∈ A, if we have (b, a) ∈ C then there exists c ∈ E such that (c, b) ∈ C. E is admissible iff it is conflict-free and defends all its arguments. E is a complete (CO) extension iff E is an admissible set which contains all the arguments it defends. E is a preferred extension (PR) iff it is maximal (with respect to set inclusion) admissible set. E is a stable extension (ST) iff it is conflict-free and for all a ∈ A\E, there exists an argument b ∈ E such that (b, a) ∈ C. E is a grounded extension (GR) iff E is a minimal (for set inclusion) complete extension.

The Benchmark

The aim of this section is to detail the generation of benchmarks based on argumentation graphs instantiated using existential rules. As seen in the previous section, existential rules, as a logical language, provide many features (n-ary negative constraints, existential variables in the rule conclusion) that make the instantiated argumentation graph far from simplistic. Furthermore the instantiated graph is reflecting the structure of OBDA inconsistent knowledge bases and it is thus justifying its interest as practical benchmark. Generating such graphs is thus significant for a broader community interested in reasoning in presence of inconsistency on the Semantic Web.

We explain the generation of the benchmark graphs in Section 3.1. Then, in Section 3.2, we run top argumentation solvers on the benchmark and discuss the results. The goal of this experimental part is to see how the solvers perform on graphs generated from logical knowledge bases and compare performance with respect to randomly generated graphs.

All experiments presented in this section were performed on a VirtualBox Linux machine running with a clean Ubuntu installation with one allocated processor (100%) of an Intel core i7-6600U 2.60GHz and 8GB of RAM. The result files are available upon request (the files amount to more than 15 GB of data).

Benchmark Generation

Knowledge Base Generation We generated a total of 134 knowledge bases: 108 different knowledge bases for the set of small graphs (denoted b 1 to b 108 ) and 26 for the set of big graphs accessible online at https://github.com/anonymousIDA/ Knowledge_bases. This was done in order to have graphs of similar sizes as those of the 2015 International Competition on Computational Models of Argumentation (IC-CMA 2015). The ICCMA benchmark contains two sets of graphs: a set composed of small graphs (less than 383 arguments) and a set of big graphs (3783 to 111775 arguments). We define, for a fixed size of generated F (that varied from 2 to 5), some knowledge bases with binary (respectively ternary when applicable) constraints in order to obtain an incremental coverage of the facts. We then add rules in a similarly incremental manner. Table 1 shows the characteristics of the knowledge bases we selected.For example, if considering 3 facts a(m), b(m), c(m), we chose a representative of binary constraints as ∀x(a From Knowledge Bases To Argumentation Graphs In the argumentation graph generation process, we only kept knowledge bases whose argumentation framework is not automorphic to a previously generated graph. The KB format is dlgp [Baget et al., 2015b], allowing translations to and from various Semantic Web languages such as RDF/S, OWL, RuleML or SWRL [Baget et al., 2015a]. For graph generation we made use of the Graal [Baget et al., 2015c] framework, a Java toolkit for reasoning within the framework of existential rules. Graal was used for storing the existential rule knowledge bases and for computing conflicts. On top of Graal we provided a graph generation program that works in three steps:

(x) ∧ b(x) → ⊥) or ∀x(a(x) ∧ b(x) → ⊥) or ∀x(a(x) ∧ b(x) → ⊥). We then chose ∀x(a(x) ∧ b(x) ∧ c(x) → ⊥).
1. All possible arguments are generated: R-consistent subsets of F are used as supports and conclusions are deduced from them (see Definition 1). 2. Non minimal arguments are removed (see Definition 1). 3. Attacks are computed following Definition 2.

The obtained graphs were translated in the Aspartix (apx) format (the same format used in ICCMA 2015). 2. We show by this example that some of our generated graphs also possess a sense of "symmetry". In the next section, we run the top 6 argumentation solvers on the proposed benchmark and discuss the obtained results.

Benchmark Solvers Results

We recall that the graphs used in the ICCMA 2015 benchmark were separated in three sets: a first set of large graphs (1152 to 9473 arguments) with large grounded extensions and an average density of 1.00% 8 , a second set of smaller graphs (141 to 400 arguments) with numerous complete/preferred/stable extensions and an average density of 3.68% and a third set of medium graphs (185 to 996 arguments) with rich structure of strongly connected components and an average density of 7.75%. Our benchmark graphs are denser, having an average density of 31.27% for small graphs and 29.69% for large graphs.

To see if the proposed benchmark graphs behave in a similar manner as the randomly generated graphs of ICCMA 2015, we ran the top six solvers of the competition:

8 Graph density for a directed G = (V, E) is equal to |E| |V |(|V |-1)
where V is the set of nodes and E the set of arcs.

CoQuiAAS, ArgSemSAT (ArgS.SAT), LabSATSolver (LabSATS.), ASGL, ASPARTIX-D and ArgTools (ArgT.). We used the solvers to complete two computational tasks: SE (given an abstract argumentation framework, determine some extension) and EE (given an abstract argumentation framework, determine all extensions). These two computational tasks were to be solved with respect to the following standard semantics: Complete Semantics (CO), Preferred Semantics (PR), Grounded Semantics (GR) and Stable Semantics (ST).

In order to have similar assessment conditions, we used exactly the same ranking method as ICCMA 2015. The solvers were ranked with respect to the number of timeouts on these instances and ties were broken by the actual runtime on the instances. Table 2 shows the average time needed for each solver to complete each task for each semantics in the case of small graphs. There were no errors or time-outs thus the average time reflects the actual ranking (see Table 3).

For large instances, many solvers did not support large inputs resulting in several crashes / errors. Ties were broken by the average time of successfully solved instances (Table 5). Please note that for large graphs, for some tasks, some solvers timed out for all instances resulting in equal rankings (EE-CO: ASGL and ArgTools for instance).

It is noticeable that CoQuiAAS comes first in the two batches of generated graphs. As an explanation, please note that CoQuiAAS is based on MiniSAT solver, which is known to work well in the presence of structured information (i.e. symmetries). It might be the case that the generated graphs keep some of their structure even after being translated into a SAT instance which could explain the obtained result.

In order to see how different the solver ranking on the random benchmark used by ICMMA 2015 9 is from the solver ranking on the knowledge base benchmark, we used the normalised Kendall tau distance. 10 The distance outputs 0 if two rankings are identical and 1 if one ranking is the reverse of the other. Table 7 shows the normalised Kendall tau distance between the rankings of the generated graphs and the competition ranking. What comes out is that:

-Although the ranking of the ICCMA 2015 benchmark and the one for large graphs for the task EE-GR is slightly different (we can not break the tie between ASPARTIXd and ASGL), they are identical with respect to Kendall tau. -We have the same normalised Kendall tau distance for the small graphs and the large graphs for the tasks SE-CO, SE-PR and SE-GR. -The small graphs have a higher normalised Kendall tau distance than the large graphs for the tasks SE-ST, EE-CO, EE-PR and EE-GR. -The small graphs have a lower normalised Kendall tau distance than the large graphs for the task EE-SET. -In average, the results are more similar for the large graphs than for the small graphs.

This benchmark is interesting because it shows that for the instantiated graphs we generated, it is strongly advised to use CoQuiAAS as the solver. For relatively small 9 http://argumentationcompetition.org/2015/results.html 10 This distance is equal to the number of pairwise disagreements between two ranking lists and is normalised by dividing by n(n-1)

2

, where n is the number of solvers.

ArgS.SAT ASGL ArgT. Aspartix-d CoQuiAAS LabSATS. SE-CO 0,0138 0,1719 0,0059 0,0249 0,0031 0,3644 SE-PR 0,0165 0,2137 0,0059 0,4445 0,0007 0,2906 SE-GR 0,0339 0,2101 0,0057 0,3217 0,0010 0,1944 SE-ST 0,0148 0,2194 0,0060 0,0279 0,0018 0,2520 EE-CO 0,0694 0,2282 0,0096 0,0247 0,0024 0,2908 EE-PR 0,0517 0,1660 0,0085 0,5763 0,0029 0,3765 EE-GR 0,0325 0,1861 0,0052 0,3239 0,0016 0,2262 EE-ST 0,0486 0,1661 0,0065 0,0231 0,0027 0,3151 graphs, the choice of the solver can be bypassed as the differences are negligible. However, for larger graphs, we noticed several issues:

-It seems that ASGL uses a different algorithm for SE-GR and EE-GR (this is very noticeable by the difference in the number of timeouts). -ASGL is not suitable for finding complete extensions. -Aspartix-D is not suitable for finding preferred and grounded extensions.

-There are 15 instances that were too big to perform the task EE-PR for all solvers.

Discussion

This paper starts from the observation that benchmarks of argumentation graphs generated from knowledge bases are currently missing in the literature. We thus propose to consider logic based argumentation frameworks instantiated with existential rules. We provided a tool for generating such graphs out of existential rule knowledge bases. We ran top argumentation solvers on the generated benchmark and analysed their performance with respect to performance on randomly generated graphs.

Note that constructing all the arguments from the knowledge base might result in a big number of arguments. One could reduce the number of arguments by preserving only some of them, i.e. by keeping only the so called core [START_REF] Amgoud | Equivalence in logic-based argumentation[END_REF]. In the present paper, we do not use the notion of a core because we do not want the choice of the core (there are several possibilities) to influence the results of this first study. As it is not convenient to generate too many arguments in practice, investigating benchmark generation using different notions of core is part of future work.

  : a attacks b iff the union of the conclusion of a and an element of the support of b is R-inconsistent. Definition 2. An argument a attacks an argument b denoted by (a, b)∈ C (or aCb) iff ∃φ ∈ Supp(b) s.t. Conc(a) ∪ {φ} is R-inconsistent.Now that we defined the structure of arguments and attacks, the argumentation graph corresponding to a knowledge base simply consists of all arguments and attacks that can be generated. Definition 3. An argumentation graph AS is a tuple (A, C) where A is a set of arguments and C ⊆ A × A is a binary relation between arguments called attacks. The argumentation graph instantiated over a knowledge base K is denoted by AS K , where the set of arguments and attacks follow Definition 1 and Definition 2 respectively.

Fig. 1 :

 1 Fig. 1: Graph representation of the instantiated argumentation framework constructed on the knowledge base of Example 1

Example 2 .

 2 Let us consider the knowledge base b 44 = (F, R, N ), where F = {a(m), b(m), c(m), d(m), e(m)}, R = ∅ and N = {∀x(a(x) ∧ b(x) ∧ c(x) → ⊥)}. The corresponding argumentation graph AS K is composed of 26 arguments and 144 attacks and is represented in Fig.

Fig. 2 :

 2 Fig. 2: Representation of the argumentation graph corresponding to b 44 .

Table 1 :

 1 Characteristics of the small knowledge bases.

	Name of the Number Number Number Type Number Number
	KB	of facts of rules of NC of NC of Args of Attacks
	b1 to b6	2 to 7	∅	1	Binary 2 to 95 2 to 2048
	b32	3	∅	2	Binary	4	6
	b33 to b35	4	∅	2 to 3 Binary 7 to 9	24 to 32
	b36 to b40	5	∅	2 to 3 Binary 14 to 19 56 to 128
	b7 to b12	2	1 to 6	1	Binary 4 to 30	5 to 240
	b13 to b18	2	2,4 or 6	1	Binary 6 to 30 15 to 450
	b19 to b28 2 to 7 1 or 3	1	Binary 11 to 383 32 to 32768
	b29 to b31	3	2	1	Binary	16	27 to 30
	b57 to b58	3	1	2	Binary	8	13 to 14
	b59 to b82	4	3	2 to 4 Binary 22 to 71 123 to 896
	b41 to b56 3 to 6	∅	1 to 3 Ternary 6 to 55	9 to 752
	b83 to b84	3	1	1	Ternary	12	29 to 39
	b85 to b87	3	2	1	Ternary	24	93 to 147
	b88 to b108	4	3	1 to 2 Ternary 78 to 103 990 to 2496

Table 2 :

 2 Average time for small instances (in sec).

		ArgS.SAT ASGL ArgT. Aspartix-d CoQuiAAS LabSATS.
	SE-CO	3	5	2	4	1	6
	SE-PR	3	4	2	6	1	5
	SE-GR	3	5	2	6	1	4
	SE-ST	3	5	2	4	1	6
	EE-CO	4	5	2	3	1	6
	EE-PR	3	4	2	6	1	5
	EE-GR	3	4	2	6	1	5
	EE-ST	4	5	2	3	1	6

Table 3 :

 3 Corresponding ranking on small graphs.

		ArgS.SAT ASGL ArgT. Aspartix-d CoQuiAAS LabSATS.
	SE-CO	15	26	16	1	0	11
	SE-PR	18	1	17	26	0	11
	SE-GR	17	0	18	26	0	11
	SE-ST	15	0	18	2	0	11
	EE-CO	22	26	26	9	2	21
	EE-PR	21	26	26	26	15	21
	EE-GR	16	26	17	26	0	11
	EE-ST	15	23	17	1	1	11

Table 4 :

 4 Number of timeouts on the generated large graphs.

		ArgS.SAT ASGL ArgT. Aspartix-d CoQuiAAS LabSATS.
	SE-CO	4	6	5	2	1	3
	SE-PR	5	2	4	6	1	3
	SE-GR	4	2	5	6	1	3
	SE-ST	5	2	6	3	1	4
	EE-CO	4	5	5	2	1	3
	EE-PR	2	4	4	4	1	3
	EE-GR	3	5	4	5	1	2
	EE-ST	4	6	5	2	1	3

Table 5 :

 5 Ranking on the generated large graphs.

Table 6 :

 6 ArgS.SAT ASGL ArgT. Aspartix-d CoQuiAAS LabSATS. Rankings extracted from the ICCMA 2015 website.

	SE-CO	4	2	5	3	1	6
	SE-PR	1	4	6	5	3	2
	SE-GR	3	5	4	6	1	2
	SE-ST	2	5	6	1	4	3
	EE-CO	2	5	6	1	3	4
	EE-PR	1	4	6	5	2	3
	EE-GR	3	5	4	6	1	2
	EE-ST	2	4	5	1	3	6
				Small graphs Large graphs	
			SE-CO	0.400	0.400		
			SE-PR	0.467	0.467		
			SE-GR	0.200	0.200		
			SE-ST	0.600	0.467		
			EE-CO	0.467	0.200		
			EE-PR	0.400	0.067		
			EE-GR	0.267	0.000		
			EE-ST	0.333	0.400		
			Average	0.392	0.275		

Table 7 :

 7 Normalised Kendall tau distance between the rankings of the generated graphs and the competition ranking.

The example is obviously fictitious.
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