
Improving the Performance of STT-MRAM LLC
through Enhanced Cache Replacement Policy

Pierre-Yves Péneau?, David Novo, Florent Bruguier, Lionel Torres,
Gilles Sassatelli and Abdoulaye Gamatié

LIRMM (CNRS and University of Montpellier)
{peneau, novo, bruguier, torres, sassatelli, gamatie}@lirmm.fr

161 rue Ada, 34095 Montpellier, France

Abstract. Modern architectures adopt large on-chip cache memory hi-
erarchies with more than two levels. While this improves performance,
it has a certain cost in area and power consumption. In this paper,
we consider an emerging non volatile memory technology, namely the
Spin-Transfer Torque Magnetic RAM (STT-MRAM), with a powerful
cache replacement policy in order to design an efficient STT-MRAM
Last-Level Cache (LLC) in terms of performance. Well-known benefits
of STT-MRAM are their near-zero static power and high density com-
pared to volatile memories. Nonetheless, their high write latency may
be detrimental to system performance. In order to mitigate this issue,
we combine STT-MRAM with a recent cache The benefit of this combi-
nation is evaluated through experiments on SPEC CPU2006 benchmark
suite, showing performance improvements of up to 10% compared to
SRAM cache with LRU on a single core system.

1 Introduction

Energy consumption has become an important concern of computer architecture
design for the last decades. While the demand for more computing resources is
growing every year, much effort has been put on finding the best trade-off be-
tween performance and power consumption in order to build energy-efficient
architectures. Current design trends show that the memory speed is not grow-
ing as fast as cores computing capacity, leading to the so-called memory-wall
issue. Caching techniques, which have been pushed in the past for mitigating
the memory-wall, are facing the silicon area constraints. Typically, up to 40%
of the total area of processors [9] is occupied by the caches hierarchy. As a con-
sequence, the energy consumed by this part of the CPU is important. As an
example, it constitutes up to 30% of the total energy of a StrongARM chip [11].
In particular, as the technology scaling continues, the static power consumption
is becoming predominant over the dynamic power consumption [4].

Data accesses that occur beyond the Last-Level Cache (LLC) are usually
time and energy-consuming as they have to reach the off-chip main memory. An

? Corresponding author: peneau@lirmm.fr

mailto:pierre-yves.peneau@lirmm.fr


intelligent design of the LLC reducing such accesses can save power and increase
the overall performance. An usual technique adopted in the past consists in
increasing the cache storage capacity so as to reduce the cache miss rate. This
approach is no longer desired due to area and energy constraints. Increasing the
cache size has a negative impact on the financial cost and increases the static
power consumption.

In this paper, we consider an emerging memory technology, the Spin-Torque
Transfer Magnetic RAM (STT-MRAM), a Non-Volatile Memory (NVM) that
has a near-zero leakage consumption. This memory has a higher density than
SRAM, providing more storage capacity for the same area. While STT-MRAM
read latency is close to SRAM read latency, the gap for write access is currently
one obstacle to a wide STT-MRAM adoption. In the present work, we study the
impact in write reduction of cache replacement policies. Each read request lead-
ing to a cache miss eventually triggers a write. Upon this cache miss, the request
is forwarded to an upper level in the memory hierarchy.1 When the response
is received, the corresponding data is written into the cache. Hence, the cache
replacement policy has indirectly an important impact on the number of writes
that occur upon cache misses. We carry out a fine-grained analysis on the actual
sequence of read/write transactions taking place in the cache management strat-
egy. On the basis of this study, we propose and evaluate the combined use of
STT-MRAM and state-of-the-art Hawkeye cache replacement policy [8]. Thanks
to Hawkeye, the number of writes due to cache misses is reduced, while benefit-
ing from STT-MRAM density for larger LLC. Since STT-MRAM integration is
known to provide energy savings [17], we put the focus on its impact on system
performance so as to avoid a degradation of the overall energy-efficiency.

This paper is organized as follows: Section 2 presents related work; Section 3
introduces a motivational example and our proposed approach; Section 4 de-
scribes the experimental results validating our proposal; finally, Section 5 gives
some concluding remarks and perspectives.

2 Related Work

The use of hybrid caches has been a recurrent approach to address write asym-
metry in NVMs. A hybrid cache mixes SRAM and NVM memories to achieve
the best of each technology. Most existing techniques rely on a combination of
hardware and software techniques.

Wu et al [18] proposed a hybrid memory hierarchy based on a larger LLC
thanks to NVM density. They evaluated different memory technologies and iden-
tified eDRAM as the best choice for performance improvement, while STT-
MRAM is the best choice for energy saving. Sun et al. [16] designed a hybrid
L2 cache with STT-MRAM and SRAM, and employed migration based policy
to mitigate the latency drawbacks of STT-MRAM. The idea is to keep as many
write intensive data in the SRAM part as possible. Senni et al. [14] proposed

1 The first cache level (L1), the closest to the CPU, is the lowest level.



a hybrid cache design where the cache tag uses SRAM while cache data array
uses STT-MRAM. The cache reacts at the speed of SRAM for hits and misses,
which slightly mitigate the overall latency, while power is saved on the data array
thanks to low leakage. Migration techniques for hybrid memories are expensive
and may suffer from inaccurate predictions, inducing extra write operations.

Zhou et al. [19] proposed another technique called early-write-termination:
upon a write, if the value to write is already in the cell, i.e., a redundant write,
the operation is canceled. This technique, implemented at circuit level, does
not require an extra read before writing and saves dynamic writing energy.
Nevertheless, it is mainly relevant to applications with many redundant writes.

Software techniques to mitigate NVMs drawbacks have been also proposed.
Li et al. [10] proposed a compilation method called migration-aware code mo-
tion. The goal is to change the data access patterns in cache blocks so as to
minimize the extra cost due to migrations. Instructions that access the same
cache block with the same operation are scheduled by the CPU close to each
other. Péneau et al [13] proposed to integrate STT-MRAM-based cache at L1
and L2 level and to apply aggressive code optimizations to reduce the number
of writes.

Smullen et al. [15] redesigned the STT-MRAM memory cells to reduce the
high dynamic energy and write latency. They decreased the data retention time
(i.e., the non-volatility period) and reduce the current required for writing. While
this approach shows promising results, it relies on an aggressive retention reduc-
tion that incurs the introduction of a costly refresh policy to avoid data loss.

In this work, we take a complementary approach and evaluate the impact
of cache replacement policies coupled with variations on LLC capacity in the
reduction of critical writes. We basically re-evaluate the gap in performance
between STT-MRAM and SRAM-based LLC given the latest advances in cache
replacement policies.

3 Motivation and Approach

In this work, we use the ChampSim [1] simulator with a subset of applications
from the SPEC CPU2006 benchmark suite [7] for motivating our approach.
Timing and energy results are obtained from CACTI [12] for the LLC and from
datasheet information for the main memory [2]. More details of the experimental
setup are given in Section 4.1. A common metric used to assess LLC performance
is the Miss Per Kilo Instructions (MPKI), defined as the total number of cache
misses divided by the total number of executed instructions. One possibility to
reduce the MPKI is to increase the cache size. The cache contains more data
and reduces the probability for a cache miss to occur. This results in penalties
in terms of cache latency, energy and area.

3.1 Motivational Example

Let us evaluate the execution of two SPEC CPU2006 applications, namely
soplex and libquantum. These applications have different memory access pat-



terns. Figure 1a depicts the impact of 4MB versus 2MB LLC cache designs on
the MPKI, the Instruction Per Cycle (IPC) and the energy consumption of LLC
and the main memory. For soplex, the MPKI is decreased by 27.6%, leading to
a faster execution by 9.7%, while the energy consumption of the LLC and the
main memory is respectively degraded by 33% and improved by 23%. While the
performance for soplex application benefits from a larger cache, this induces a
negative impact on the LLC energy consumption. On the other hand, the out-
come is different for the libquantum application. As shown in Figure 1a, the
MPKI is unchanged (i.e., no improvement), while the IPC is slightly degraded
by 0.6%. The energy consumption of the LLC and the main memory is also de-
graded, due to more expensive read/write transactions on the LLC. Moreover, a
lower IPC, i.e., a longer execution time, increases the static energy. Here, the en-
ergy consumption of the LLC drastically grows by up to 47% with larger cache.
The breakdown in static and dynamic energy consumption of the LLC is detailed
in Figure 1b: 80% of the energy comes from the static part.

MPKI = 0

MPKI
IPC

LLC energy
Main mem. energy

soplex libquantumIm
p

ro
ve

m
e
n

t 
w

.r
.t

 2
M

B
 L

L
C

 (
%

)

−50

−40

−30

−20

−10

0

10

20

30

(a) MPKI, IPC, and energy

4MB2MB4MB2MB
soplex libquantum

Static Dynamic
E

n
e
rg

y 
co

n
su

m
p

ti
o
n

 (
n

J)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(b) Energy breakdown

Fig. 1: Evaluation of 2MB and 4MB LLC for soplex and libquantum

Increasing the cache size shows interesting results for performance but faces
two obstacles. Firstly, the LLC energy consumption is increased. Moreover, de-
pending of the memory access pattern of the application, it may degrade the
LLC energy while offering no gain in performance. Secondly, doubling the LLC
size increases the silicon area on the chip. This aspect is crucial in design and
larger caches are often not realistic due to area budget constraints. To tackle
these two aspects, we consider STT-MRAM, which is considered as a future
candidate for SRAM replacement [17]. NVMs offer near-zero leakage and are
denser than SRAM (a STT-MRAM cell is composed of one transistor versus six
transistors for a SRAM cell). But, they suffer from higher memory access la-
tency and energy per access, especially for write operation. STT-MRAM offers a



near-zero leakage consumption, eliminating the high static energy consumption
observed with SRAM (see Figure 1b). This is even relevant for applications that
do not benefit from larger cache such as libquantum (see Figure 1b) In such a
case, even though the execution time is longer, the energy consumption would
not dramatically increase thanks to the low static energy of STT-MRAM.

3.2 Writes Operations at Last-Level Cache

At last-level cache, write operations are divided into two categories: a) write-
back, i.e., a write operation coming from a lower cache level, and b) write-fill,
i.e., a write operation that occurs when the LLC receives an answer from the
main memory. These schemes are illustrated in Figure 2. Let us consider L3
cache as LLC. Transaction (1) is a write-back coming from the L2 for data
X. In this case, X is immediately written in the cache line (transaction (2a)).
Possibly, a write-back could be generated by the LLC towards the main memory
(transaction (2b)) if data D has been modified and needs to be saved. For the
request (3) and (4), corresponding respectively to a read and a prefetch, the
requested Y data is not in the cache. This cache miss triggers a transaction to
the main memory to fetch Y , and upon receiving the response, Y data is written
in the cache. This operation represents a write-fill. As with transaction (2b), a
write-back is generated if data L replaced in the LLC must be saved.

LLC

(1) Writeback [X]
A B C D

A B C X

(3) Read [Y]

(4) Prefetch [Y]
I J K L

(5) Read [Y]

(6a) Fill [Y]
YI J K

(2b) Writeback [D]

(2a) Write [X]

(6b) Writeback [L]

Fig. 2: Write transactions on the Last-Level Cache

Then, an important question that arises is to know whether or not write-back
and write-fill have an equivalent impact on the overall system performance? For
illustration, we consider five SPEC CPU2006 applications with different writes
distributions to answer this question. Figure 3a reports the normalized IPC
for different write latencies. Here, WF and WB respectively denote write-fill
latency and write-back latency. We define the reference configuration as a 2MB
STT-MRAM LLC with WF = WB = 38 cycles. Results are normalized to
this reference. We also compare with a 2MB SRAM LLC where WF = WB =
20 cycles.



First, we set WF = 0 cycle in order to assess the impact of the write-fill
operation on system performance. Then, we apply the same for WB for eval-
uating the impact of write-back. We also compare to the specific configuration
where both WF and WB are set to zero. For all configurations, the write-buffer
contains up to 16 elements. Moreover, bypassing is disabled for write-back.

STT (reference)
STT + WF = 0

STT + WB = 0
STT + WF = WB = 0

SRAM

0.80

0.85

0.90

0.95

1.00

gcc libquantum perlbench sphinx3 xalancbmk Average

(a) Write-back (WB) and write-fill (WF) effects on performances nor-
malized to baseline STT-MRAM

Write-back Write-fill

0

20

40

60

80

100

gcc libquantum perlbench sphinx3 xalancbmk

(b) Write-back and write-fill distribution

Fig. 3: Write operations performance and distribution

When WF = 0 cycle, i.e., write-fill has no impact on performance, results
show a reduced execution time by 0.93× on average and up to 0.84× for libquan-
tum. When WB = 0 cycle, i.e., write-back has no impact on performance, the ex-
ecution time is the same as for the reference STT-MRAM configuration. Finally,
when both WF and WB are set to zero, the execution time is the same as
the case where only write-fill latency is set to zero. Performance gains are par-
ticularly visible for applications that have a higher number of write-fill than
write-back requests, such as libquantum or sphinx3. Nevertheless, even for an
application with more write-back requests such as perlbench (see Figure 3b), re-
sults show that WB = 0 cycle has no impact on performance. These results show
that only write-fill have a high impact on performance. Indeed, a write-back op-
eration coming from a lower level of the memory does not require an immediate
response from the LLC. Hence, it does not stall the CPU. Conversely, a write-fill



occurs upon a cache miss, meaning that the CPU needs a data to continue the
execution of an application. Unless the data becomes available, the CPU could
be stalled if further instructions depend on this data.

The above analysis shows that one should primarily focus on write-fill op-
erations for reducing the number of writes on the LLC and improving system
performance. Let us define A the performance improvement with WF = 0, B the
performance improvement with WB = 0 and C the performance improvement
with WF = WB = 0. Figure 3a shows that A + B = C for all applications.
Hence, A does not have an impact on B and vice versa. Therefore, one could
reduce the number of write-fill without a side effect on write-back.

3.3 Cache Replacement Policy

Write-fill operations are directly dependent on the MPKI of the LLC. A low
MPKI leads to a low amount of requests to the main memory, and then a low
amount of write-fill operations. Thus, one way to mitigate the STT-MRAM write
latency is to reduce the MPKI to decrease the number of write-fill requests.

The cache replacement policy is responsible for data eviction when a cache
line is full. For example, in Figure 2, data X of the write-back transaction erases
data D. It means that D has been chosen by the replacement policy to be
evicted. Hence, the next access to D will generate a cache miss. Therefore, the
replacement policy directly affects the number of misses, and so the MPKI. An
efficient policy should evict data that will not be re-used in the future, or at
least be re-used further than the other data in the same cache line. The most
common used policy is the Least-Recently Used (LRU), which is cheap in terms
of hardware resources. However, LRU is less efficient than advanced replacement
policies such as Hawkeye [8], which targets the theoretical optimal in terms of
cache eviction decision. Hawkeye identifies instructions that often generate cache
misses. For each cache access, a data structure called a predictor keeps in memory
the result of this access, i.e., hit or miss. The instruction that has generated the
access is also saved. Hence, the memory of the predictor contains instructions
that generate hits or misses. Predictions are made upon each access. Cache
blocks, which are accessed by instructions generating cache misses have higher
priority for eviction. The policy is based on the MIN algorithm [5]. To the best
of our knowledge, this is the most advanced replacement policy [3].

4 Experimental Results

4.1 Environment Setup

We describe the timing and area models used in the sequel for the LLC and the
main memory. Then, we introduce the used simulation infrastructure and we
explain its calibration with considered timing information.



Memory Model. We first optimized SRAM and STT-MRAM cache memo-
ries respectively for low leakage with CACTI [12] and read energy-delay-product
with NVSim [6]. For both LLC models, we used 32nm technology with a tem-
perature of 350K. The considered STT-MRAM model is provided with NVSim
and assumes optimizations for cell area, set/reset pulse duration and energy.
The obtained parameter values are summarized in Table 1. The considered main
memory model is based on a publicly available datasheet from Micron Tech-
nology [2]. We modeled a 4GB DDR3 with 1 DIMM, 8 ranks, 8 banks per
ranks, organized with 16 × 65536 columns with 64B on each row. Thus, each
bank contains 64MB of data, each rank 512MB, and the total is 4GB. The ex-
tracted latency parameters are as follows: tRP = tRCD = tCAS = 11 cycles,
tRAS = 28 cycles, tRFC = 208 cycles and tCK = 1.25ns.

Table 1: SRAM and STT-MRAM timing and area results configurations

SRAM STT-MRAM

2MB 4MB 8MB 2MB 4MB 8MB

Read latency [ns] 1.34 1.47 1.66 1.90 2.06 2.53

Write latency [ns] 1.34 1.47 1.66 5.75 5.83 6.07

Area [mm2] 5.32 10.88 20.49 1.19 2.19 4.00

Simulation Environment. Our evaluation is conducted with the ChampSim
simulator [1] used for the Cache Replacement Championship at ISCA17 confer-
ence [3]. The simulator executes application traces. The modeled architecture is
based on an Intel Core i7 system. Cores are Out-of-Order with a 3-level on chip
cache hierarchy plus a main memory. The setup is specified in Table 2. We use
a set of 20 SPEC CPU2006 traces available with ChampSim. The cache warm-
up period is 200 millions instructions. Reported statistics concern a period of
800 millions instructions. We calculate the average performance, i.e., IPC, by
applying a geometric mean on the IPCs measured for all applications, as in [8].

Eight configurations are addressed in this study: 2MB LLC cache with SRAM
and STT-MRAM; 4MB and 8MB LLC caches only with STT-MRAM; and each
of these four caches is combined with either LRU or Hawkeye. For the sake of
simplicity, we associate the prefixes M (for Medium), B (for Big) and H (for
Huge) together with technology names in order to denote respectively the 2MB,
4MB and 8MB LLC configurations. The name of considered replacement policies,
i.e., LRU and Hawkeye, are used as a suffix. For instance, M stt hawk denotes a
2MB STT cache, using the Hawkeye policy.

Latency Calibration. The reference LLC latency in ChampSim is 20 cycles for
a 2MB 16-way associative cache, based on an Intel i7 processor. This corresponds
to a latency of 5ns at 4GHz. Hence, we define the following latency relation:



Table 2: Experimental setup configuration

L1 (I/D) 32KB, 8-way, LRU, Private, 4 cycles

L2 256KB, 8-way, LRU, Unified, 8 cycles

L3 Varying size/policy, 16-way, Shared

L3 size 2MB 4MB 8MB

L3 SRAM latency 20 21 22

L3 STT latency (R/W) 22/38 23/38 23/38

Hawkeye budget 28.2KB 58.7KB 114.7KB

CPU 1core, Out-of-Order, 4GHz

Main mem. size/latency 4GB, hit: 55 cycles, miss: 165 cycles

LT = LC + LW = 5ns, where LT is the total latency for LLC to process a
request from L2 cache, LC is the LLC access latency and LW is the wire latency
between L2 cache and LLC. Thus, the effective latency is the sum of the wire
latency and the cache latency. Thanks to CACTI, we extract LC = 1.34ns for
the LLC reference configuration. Then, LW = LT − LC = 3.66ns. We set LW

to this value and use it as an offset to calculate each cache latency with the
previous latency relation, where LC is extracted from either CACTI or NVSim.

4.2 Results

This section presents our results as follows : firstly, we assess the impact of the
LLC size in SRAM and STT-MRAM, by exploiting density to enlarge the cache
capacity. Secondly, we report results when taking the Hawkeye cache replacement
policy into account. Finally, we discuss this policy w.r.t. LRU. Except when it
is explicitly mentioned, all results are normalized to the reference setup, i.e.,
M sram lru.

Impact of Cache Size and Technology. Here, all configurations use the LRU
replacement policy. The top of Figure 4 shows the MPKI improvement w.r.t.
the reference configuration. We observe that the M stt lru configuration does
not influence the MPKI since the cache size remains unchanged. Conversely, a
reduction of MPKI is clearly visible with B stt lru and H stt lru configurations.
Some applications are not sensitive to cache size, like bwaves, libquantum or
milc. Conversely, the lbm application is very sensitive to cache size from 8MB.
For this application, the MPKI is decreased by a factor of 0.56× (i.e., 56%). This
indicates that a large part of the working set now fits into the LLC.

The bottom part of Figure 4 shows the normalized IPC achieved by STT-
MRAM configurations w.r.t the reference configuration. The M stt lru configu-
ration, i.e., a direct replacement of SRAM by STT-MRAM, is slower than the
reference. This is due to the higher latency of STT-MRAM. The B stt lru and
H stt lru configurations outperform the reference on average by 1.03× and 1.09×



respectively. With B stt lru, the IPC is degraded for nine applications, while it
is only for five applications with H stt lru. The performance for the soplex appli-
cation is correlated to the MPKI. Indeed, there is a linear trend between MPKI
reduction and IPC improvement. Conversely, the following applications, gobmk,
gromacs and perlbench exhibit a significant MPKI reduction with no visible im-
pact on performance. This is due to the very low amount of requests received
by the LLC compared to the other applications. Hence, reducing this activity is
not significant enough to improve the overall performance.

On average, increasing the LLC size shows that STT-MRAM could achieve
the same performance as SRAM under area constraint.

M
P
K
I

0.0
0.2
0.4
0.6
0.8
1.0

M_stt_lru B_stt_lru H_stt_lru

1.70 1.74

IP
C

0.9
1

1.1
1.2
1.3
1.4

G
e
m
sF
D
T
D

a
st
a
r

b
w
a
ve
s

b
zi
p
2

ca
ct
u
sA
D
M

g
cc

g
o
b
m
k

g
ro
m
a
cs

lb
m

le
sl
ie
3
d

li
b
q
u
a
n
tu
m

m
cf

m
il
c

o
m
n
e
tp
p

p
e
rl
b
e
n
ch

so
p
le
x

sp
h
in
x3 w
rf

xa
la
n
cb
m
k

ze
u
sm
p

A
ve
ra
g
e

Fig. 4: MPKI (top) and IPC (bottom) with LRU normalized to M sram lru

Impact of Cache Replacement Policy. Here, all configurations use the
Hawkeye replacement policy. Performance results are presented in Figure 5. We
observe the gains on the M sram hawk configuration, i.e., the Hawkeye reference.
This configuration never degrades performances and achieves an average speedup
of 1.05×. Larger STT-MRAM configurations, B stt hawk and H stt hawk , per-
form better than M sram hawk on average. Thanks to the Hawkeye policy,
M stt hawk and B stt hawk outperform the reference for lbm or mcf. This was
not the case with LRU, as depicted in Figure 4. Note that for a few applica-
tions such as bwaves, GemsFDTD or zeusmp, the M sram hawk configuration
achieves a higher speedup than larger configurations with the same MPKI. This
shows that performance is still constrained by STT-MRAM latency, even with
an enhanced replacement policy.

Nevertheless, Hawkeye improves performance where a larger cache only can-
not. For example, all STT-MRAM configurations achieve the same IPC for the
milc application with LRU, considering the LLC size. When Hawkeye is used,



the performance is linearly increased with the cache size. As a matter of fact,
Hawkeye can deal with some memory patterns not exploited by larger LLCs.

The best configuration is H stt hawk , which achieves a performance improve-
ment of 1.1× (i.e., 10%) on average over the M sram lru baseline.

M
P
K
I

0.0
0.2
0.4
0.6
0.8
1.0

M_sram_hawk M_stt_hawk B_stt_hawk H_stt_hawk

1.741.71

IP
C

0.9
1

1.1
1.2
1.3
1.4

G
e
m
sF
D
T
D

a
st
a
r

b
w
a
ve
s

b
zi
p
2

ca
ct
u
sA
D
M

g
cc

g
o
b
m
k

g
ro
m
a
cs

lb
m

le
sl
ie
3
d

li
b
q
u
a
n
tu
m

m
cf

m
il
c

o
m
n
e
tp
p

p
e
rl
b
e
n
ch

so
p
le
x

sp
h
in
x3 w
rf

xa
la
n
cb
m
k

ze
u
sm

p

A
ve
ra
g
e

Fig. 5: MPKI (top) and IPC (bottom) with Hawkeye normalized to M sram lru

Hawkeye versus LRU. Figure 6 shows the effect of the Hawkeye policy over
LRU. Results are normalized for each configuration to its counterpart with LRU.
For example, H stt hawk is normalized to H stt lru. For this experiment, we also
run SRAM configuration that do not fit into area constraint to illustrate the ef-
fect of Hawkeye on SRAM and STT-MRAM for the same cache size. Both SRAM
and STT-MRAM configurations follow the same trend regarding the MPKI re-
duction over LRU since the Hawkeye policy is not impacted by cache latency.
Moreover, we use a single core platform where parallel events cannot occur.
Hence, eviction decision remains identical for a given cache size, regardless of
the cache size. However, the average gain obtained with Hawkeye is slightly bet-
ter with STT-MRAM. The performance gap between SRAM and STT-MRAM
is 3.3% and 3.1%, respectively with LRU and Hawkeye. Hence, reducing the
amount of write-fill has higher impact on STT-MRAM where writes are penal-
izing.

Figure 6 shows that the 8MB configuration is not as efficient as the 4MB con-
figuration in terms of performance improvement. The average gain for the IPC
for H sram hawk and H stt hawk is lower than B sram hawk and B stt hawk .
This suggests an issue that can be due to either a larger LLC, or the Hawk-
eye policy, or both. Even if the overall performance improvement reported in
Figure 5 shows that the 8MB configuration is faster, we note that there may be
a limit to the performance improvement provided by the Hawkeye policy. This
behavior is visible with bzip2, wrf and sphinx3. In Figure 4, results show that



the MPKI is reduced for B stt lru and H stt lru. Hence, increasing the cache
size is efficient. Similarly, in Figure 5, the MPKI is also reduced for the same
configurations while replacing LRU by Hawkeye. However, the gains observed
in Figure 6 show that Hawkeye increases the MPKI compared to LRU for a
8MB LLC. The reason is that Hawkeye made wrong eviction decisions. Indeed,
the Hawkeye predictor exploits all cache accesses to identify the instructions
that generate cache misses. Since a large cache size reduces the number of cache
misses, it becomes more difficult for the predictor to learn accurately from a
small set of miss events. Note that the performance for H stt hawk is still better
than other configurations despite these inaccurate decisions.

M
P
K
I

0.50
0.60
0.70
0.80
0.90
1.00
1.10

M_sram_hawk
M_stt_hawk

B_sram_hawk
B_stt_hawk

H_sram_hawk
H_stt_hawk

IP
C

0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

G
e
m
sF
D
T
D

a
st
a
r

b
w
a
ve
s

b
zi
p
2

ca
ct
u
sA
D
M

g
cc

g
o
b
m
k

g
ro
m
a
cs

lb
m

le
sl
ie
3
d

li
b
q
u
a
n
tu
m

m
cf

m
il
c

o
m
n
e
tp
p

p
e
rl
b
e
n
ch

so
p
le
x

sp
h
in
x3 w
rf

xa
la
n
cb
m
k

ze
u
sm

p

A
ve
ra
g
e

Fig. 6: Performance impact of Hawkeye normalized to LRU

5 Conclusion and Perspectives

This paper evaluates the mitigation of STT-MRAM performance obstacle by ex-
ploiting its density to increase LLC cache size and by applying an enhanced cache
replacement policy to reduce the LLC write-fill activity due to cache misses.

We showed that write-fill are a side-effect of read misses and they are more
important than write-back for performance improvement since they are on the
critical path to main memory access. Thus, we applied the Hawkeye replacement
policy which is designed for reducing cache read misses. Moreover, we showed
that using such policy with STT-MRAM is more beneficial than with SRAM.
Indeed, the read/write latency asymmetry of this technology allows a higher
gap of improvement in terms of performance than with SRAM. However, with
a large cache that drastically reduces the number of misses, the small amount
of accesses makes the training of the Hawkeye predictor longer. Thus, it leads
to wrong eviction decisions. The evaluation results showed that performance



can be improved up to 10%. This gain, combined with the drastic static energy
reduction enabled by STT-MRAM, leads to increased energy-efficiency.

Future work will focus on a deeper study of the Hawkeye policy to improve
its accuracy under low LLC activity. A multicore design will be also investigated
to confirm the benefits of large STT-MRAM LLC with this replacement policy.

Acknowledgements

This work has been funded by the French ANR agency under the grant ANR-
15-CE25-0007-01, within the framework of the CONTINUUM project.

References

1. The ChampSim simulator, https://github.com/ChampSim/ChampSim
2. DDR3-Micron MT41K512M8DA-125 datasheet, https://www.micron.com/~/

media/documents/products/data-sheet/dram/ddr3/4gb_ddr3l.pdf, Oct. 2017
3. ISCA 2017 Cache Replacement Championship, http://crc2.ece.tamu.edu
4. International Technology Roadmap for Semiconductors (ITRS) (2015)
5. Belady, L.A.: A study of replacement algorithms for a virtual-storage computer.

IBM Systems journal 5(2), 78–101 (1966)
6. Dong, X., Xu, C., Xie, Y., Jouppi, N.P.: Nvsim: A circuit-level performance, energy,

and area model for emerging nonvolatile memory. IEEE Trans. on Computer-Aided
Design of Integ. Circ. and Sys. 31(7), 994–1007 (2012)

7. Henning, J.L.: SPEC CPU2006 benchmark descriptions. ACM SIGARCH Com-
puter Architecture News 34(4), 1–17 (2006)

8. Jain, A., Lin, C.: Back to the future: leveraging Belady’s algorithm for improved
cache replacement. In: Computer Architecture (ISCA), 2016 ACM/IEEE 43rd An-
nual International Symposium on. pp. 78–89. IEEE (2016)

9. Kommaraju, A.V.: Designing Energy-Aware Optimization Techniques through
Program Behavior Analysis. Ph.D. thesis, Indian Institute of Science BANGA-
LORE (2014)

10. Li, Q., Shi, L., Li, J., Xue, C.J., He, Y.: Code motion for migration minimization in
STT-RAM based hybrid cache. In: VLSI (ISVLSI), 2012 IEEE Computer Society
Annual Symposium on. pp. 410–415. IEEE (2012)

11. Mittal, S.: A survey of architectural techniques for improving cache power effi-
ciency. Sustainable Computing: Informatics and Systems 4(1), 33–43 (2014)

12. Muralimanohar, N., Balasubramonian, R., Jouppi, N.P.: CACTI 6.0: A tool to
model large caches. HP Laboratories pp. 22–31 (2009)

13. Péneau, P.Y., Bouziane, R., Gamatié, A., Rohou, E., Bruguier, F., Sassatelli, G.,
Torres, L., Senni, S.: Loop optimization in presence of stt-mram caches: A study of
performance-energy tradeoffs. In: Power and Timing Modeling, Optimization and
Simulation (PATMOS), 2016 26th International Workshop on. pp. 162–169. IEEE
(2016)

14. Senni, S., Delobelle, T., Coi, O., Péneau, P.Y., Torres, L., Gamatié, A., Benoit, P.,
Sassatelli, G.: Embedded systems to high performance computing using stt-mram.
In: 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE).
pp. 536–541. IEEE (2017)

https://github.com/ChampSim/ChampSim
https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr3/4gb_ddr3l.pdf
https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr3/4gb_ddr3l.pdf
http://crc2.ece.tamu.edu


15. Smullen, C.W., Mohan, V., Nigam, A., Gurumurthi, S., Stan, M.R.: Relaxing non-
volatility for fast and energy-efficient stt-ram caches. In: High Performance Com-
puter Architecture (HPCA), 2011 IEEE 17th International Symposium on. pp.
50–61. IEEE (2011)

16. Sun, G., Dong, X., Xie, Y., Li, J., Chen, Y.: A novel architecture of the 3d
stacked mram l2 cache for cmps. In: High Performance Computer Architecture,
2009. HPCA 2009. IEEE 15th International Symposium on. pp. 239–249. IEEE
(2009)

17. Vetter, J.S., Mittal, S.: Opportunities for nonvolatile memory systems in extreme-
scale high-performance computing. Computing in Science & Engineering 17(2),
73–82 (2015)

18. Wu, X., Li, J., Zhang, L., Speight, E., Rajamony, R., Xie, Y.: Hybrid cache archi-
tecture with disparate memory technologies. In: ACM SIGARCH computer archi-
tecture news. vol. 37, pp. 34–45. ACM (2009)

19. Zhou, P., Zhao, B., Yang, J., Zhang, Y.: Energy reduction for stt-ram using early
write termination. In: Computer-Aided Design-Digest of Technical Papers, 2009.
ICCAD 2009. IEEE/ACM International Conference on. pp. 264–268. IEEE (2009)


	Improving the Performance of STT-MRAM LLC through Enhanced Cache Replacement Policy

