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Abstract

Given a set of finite words, the Overlap Graph (OG) is a complete weighted digraph where
each word is a node and where the weight of an arc equals the length of the longest overlap
of one word onto the other (Overlap is an asymmetric notion). The OG serves to assemble
DNA fragments or to compute shortest superstrings which are a compressed representation
of the input. The OG requires a space is quadratic in the number of words, which limits its
scalability. The Hierarchical Overlap Graph (HOG) is an alternative graph that also encodes all
maximal overlaps, but uses a space that is linear in the sum of the lengths of the input words.
We propose the first algorithm to build the HOG in linear space for words of equal length.

1 Introduction

DNA assembly problem arises in bioinformatics because DNA sequencing is unable to read out
complete molecules, but instead yields partial sequences of the target molecule, called reads.
Hence, recovering the whole DNA sequence requires to assemble those reads, that is to merge
reads according to their longest overlaps (because of the high redundancy of sequencing strate-
gies). DNA assembly comes down to building a digraph where sequences are nodes and arcs
represent possible overlaps, and second to choosing a path that dictates in which order to merge
the reads. The first proposed graph was the Overlap Graph [9, 10]. Throughout this article, the
input is P := {s1,...,s,} a set of words. Let us denote by ||P|| := Y] |si|.

Definition 1 (Overlap Graph) The Overlap Graph (OG) of P is a complete, directed graph, weighted
on its arcs, whose nodes are the words of P, and in which the weight of an arc (u,v) equals the
length of the maximal overlap from string u to string v.

In the OG (and in its variants such as the String Graph), an optimal assembly path can be
computed by finding a Maximum Weighted Hamiltonian Path (which is NP-hard and difficult to



approximate [2]). To build the graph, one has to compute the weights of the arcs by solving the
so-called All Pairs Suffix Prefix overlaps problem (APSP) on P. Although, Gusfield has given an
optimal time algorithm for APSP in 1992, APSP has recently regained attention due to innovation
in sequencing technologies that allow sequencing longer reads. Indeed, solving APSP remains dif-
ficult in practice for large datasets. Several other optimal time algorithms that improve on practical
running times have been described recently, e.g. [8, 11].

The OG has several drawbacks. First, it is not possible to know whether two distinct arcs
represent the same overlap. Second, the OG has an inherently quadratic size since it contains an
arc for each possible (directed) pairs of words. Here, we present an alternative graph, called HOG,
which represents all maximal overlaps and their relationships in term of suffix and of prefix. Since
the HOG takes a space linear in cumulated lengths of the words, it can advantageously replace
the OG. Note that we already gave a definition of the HOG in [4]. Here, we proposed the first
algorithm to build the HOG in linear space.

In DNA assembly, the de Bruijn Graph (DBG) is also used, especially for large datasets of
short reads. For a chosen integer k, reads are split into all their k-long substrings (termed k-mers),
which make the nodes of the DBG, and the arcs store only (k — 1)-long overlaps. Moreover, the
relationship between reads and k-mers is not recorded. DBGs achieve linear space, but disregard
many overlaps whose lengths differ from k. Hence, HOGs also represent an interesting alternative
to DBGs.

1.1 Notation and Definition of the Hierarchical Overlap Graph

We consider finite, linear of strings over a finite alphabet X and denote the empty string with €. Let
s be a string over £. We denote the length of s by |s|. For any two integers i < j in [1,]s]|], s[i, /]
denotes the linear substring of s beginning at the position i and ending at the position j. Then we
say that si, j] is a prefix of s iff i = 1, a suffix iff j = |s|. A prefix (or suffix) s of s is said proper
if 5" differs from s. For another linear string ¢, an overlap from s to ¢ is a proper suffix of s that is
also a proper prefix of . We denote the longest such overlaps by ov(s, 7). For A, B any two boolean
arrays of the same size, we denote by A A B the boolean operation and between A and B.
Let Ov'(P) be the set of all overlaps between words of P. Let Ov(P) be the set of maximum
overlaps from a string of P to another string or the same string of P.

Let us define the Extended Hierarchical Overlap Graph and the Hierarchical Overlap Graph
as follows.

Definition 2 The Extended Hierarchical Overlap Graph of P, denoted by EHOG(P), is the directed
graph (V' E™) where V" = PUOv' (P) and E™ is the set:

{(x,y) € (PUOV(P))? |y is the longest proper suffix of x or x is the longest proper prefix of y}.

The Hierarchical Overlap Graph of P, denoted by HOG(P), is the directed graph (V,E) where
V :=PUOVv(P) and E is the set:

{(x,y) € (PU Ov(P))? | y is the longest proper suffix of x or x is the longest proper prefix of y}.
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(a) Aho Corasik tree of P (b) EHOG of P (c) HOG of P

Figure 1: Consider instance P := {aabaa,aacd,cdb}. (a) Aho Corasik tree of P with Failure
Links in dotted lines. (b) EHOG of P - compared to (a) all nodes that were not overlaps were
removed, and the arcs contracted. (c) HOG of P; compared to (b) the node a has been removed,
and some arcs contracted.

Remark that Ov(P) is a subset of Ov*(P). Both definitions are identical except that each oc-
currence of Ov™(P) in the EHOG(P) is replaced by Ov(P) in the HOG(P). Hence, HOG(P) is
somehow included in EHOG(P). Examples of EHOG and HOG are shown in Figures 1b, lc.

1.2 Related works

In 1990, Ukkonen gave a linear time implementation of the greedy algorithm for finding a lin-
ear superstring of a set P [12]. This algorithm is based on the Aho-Corasick (AC) automaton
[1]. In AC automaton, the input words are spelled out along a tree structure and each node rep-
resents a unique prefix of these words ; hence, the leaves represent the input words (Example in
Figure 1a: the tree structure, which are is in black). The AC automaton contains additional arcs
called, Failure links, which link two nodes say (x,y) if y is the longest suffix of x that is a node
in the tree. Ukkonen characterised which nodes of the tree correspond to overlaps between words
of P [12, Lemma 3]. In the EHOG, beyond the leaves, we keep only those nodes that are over-
laps (Figure 1b). From this lemma, it follows that EHOG(P) is embedded in the Aho-Corasick
automaton: the nodes of EHOG(P) are a subset of those of the automaton, its arcs are contracted
goto transitions or contracted Failure Links.

Algorithm to build the EHOG. Given the Aho-Corasick automaton of P (whose underlying
structure is a tree spelling out the words of P from the root — this tree is commonly called the trie),
for each leaf, follow the chain of Failure links up to the root and mark all visited nodes. Thanks
to [12, Lemma 3] all such nodes are overlaps. Another traversal of the AC automaton suffices to
remove unmarked nodes and to contract the appropriate arcs. This algorithm takes O(||P||) time.
An involved algorithm to build a memory compact version of the EHOG is detailed in [3]. In the
sequel, whenever we refer to the free structure, it is the tree structure of the EHOG, we mean the



tree defined by the goto arcs in the EHOG (which appears in black in Figure 1b).

An algorithm for computing a shortest cyclic cover of a set of DNA sequences needs to build
either the EHOG or HOG [4]. There, we stated mistakingly in Theorem 3 that the HOG could be
built in O(||P||) time, although we meant the EHOG. The construction algorithm uses the Gener-
alised Suffix Tree of P to detect nodes representing overlaps as explained in [7].

The HOG is reminiscent of the “Hierarchical Graph” of [6], where the arcs also encodes inclu-
sion between substrings of the input words. However, in the Hierarchical Graph, each arc extends
or shortens the string by a single symbol, making it larger than the HOG.

2 Construction algorithm for the HOG

All internal nodes of EHOG(P) are overlaps between words of P, while those of HOG(P) are
maximal overlaps between words of P. Given the EHOG of P, to build HOG(P) we need to
discard nodes that are not maximal overlaps and to merge the arcs entering and going out of such
nodes. This processing can be performed in linear time on the size of EHOG(P) provided that
the nodes of HOG(P) are known. We present Algorithm 1, which recapitulates this construction
procedure. Once EHOG(P) is built, each of its internal node u is equipped with a list R;(u), whose
meaning is explained below. Then, Algorithm 1 calls the key procedure MarkHOG(r) on line 4 to
mark the nodes of HOG(P) in a global boolean array denoted bHog, which we store in a bit vector.
The procedure for MarkHOG is given in Algorithm 2. Once done, it contracts EHOG(P) in place
to obtain HOG(P).

Algorithm 1: HOG construction

Input : P a substring free set of words

Output: HOG(P); Variable: bHog a bit vector of size [EHOG(P)|

build EHOG(P)

set all values of bHog to False

traverse EHOG(P) to build R;(u) for each internal node u of EHOG(P)

run MarkHOG(r) where r is the root of EHOG(P)

Contract(EHOG(P),bHog)
// Procedure Contract traverses EHOG(P) to discard nodes that are not
marked in bHog and contract the appropriate arcs

N A W N -

Meaning of R;(«) For any internal node u, R;(u) lists the words of P that admit u as a suffix.
Formally stated: R;(u) :={i € {1,...,|P|} : uis suffix of 5;}. As we need to iterate over R;(u), it
is convenient to store it in a list of integers. A traversal of EHOG(P) allows to build a list R;(u)
for each internal node u as stated in [12]. Remark that, while our algorithm processes EHOG(P),
Ukkonen’s algorithm processes the full trie or Aho Corasik automaton, in which EHOG(P) is
embedded. The cumulated sizes of all R; is linear in || P|| (indeed, internal nodes represent different
prefixes of words of P and have thus different begin/end positions in those words).



Node of the EHOG and overlaps The following proposition states an important property of
EHOG nodes in terms of overlaps. It will allow us not to consider all possible pairs in P x P, when
determining maximum overlaps.

Proposition 1 Let u be an internal node of EHOG(P) and let i € Ri(u). Then, for any word s;
whose leaf is in the subtree of u, we have ov(s;,s;) > |u|.

Proof 1 Indeed, as u belongs to EHOG(P), we get that u is an overlap from s; to sj. Thus, their
maximal overlap has length at least |u|. QED

Description of Algorithm 2 We propose Algorithm 2, a recursive algorithm that determines
which nodes belong to Ov(P) while traversing EHOG(P) in a depth first manner, and marks them
in bHog. At the end of the algorithm, for any node w of EHOG(P), the entry bHog[w] is True if
and only if w belongs to HOG(P), and False otherwise.

By the definition of a HOG, the leaves of the EHOG(P), which represent the words of P, also
belong to HOG(P) (hence, line 3).

The goal is to distinguish among internal nodes those representing maximal overlaps (i.e.,
nodes of Ov(P)) of at least one pair of words. We process internal nodes in order of decreasing
word depth. By Proposition 1, we know that for any i in R;(u), s; overlaps any s; whose leaf is in
the subtree of u. However, u may not be the maximal overlap for some pairs, since longer overlaps
may have been found in each subtree. Indeed, u can be a maximal overlaps from s; onto some s,
if and only if for any child v of u, s; has not already a maximal overlaps with the leaves in the
child’s subtree. Hence, to check this, we compute the C vector for each child by recursively calling
MarkHOG for each child, and merge them with a boolean and (line 7). We get invariant #1:

C|w] is True iff for any leaf [ in the subtree of u the pair ov(w,1)> |u|.
Then, we scan R;(u), for each word w if C[w] is False, then for at least one word s, the maximum
overlap of w onto s; has not been found in the subtree. By Proposition 1, u is an overlap from w
onto s;, and thus we set both C[w| and bHog[u] to True (lines 9-11). Otherwise, if C[w] is True,
then it remains so, but then bHog[u] remains unchanged. This yields Invariant #2:

C|w] is True iff for any leaf [ in the subtree of u the pair ov(w,1)> |u|.
This ensures the correctness of MarkHOG.

The complexity of Algorithm 1 is dominated by the call of the recursive algorithm MarkHOG(r)
in line 4, since computing EHOG(P), building the lists R;(.) and contracting the EHOG into the
HOG (line 5) all take linear time in ||P||.

How many simultaneous calls of MarkHOG can there be? Each call uses a bit vector C of
length |P|, which impacts the space complexity. The following proposition helps answering this
question.

Proposition 2 Let u,v be two nodes of EHOG(P). Then if u and v belong to distinct subtrees, then
MarkHOG (u) terminates before MarkHOG (v) begins, or vice versa.

Hence, the maximum number of simultaneously running MarkHOG procedures is bounded by
the maximum (node) depth of EHOG(P), which is itself bounded by the length of the longest word
in P. Now, consider the amortised time complexity of Algorithm 2 over all calls. For each node,
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Algorithm 2: MarkHOG (u);

Input :u anode of EHOG(P)
Output: C: a boolean array of size |P|
if u is a leaf then

set all values of C to False

bHog[u] := True

return C

B W N =

// Cumulate the information for all children of u
C := MarkHOG(v) where v is the first child of u
foreach v among the other children of u do

| C:=CAMarkHOG(v)

// Invariant 1: C[w] is True iff for any leaf s§; in the subtree of u
the pair ov(w,s;) > |u
// Process overlaps arising at node u: Traverse the list R;(u)
8 for node x in the list R;(u) do
if C[x| = False then
10 | bHog[u] := True

N S »

=]

11 Clx] :==True
// Invariant 2: Cw] is True iff for any leaf s; in the subtree of u
the pair ov(w,s;) > |u|
12 return C

the corresponding C vector is computed once and merged once during the processing of his parent.
Moreover, if amortised over all calls of MarkHOG, the processing all the lists R; for all nodes take
linear time in ||P||. Altogether all calls of Algorithm 2 require O(||P||+ |P|?) time. The space
complexity sums the space occupied by EHOG(P), i.e. O(||P||), and that of the C arrays. Now,
the maximum number of simultaneously running calls of MarkHOG is the maximum number of
simultaneously stored C vectors. This number is bounded by the maximum number of branching
nodes on a path from the root to a leaf of EHOG(P), which is smaller than the minimum among
max{|s| : s € P} and |P|. Hence, the space complexity is O(||P||+ |P| x min(|P|,max{|s| : s € P}).

Theorem 3 Let P be a set of words. Then Algorithm 1 computes HOG(P) using O(||P|| + |P|?)
time and O(||P||+ |P| x min(|P|,max{|s| : s € P}) space. If all words of P have the same length,
then the space complexity is O(||P|]).

An example of HOG construction Consider the instance P := {rattatt,ctattat, gtattat,cctat };
the graph EHOG(P) is shown Figure 2a. Table 2b traces the execution of Algorithm 2 for instance
P. Tt describes for each internal node (leaves not included), the list R;, the computation of C vector,
the final value of bHog and the list of specific pairs of words for which the corresponding node is
a maximum overlap. We write (x/y,z) as a shortcut for pairs (x,z) and (y,z). Another example is



given in the web appendix.

x,y) 1 2 3 4
1 4 0 0 0
2 6 0 0 0
3 6 0 0 0
4 3 4 0 0
(b) Weights of OG of P in a matrix
node Ry C(before) C(after) Specific pairs bHog
ctat {4} 0000 0001 (4,2) 1
tattat {2,3} 0000 0110 (2,1)(3,1) 1
tatt {1} 0110 1110 (1,1) 1
tat {2,3,4} 1110 1111 4,1 1
RS T B ¢ {1,2,3,4} 1111 1111  empty 0
(2,3} root {1,2,3,4} 0000 " 0001 0000

- root {1,234} 000070000 0000 (2/32)
" root {1,234} 0000" 1111 0000 (1/2/3/4,4)
root  {1.2,3.4} 0000 1111 (2/3/43) 1

(©)

(a) EHOG of P

Figure 2: (a) EHOG for instance P := {tattatt,ctattat,gtattat,cctat}. goto transitions appear in
black arcs, Failure Links in dotted red arcs. For each internal node, the list Ry, is given between
brackets. (b) Overlap Graph of P given in matrix form. (c) Trace of Algorithm 2. For each internal
node are shown: the word it represents, R;, the bit vector C when before and after the node is
processed, bHog, and the pairs for which it is a maximum overlap. The node ¢ is the only internal
node which is not a maximal overlap for some pair, and indeed bHog is set to 0. The computation
for the root node shows each and between C vectors from the children on four lines.

3 Conclusion

The Hierarchical Overlap Graph (HOG) is a compact alternative to the Overlap Graph (OG) since
it also encodes all maximal overlaps as the OG, but in a space that is linear in the norm of P. In
addition, the HOG records the suffix- and the prefix-relationship between the overlaps, while the
OG lacks this information, which is useful for computing greedy superstrings [12, 5]. Because the
norm of P can be large in practice, it is thus important to build the HOG also in linear space, which
our algorithm achieves if all words have the same length.

For constructing the HOG, Algorithm 1 takes O(||P|| +|P|*) time. Whether one can compute
the HOG in a time linear in ||P|| 4 |P| remains open. An argument against this complexity is that
all the information needed to build the Overlap Graph is encoded in the HOG.

The EHOG and HOG differs by definition, and the nodes of the HOG are a subset of the nodes
of the EHOG. In practice or in average, is this difference in number of nodes substantial? There



exist instances such that in the limit the ratio between the number of nodes of EHOG versus HOG
tends to infinity when ||P|| tends to infinity while the number of input words remains bounded (see
our appendix at http://www.lirmm.fr/ rivals/res/superstring/hog-art-appendix.pdf). For instance, a
small alphabet (e.g. DNA) favors multiple overlaps and tend to increase the number of nodes that
are proper to the EHOG, while for natural languages HOG and EHOG tend to be equal.

For some applications like DNA assembly, it is valuable to compute approximate rather than
exact overlaps. The approach proposed here does not easily extend to approximate overlaps. Some
algorithms have been proposed to compute OG with arcs representing approximate overlaps, where
approximation is measured by the Hamming or the edit distance [13].
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