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Abstract 

Scientific workflows need to be iteratively, and often interactively, executed for large input 
datasets. Reducing data from input datasets is a powerful way to reduce overall execution 
time in such workflows. When this is accomplished online (i.e., without requiring the user 
to stop execution to reduce the data, and then resume), it can save much time. However, 
determining which subsets of the input data should be removed becomes a major problem. 
A related problem is to guarantee that the workflow system will maintain execution and 
data consistent with the reduction. Keeping track of how users interact with the workflow is 
essential for data provenance purposes. In this paper, we adopt the “human-in-the-loop” 
approach, which enables users to steer the running workflow and reduce subsets from 
datasets online. We propose an adaptive workflow monitoring approach that combines 
provenance data monitoring and computational steering to support users in analyzing the 
evolution of key parameters and determining the subset of data to remove. We extend a 
provenance data model to keep track of users’ interactions when they reduce data at 
runtime. In our experimental validation, we develop a test case from the oil and gas 
domain, using a 936-cores cluster. The results on this test case show that the approach 
yields reductions of 32% of execution time and 14% of the data processed. 
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1. Introduction 

Scientific Workflow Management Systems (SWMSs) with parallel capabilities have 
been designed for executing data-intensive scientific workflows, or scientific workflows for 
short, in High Performance Computing (HPC) environments. A typical execution may 
involve thousands of parallel tasks with large input datasets [1]. When it is iterative, the 
workflow is repeatedly executed for each element of an input dataset. The more the data to 
process, the longer the workflow may take, which may be days depending on the problem 
and HPC environment [2]. Configuring a scientific workflow with parameters and data is 
hard. Users1 typically need to try several input data or parameter combinations in different 
workflow executions. These trials make the scientific experiment take even longer. The 
obvious solution to improve performance in HPC is through parallel processing. However, 
reducing the input data to be processed can be also very effective to reduce workflow 
execution time [3]. 

In scientific workflows, the total amount of data is large, but not necessarily the entire 
input dataset has relevant data for achieving the goal of the workflow execution. This is 

                                                
1 Our target-user profile is a computational scientist, who is expert in domain-specific systems (e.g., bioinformatician, 

computational physicist, or engineer). 



particularly true when a large parameter space needs to be processed in parameter sweep 
workflows. There may be slices of the parameter space that have no (or little) influence on 
the results and thus, as with a “branch and bound” optimization strategy, can be bounded 
before its evaluation. A similar scenario occurs when the workflow involves a large input 
dataset. When users can actively participate in the computational process, practice 
frequently referred to as “human-in-the-loop”, they may analyze partial result data and tell 
which part of the data is relevant for the final result [4]. Then, based on their domain 
knowledge, users can identify which subset of the data is not interesting and thus should be 
discarded from the execution by the SWMS, thereby reducing execution time. 

Data reduction can be accomplished in at least three different forms. First, it can be 
done before the execution starts. However, in most complex scenarios, the high number of 
possibilities make it impossible to know beforehand the uninteresting subsets, without any 
prior execution. Furthermore, not only the initial dataset can be reduced, but also the 
intermediate data generated by the workflow, since the activities composing it continuously 
produce significant amounts of data that are consumed by other activities. A second form of 
data reduction is online. When the SWMS allows for partial result data analysis, the user 
may analyze the partial data, find which slice of the dataset is not interesting, and reduce 
the dataset online. We use the term online when user is able to inspect the workflow 
execution, analyze partial and execution data, and dynamically adapt workflow settings 
while the workflow is running (i.e., at runtime). The third form of data reduction is by 
stopping the execution, reducing the data offline, and then resume with the reduced dataset. 
Because of the difficulty in defining the exploratory input dataset and the long execution 
time of such workflows, users frequently adopt the third form. However, in the offline 
form, the SWMS is not aware of the changes, and the results with one workflow 
configuration are not related to the others. Therefore, this is generally more time-
consuming, there is no control or registration of user interactions, and the execution may 
become inconsistent [2]. 

Online data reduction has obvious advantages but introduces several challenges related 
to computational steering in HPC environments [4]. First, because of the complexity of the 
scientific scenario and the huge amount of data, users do not know beforehand which data 
subset should be kept or removed. Identifying these subsets involves relating input data to 
intermediate data and final results. Also, if users cannot actively follow the result data 
evolution online, in particular, domain data associated to execution and provenance data 
(history of data derivation), they can be driven to misleading conclusions when trying to 
identify the uninteresting data subset. Second, if they can find which subset to remove and 
try to remove it, the SWMS must allow for such online reduction and guarantee that the 
operation will be done consistently.  Otherwise, it can introduce anomalous data, with no 
control over data elimination, data redundancy, or even execution failure. Third, in a long 
run, there may be more than one interaction, each removing more subsets, at different 
times. If the SWMS does not keep track of the user’s actions, it negatively impacts the 
results’ reproducibility and reliability. Although data reduction is not new in SWMSs [3], 
the problem of doing this online, steered by users, while maintaining data provenance has 
not been addressed before.  

To address these challenges, we propose a data reduction approach. The key idea is to 
consider input datasets as sets of input data elements that can be manipulated and related to 
their following data elements along the dataflow generation. Provenance data management 



is at the core of the approach. In addition to the traditional advantages of managing 
provenance data in scientific workflows (i.e., reproducibility, reliability, and quality of 
result data) [5], online provenance data management eases interactive domain data analysis 
[6,7]. Such analysis helps finding the data subset to be removed. Moreover, the SWMS 
must guarantee data consistency in the execution before and after the reduction, and keep 
track of user steering actions to maintain provenance of adaptations. 

Chiron is a SWMS that implements a data-centric approach. It has successfully been 
used to manage scientific workflow applications in domains such as bioinformatics [6], 
computational fluid dynamics [2], and astronomy [7]. However, Chiron does not control 
changes in input datasets, including removing a subset. To implement our data reduction 
approach in Chiron, we add new operators and modules to enable users to reduce sets of 
input data for workflow activities online, and maintain consistency of the provenance of the 
removed data. We take advantage of a distributed in-memory database system (MySQL 
Cluster) in a version called d-Chiron that is significantly more scalable than Chiron [8], to 
address consistency issues with respect to data reduction. We make the following 
contributions: 
• A mechanism coupled to d-Chiron SWMS for online input data reduction, which allows 

users to remove data subsets at runtime. It guarantees that both execution and data 
remain consistent after reduction. 

• An extension to a provenance data diagram (which is W3C PROV compliant) to 
maintain the history of user adaptations when users reduce data online.  

• A module to track provenance of human adaptation when users reduce data online. The 
mechanism collects provenance of human-adaptation data when data reductions are done 
in the datasets being consumed by the workflow. The provenance data is inserted online 
in the wf-Database, which implements the extended data diagram. 

This paper is a major extension of [9], which introduces the initial ideas of online input 
data reduction in scientific workflows. In this paper, we extend [9] with: (i) a formalization 
of the core concepts of the solution; (ii) a formal definition of the user steering operator to 
reduce input data; (iii) practical examples of how other real-world scientific workflows 
(other than the one used in the experimental validation), such as SciPhy [10] and Montage 
[11], could benefit from our solution; (iv) explanation about how consistency is tackled in 
the approach, and a detailed description about how we implement it; (v) details about how 
users use the system; (vi) the exploration of different aspects of the benefits of our solution 
through a broader set of experiments; and (vii) more related work.  
Paper organization. Section 2 gives our motivating example. Section 3 describes the 
background for this work. We present our main contribution in Section 4 and its 
implementation in Section 5. Section 6 shows how users use the system, Section 7 presents 
an experimental validation, Section 8 shows related work, and Section 9 concludes. 
2. Motivating Case-study in the Oil and Gas Industry 

In ultra-deep water oil production systems, a major application is to perform risers’ 
analyses. Risers are fluid conduits between subsea equipment and the offshore oil floating 
production unit. They are susceptible to a wide variation of environmental conditions (e.g., 
sea currents, wind speed, ocean waves, temperature), which may damage their structure. 
The fatigue analysis workflow adopts a cumulative damage approach as part of the riser's 
risk assessment procedure considering a wide combination of possible conditions. The 



result is the estimate of riser’s fatigue life, which is the length of time that the riser will 
safely operate. The Design Fatigue Factor (DFF) may range from 3 to 10, meaning that the 
riser’s fatigue life must be at least DFF times higher than the service life [12].  

Sensors located at the offshore platform collect external conditions and floating unit 
data, which are stored in multiple raw files. Offshore engineers use specialized programs 
(mostly simulation solvers) to consume the files, evaluate the impact of environmental 
loads on the risers in the near future (e.g., risk of fractures), and estimate the risers’ fatigue 
life. Figure 1 shows a scientific workflow composed of seven piped programs (represented 
by workflow activities) with a dataset in between, forming a flow of sets of data elements 
within linked tasks. The <<Stereotypes>> and dataflow concepts are explained in Section 3.1. 

 
Figure 1. Risers Fatigue Analysis Workflow. 

Each task of Data Gathering (Activity 1) decompresses one large file into many 
files containing important input data, reads the decompressed files, and gathers specific 
values (environmental conditions, floating unit movements, and other data), which are used 
by the following activities. Preprocessing (Activity 2) performs pre-calculations and 
data cleansing over some other finite element mesh files that will be processed in the 
following activities. Stress Analysis (Activity 3) runs a computational structural 
mechanics program to calculate the stress applied to the riser. Each task consumes pre-
processed meshes and other important input data values (gathered from first activity) and 
generates result data files, such as histograms of stresses applied throughout the riser (this 
is an output file), and stress intensity factors in the riser and principal stress tensor 
components. It also calculates the current curvature of the riser. Then, Stress Critical 
Case Selection (Activity 4) and Curvature Critical Case Selection 
(Activity 5) calculate the fatigue life of the riser based on the stresses and curvature, 
respectively. These two activities filter out results corresponding to risers that certainly are 
in a good state (no critical stress or curvature values were identified). Those cases are of no 
interest to the analysis. Calculate Fatigue Life (Activity 6) uses previously 
calculated values to execute a standard methodology [12]  and calculate the final fatigue 
life value of a riser. Compress Results (Activity 7) compresses output files by riser. 

Most of these activities generate result data (both raw data files and some other domain-
specific data values), which are consumed by the subsequent activities. These intermediate 
data need to be analyzed during workflow execution. More importantly, depending on a 
specific range of data values for an output result data (e.g., fatigue life value), there may be 
a specific combination of input data (e.g., environmental conditions) that are more or less 
important during an interval of time within the workflow execution. The specific range is 
frequently hard to determine and requires a domain expert to analyze partial data during 
execution. For example, an input data element for Activity 2 is a file that contains a large 
matrix of data values, composed of thousands of rows and dozens of columns. Each column 
contains data for an environmental condition and each row has data collected for a given 



time instant. Each row can be processed in parallel and the domain application needs to 
consume and produce other data files (on average, about 14 MB consumed and 6 MB 
produced per processed input data element). After many analyses online, the user finds that, 
for waves greater than 38 m with frequency less than 1Hz, a riser fatigue will never happen. 
Thus, within the entire matrix, any input data element that contains this specific 
uninteresting range does not need to be processed. Therefore, by reducing the input dataset, 
the overall data processed and generated are reduced and thus the overall execution time. In 
this paper, we use this workflow as basis for our examples. 
3. Background 

It is known that scientific workflows are data-centric. Data management in scientific 
workflows is critical due to the inherent complexity of the scientific domain data and the 
HPC requirements, such as efficient exploitation of data parallelism. In this section, we 
provide the background for this work, which relies on a data-centric algebraic approach for 
scientific workflows [13,14]. It provides constructs, mechanisms, and conceptualizations 
which in essence aim at valorizing fine-grained elements of data flowing throughout the 
workflow activities, rather than just the chaining of tasks (i.e., chaining of programs or 
processes). This enables building solutions for dynamic data analyses and even adaptations 
in the dataflow. This data-centric approach is used by several modern parallel systems, such 
as Swift [15], Apache Spark [16], and Panda [17], in order to exploit data parallelism. In 
Section 3.1, we describe the data-centric approach and in Section 3.2, we explain user-
steered workflows, which together set the foundation for this work. 
3.1 Data-Centric Algebraic Approach for Scientific Workflows 

A scientific workflow is composed of a set of activities. An activity can be a program, a 
script or a function that consumes in parallel input datasets, computes, and produces output 
datasets. The output dataset of a certain activity can become an input dataset of another, 
defining a data dependency between these two activities. A dataset (either input or output) 
is a set of data elements. A data element can contain simple primitive data values (e.g., 
integers, strings) or complex data objects (e.g., matrices, finite element meshes, images). 
An input data element has the necessary data to be consumed by a workflow activity 
computation, or task. In a workflow execution, in addition to the data dependency between 
chained workflow activities, there may be thousands of independent tasks running in 
parallel within each activity, as in the Many Task-Computing paradigm [1]. Figure 2 
illustrates a generic representation of a scientific workflow, where the dataset 𝑅" of output 
data elements of activity 𝐴𝑐𝑡&	is also a set of input data elements for activity 𝐴𝑐𝑡". 

  
Figure 2. Data dependency between activities. 

3.1.1 Data-centric Algebraic Notation 

A workflow 𝑊 is a chaining of activities 𝐴	 = 	 {𝐴𝑐𝑡&, … , 𝐴𝑐𝑡-}, 𝑘	 = |𝐴|. An activity 
𝐴𝑐𝑡1 ∈ 𝐴 consumes input datasets 𝑅1	and produces output datasets 𝑅13&	, which can be 



consumed, as input datasets, by an activity 𝐴𝑐𝑡13& ∈ 𝐴, for all activities in 𝐴, forming a 
dataflow. This is presented in [7], inspired by concepts proposed by Ikeda et al. [17]. 

Not necessarily all workflow activities consume the data elements in the same way. For 
example, an activity 𝐴𝑐𝑡1 may produce one output data element in 𝑅13&	for each input data 
element consumed from 𝑅1	 (i.e., 1: 1 ratio between the cardinalities of the input and output 
datasets); and a chained activity 𝐴𝑐𝑡13&  may consume all 𝑛 elements from 𝑅13&	 to produce 
a dataset 𝑅13"	with a single data element (𝑛: 1 ratio). Workflow engines can highly benefit 
from this information to anticipate runtime optimizations of data parallel operations [14]. 

We distinguish between input and output datasets. Input datasets are composed of input 
data elements and are consumed by activities. Output datasets are composed of output data 
elements and are produced by activities. Then, let 𝑅	 = 	 {𝑅&, … , 𝑅7}, with 𝑟	 = 	 |𝑅|, be the 
set that contains all datasets (either input our output) for the activities in a workflow 𝑊. 
The data dependencies of the datasets form the dataflow. Considering these concepts, 
Ogasawara et al. [14] formalize the general form of the data-centric workflow algebra as: 

	𝑅13& ← 𝐷𝑇 𝐴𝑐𝑡1, 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠 , 𝑅1 ,  
where	𝐷𝑇 ∈ 	 {𝑀𝑎𝑝, 𝑅𝑒𝑑𝑢𝑐𝑒, 𝐹𝑖𝑙𝑡𝑒𝑟,𝑀𝑅𝑄𝑢𝑒𝑟𝑦, 𝑆𝑝𝑙𝑖𝑡𝑀𝑎𝑝} is a data transformation and 
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠  are additional operands that may be needed by some	𝐷𝑇, such as 

Reduce. 𝐷𝑇 is a dataflow operator that determines how input data elements are transformed 
into output data elements, in particular, the ratio between number 𝑛 of input data elements 
consumed and number 𝑚 of produced output data elements in a workflow activity 𝐴𝑐𝑡1. For 
example, Map has 1:1 ratio, Reduce has 𝑛: 1, SplitMap has 1:𝑚, filter has 1: (1|0), and 
MRQuery (e.g., a join of two datasets) has 𝑛:𝑚 ratio. Figure 3 shows a data-centric 
algebraic representation of the Risers Fatigue Analysis workflow shown in Figure 1. 

𝑅𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 ← 𝑆𝑝𝑙𝑖𝑡𝑀𝑎𝑝 𝐷𝑎𝑡𝑎𝐺𝑎𝑡ℎ𝑒𝑟, 𝑅𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔  
𝑅𝑆𝑡𝑟𝑒𝑠𝑠𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 ← 𝑀𝑎𝑝 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔, 𝑅𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔  
𝑅𝑆𝑡𝑟𝑒𝑠𝑠𝐶𝑎𝑠𝑒𝑆𝑒𝑙 ← 𝐹𝑖𝑙𝑡𝑒𝑟 𝑆𝑡𝑟𝑒𝑠𝑠𝐶𝑎𝑠𝑒𝑆𝑒𝑙, 𝑅𝑆𝑡𝑟𝑒𝑠𝑠𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠  
𝑅𝐶𝐹𝑎𝑡𝑖𝑔𝑢𝑒𝐿𝑖𝑓𝑒 ← 𝐹𝑖𝑙𝑡𝑒𝑟 𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒𝐶𝑎𝑠𝑒𝑆𝑒𝑙, 𝑅𝑆𝑡𝑟𝑒𝑠𝑠𝐶𝑎𝑠𝑒𝑆𝑒𝑙  
𝑅𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑀𝑎𝑝 𝐶𝑎𝑙𝑐𝐹𝑎𝑡𝑖𝑔𝑢𝑒𝐿𝑖𝑓𝑒, 𝑅𝐶𝐹𝑎𝑡𝑖𝑔𝑢𝑒𝐿𝑖𝑓𝑒  
𝑅𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑅𝑒𝑑𝑢𝑐𝑒 𝐶𝑎𝑙𝑐𝐹𝑎𝑡𝑖𝑔𝑢𝑒𝐿𝑖𝑓𝑒, 𝑐𝑎𝑠𝑒, 𝑅𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑅𝑒𝑠𝑢𝑙𝑡𝑠  

Figure 3. Risers Fatigue Analysis workflow using the algebraic dataflow representation. 

All datasets 𝑅1	 ∈ 𝑅 have a predetermined data schema 𝓢 𝑅1	  = (attributei1: 
datatypei1,…, attributeiu: datatypeiu), with 𝑢 = number of attributes of 𝓢 𝑅1	 . The data 
elements of 𝑅1	follow the schema 𝓢 𝑅1	 . For example, suppose that 𝑅& ∈ 𝑅 contains input 
environmental conditions and 𝑅" ∈ 𝑅 contains output fatigue life values, then possible 
schemas for these datasets could be:  𝓢 𝑅1 	= (wind_speed: float, wave_frequency: float, 
air_temperature: float, humidity: float, mesh_path: string) and 𝓢 𝑅2  = (fatigue_life: 
integer, histogram_path: string). Thus, the structure of the data flowing between activities 
is enhanced. The user is also familiar with those domain terms. This not only contributes to 
the workflow engine for data parallelism, but also enables submitting structured queries on 
dataflow generation, which includes domain-data values in the flow.  
3.1.2 Scientific Domain Data Management using the Algebraic Approach 

In addition to efficiently managing data parallelism, the SWMS needs to manage the 
scientific domain data. Structured queries ease data analysis and the algebraic approach is 
useful here [2,4,7]. Two types of data are stored in those datasets: domain-specific values 
and other larger or more complex data. The algebraic approach enables expressing the 



scientific datasets in a structured way following a data schema 𝓢 𝑅1	  with known data 
types. Often, scientific programs require the processing of other complex large datasets, 
such as large matrices, binary data, unstructured information, or other domain-specific data 
representations. We use paths that point to these data files on disk in the attributes of the 
data elements composing the datasets 𝑅1 ∈ 𝑅 whenever a file is read or written by an 
activity [7]. Some other domain-specific data values within those files can be extracted or 
generated based on the content of the file and represented as attributes in the data elements, 
also increasing the expressivity of the file descriptions [13,14]. These domain-specific 
quantities can be decisive for the domain so they need to be tracked. Since tracking all fine-
grained data elements the user wants may be impractical due to the huge amount of data, 
the domain expert determines which domain-specific values need to be extracted and 
tracked. All these data management features enable users to query, analyze, and inspect the 
scientific raw data and the dataflow as the workflow is being processed.  
3.2 User-steered Workflows 

There are at least six aspects of computational steering in scientific workflows: 
interactive analysis, monitoring, human adaptation, notification, interface for interaction, 
and computing model [4]. Despite the importance of them all, the first three are essential 
and are the ones this work focuses on. Human adaptation is definitely at the core of 
computational steering. However, users will only know how to fine-tune parameters or 
which subset needs further focus if they can explore partial result data during a long-term 
execution. Thus, interactive analysis and monitoring are important to put the human in the 
loop. Online provenance data management in SWMSs is an essential asset to support all six 
aspects of computational steering in scientific workflows. In this section, we explain the 
three computational steering aspects explored in this paper and how the data-centric 
algebraic approach supports them. 
3.2.1 Interactive Analysis  

To allow for interactive analysis, the data-centric approach designs how fine-grained 
domain-specific data, workflow execution data, performance data, and provenance data are 
collected by the workflow engine. It also specifies how they are stored in a database (the 
wf-Database) to be queried by users. We address two aspects of workflow data that can be 
interactively analyzed: (A) domain dataflow and (B) workflow execution [4]. 

(A) Domain dataflow. To allow for domain dataflow interactive analysis, dataflow 
provenance data are stored in the wf-Database. The input and output data elements are 
continuously collected and stored in the wf-Database at each task execution at runtime. The 
output elements are linked to the inputs, so that the flow of data elements can be easily 
retrieved through provenance queries. This approach enables online fine-grained domain 
dataflow analysis [6] as well as the analysis of related domain data files through file flow 
relationships [7], as in Figure 4. 

To exemplify some possible interactive queries, Table 1 has some typical analyses that 
are executed for the riser fatigue analysis workflow involving domain and provenance 
dataflow analysis. In an earlier work, we also observed similar query patterns for scientific 
data analysis in different domains [18]. For Queries 𝑄1-𝑄4, the SWMS needs to store the 
history of the data elements generated in Activities 4 and 5 since the beginning of the flow, 
linking each element-flow in between. For example, environmental conditions (𝑄1) and 



hull conditions (𝑄2) are obtained in Activity 1, and stress- and curvature-related values are 
obtained in Activities 4 and 5, respectively. To correlate output elements from Activity 4 or 
5 to output elements from Activity 1, provenance data relationships are required. 

Users can analyze the dataflow by running queries in the database query interface at any 
time during execution or using any application that connects to the database to plot data 
visualization. Without such structured query support, users need to look for files in their 
directories, open and analyze them, and try to do this analysis in an ad-hoc way. 
Frequently, they write scripts to search in these result files. They often interrupt the 
execution to fine tune input data and save execution time. This user behavior is observed 
not only in the oil and gas domain, but also in several other domains, such as 
bioinformatics, computational physics, and astronomy. More examples exploring how this 
data-centric approach enables querying domain dataflow together with provenance data to 
enhance online data analysis in scientific workflows can be found in [6,7,18]. 

Table 1. Domain dataflow provenance interactive queries. 

𝑸𝟏 
What is the average of the 10 environmental conditions that are leading to the largest fatigue life 
value? 

𝑸𝟐 What are the water craft’s hull conditions that are leading to risers’ curvature lower than 800? 
𝑸𝟑 What are the top 5 raw data files that contain original data that are leading to lowest fatigue life value? 

𝑸𝟒 What are the histograms and finite element mesh files related when computed fatigue life based on 
stress analysis is lower than 60? 

Table 2. Provenance and domain data linked to execution data. 

𝑸𝟓 

Determine the average of each environmental conditions (output of Data Gathering – Activity 1) 
associated to the tasks that are taking more than the double of the average execution time of 
Curvature Critical Case Selection (Activity 5), grouping the results by the machines 
(hostnames) where the tasks of Activity 5 were executed. 

𝑸𝟔 Determine the finite element meshes files (output of Preprocessing – Activity 2) associated to the 
tasks that are finishing with error status. 

𝑸𝟕 List information about the 5 computing nodes with the greatest number of Preprocessing 
activity tasks that are consuming data elements that contain wind speed values greater than 70 Km/h. 

 

 
Figure 4. Scientific domain data management showing how the data elements flowing between activities are 

stored as datasets linked with workflow execution data and dataflow provenance in the wf-Database. 
 



B. Workflow execution. Lower level execution engine information, such as physical 
location (i.e., virtual machine or cluster node) where a task is being executed, can highly 
benefit data analysis and debugging in large-scale HPC executions. Users may want to 
interactively investigate how many parallel tasks each node is running. Moreover, this 
approach eases debugging. Tasks run domain applications that can result in errors. If there 
are thousands of tasks in a large execution, how to determine which tasks resulted in 
domain application errors and what the errors were? Furthermore, performance data 
analysis is very useful. Users are frequently interested in knowing how long tasks are 
taking, how much computing resources (memory, CPU, disk IO, network throughput, etc.) 
are being consumed [19]. All this workflow execution data are important to be analyzed 
and can deliver interesting insights when linked to domain dataflow data. When execution 
data is stored separately from domain and provenance data, these steering queries are not 
possible or require combining different tools and writing specific analysis programs [7]. To 
support all this, the data-centric approach allows for recording parallel workflow execution 
data in a way that they can be linked to domain and provenance data. Table 1 shows some 
provenance queries for the Risers Analysis workflow that link workflow execution data to 
domain dataflow. Figure 4 shows how the domain-data elements flowing within the 
activities of Risers Fatigue Analysis workflow are managed as datasets in the wf-Database, 
linked to workflow execution data and dataflow provenance. Also, the datasets contain 
paths to raw data files on disk [7].  
3.2.2 Human Adaptation 

After users have analyzed partial data and gained insights, they may decide to adapt the 
workflow execution. It brings powerful abilities to users, putting the human in control of a 
scientific workflow execution. Many aspects can be adapted by humans, but very few 
systems support human-in-the-loop actions [4]. The human-adaptable aspects range from 
computing resources involved in the execution (e.g., adding or removing nodes), to check-
pointing and rolling-back (debugging), loop break conditions, reducing datasets, 
modification of filter conditions, and parameter fine-tuning. 

Populating the wf-Database during workflow execution helps all these aspects. For 
example, in [20], it is shown that it is possible to change filter conditions during execution. 
Also, in [2], a data-centric algebraic approach is proposed to adapt loop conditions of 
iterative workflows (e.g., modify number of iterations or loop stop conditions). These 
works show that adaptations can significantly reduce overall execution time, since users are 
able to identify a satisfactory result before the programmed number of iterations. Prior to 
this work, no work has been developed to tackle user-steered data reduction online taking 
advantage of a data-centric approach. 

Since provenance data is so beneficial, we consider that when a user interacts with the 
workflow execution, new data (user steering data) are generated, and thus their provenance 
must be registered as well. In a long-running execution, many interactive data analysis and 
adaptations may occur. If the SWMS does not adequately register the provenance of 
interaction data, users can easily lose track of what they have changed in the past. This is 
critical if the entire computational experiment takes days and many adaptations occurred, 
since it may be impossible to remember in the last day of execution what they have steered 
in the first days. Furthermore, adding human-adaptation data to the wf-Database enriches 
its content and enables future interaction analysis. One example of how such data can be 



exploited is that the registered adaptation data could be used by artificial intelligence 
algorithms to understand interaction patterns and recommend future adaptations. Thus, the 
SWMS that enables computational steering should collect provenance of user interaction 
data. To the best of our knowledge, this has not been done before. 
3.2.3 The Role of Scientists in SWMSs 

This work aims at supporting one type of scientist, i.e., computational scientists, who 
are the typical users of a steered workflow. However, running complex data-centric 
workflows in HPC usually involves several scientists with different levels of expertise on 
each of the aspects involved in the process. We consider three types of scientists: (a) 
domain scientist, (b) computational scientist, and (c) computer scientist. All these scientists 
collaborate to scientific discovery. 

(a) Domain scientists. Examples are geologists, biologists, and experimental physicists. 
They are very familiar with concepts, nomenclature, and semantics of the domain. They are 
commonly very good at understanding the scientific hypothesis, results and data 
interpretation. They may not have programming or computational skills. The resulting data 
of a complex computational simulation are often delivered to them as well organized, 
cured, and with some aggregations, visualizations, plots, and dashboards. Their main work 
is typically to give sense to these cured data.  

(b) Computational scientists. Examples are engineers, bioinformaticians, and 
computational physicists. They are not domain specialists, but have knowledge on the 
domain. However, they are more focused on the computational aspects. They typically have 
programming and computational skills, and they are familiar with command line interfaces. 
They are more prone to learning new computing technologies and use new systems that 
support their computational simulations. They know how to analyze domain-specific data 
and metadata and organize large raw data files into analyzed data so they can work together 
with domain scientists to deeply interpret the data. They know how to chain the different 
simulation programs and design a scientific workflow to attend the main goal of a computer 
simulation. They are able to operate a SWMS or dispatch jobs in an HPC cluster.  

(c) Computer scientists. They are experts in developing tools, methods, or systems that 
support large-scale simulations. Examples are HPC, data management, workflow solution 
specialists. They do not necessarily have domain knowledge. Often, computer scientists 
work closely with computational scientists to obtain the best performance for an HPC 
simulation and achieve the final goal. They can analyze performance, linked with domain 
and provenance data to help adjusting the system, debugging, and fixing errors.  
4. User-steered Online Data Reduction and Adaptive Monitoring 

In this section, we show our main contributions. In the data-centric approach, removing 
a subset of the entire dataset to be processed means removing a set of input data elements 
from a dataset to be consumed by a workflow activity. As a consequence of this removal, 
the tasks that would process the elements within the removed subset will not be executed, 
hence, reducing both workflow execution time and data processing. Data processing 
reduction becomes more evident if the removed data elements contain paths to large raw 
data files that would be consumed by tasks if the elements were not removed. Furthermore, 
if an input data element of a given activity is removed, the following elements forming the 
element-flow of the next linked activities will not be processed too, reducing data and, 



more importantly, execution time in cascade. In Section 4.1, we introduce a new data-
centric algebraic operator for user-steered data reduction. In Section 4.2, we discuss the 
importance of maintaining data consistent after reduction. In Section 4.3, propose an 
adaptive monitoring approach. In Section 4.4, we explain our approach in the context of 
existing workflow execution models. In Section 4.5, we exemplify how real-world 
scientific workflows can highly benefit from our approach. 
4.1 An Operator for Data Reduction 

Once users analyze data elements that have already been processed, they might identify 
data elements that will be processed, following the pre-specified dataflow, but will not 
contribute to the final results. To tackle this, we extend the data-centric algebraic operators 
(Section 3.1) with a new user-steered operator, 𝐶𝑢𝑡, to enable users to cut off a slice 
containing input data elements. 
Definition (Cut): 𝐶𝑢𝑡 is a user-steered data-centric operator that removes a subset of a 
dataset 𝑅1	based on activity 𝐴𝑐𝑡 that evaluates the criteria 𝐶. Its general form is: 

𝑅1a ← 𝐶𝑢𝑡 𝐴𝑐𝑡, 𝐶, 𝑅1   
It transforms an input dataset 𝑅1 ∈ 𝑅 in the dataflow into the output dataset 𝑅1a and the ratio 
between 𝑛 input data elements and 𝑚 output data elements is 𝑛:𝑚, with 𝑛 ≥ 	𝑚. 𝑅1 and 
𝑅1a	follow the same data schema 𝓢 𝑅1 . 𝐶 is the criteria that addresses the slice of input data 
elements that are removed. 𝐶 may be either a simple predicate (e.g., 𝑎𝑡𝑡𝑟&c 	= ′𝐹𝐴𝑇𝐼𝐺𝑈𝐸′) 
or a minterm predicate (e.g., 𝑎𝑡𝑡𝑟&& > 38	 ∧ 𝑎𝑡𝑡𝑟&" > 0.1 ∧ 𝑎𝑡𝑡𝑟&m < 1.0). 

As any other dataflow operator (e.g., Map, Reduce, Filter, SplitMap, etc.), 𝐶𝑢𝑡 
performs data transformation. However, it is not part of the initially designed workflow 
composition. Differently than the other operators, 𝐶𝑢𝑡 is not initially defined in the 
workflow composition. Rather, it is dynamically inserted in the dataflow as a result of a 
user steering action. Then, after the transformation of 𝑅1 into 𝑅1a, it is naturally consumed 
by the subsequent activities that would consume 𝑅1 if no reduction happened. 𝐶𝑢𝑡 allows 
the SWMS to keep track of user adaptations during a dataset reduction, closely relating the 
metadata about the human action (e.g., data about the user who performed the action, when 
the action was performed, how the action occurred, relating with the 𝐶 criteria used in the 
reduction, etc.) to the actual data that have been reduced in a 𝐶𝑢𝑡. In Section 5.5, we 
propose extensions to a W3C-PROV compliant data diagram to represent provenance data 
collected. Figure 5 illustrates how 𝐶𝑢𝑡 would be dynamically inserted by a user in the 
Risers Fatigue Analysis workflow, using the algebraic representation. 
4.2 Consistency Issues in a User-steered Data Reduction 

 𝐶𝑢𝑡 can only operate on input data elements that are waiting to be processed in the 
workflow. When a 𝐶𝑢𝑡 happens, the dataset 𝑅1 that will be reduced is a shared resource 
between the SWMS engine that is normally processing the workflow in a batch job and the 
user who wants to remove a slice from 𝑅1. Thus, race conditions can occur. Suppose, for 
example, that at a given instant 𝜏 in time, the SWMS finishes processing a set of data 
elements and then needs to get new data elements that were waiting to be processed. If at 
the same time 𝜏, the user decides to remove some of those input data elements that were 
waiting to be processed, the SWMS may go to an inconsistent state because it could try to 
process elements that were removed. Or, the user may try to remove a slice that the SWMS 
already considered to process, thus generating errors. These inconsistencies are even more 



likely to occur in a highly concurrent execution, such as executions on large HPC clusters 
with thousands of computing cores. 

To address this problem, we specify a safe subset of an input dataset 𝑅1	to be applied 
the reduction. We split 𝑅1 into two subsets 𝑃1 and 𝑆1, where 𝑃1 is the subset of 𝑅1 with input 
data elements that have already been processed and 𝑆1 is the subset of 𝑅1 with elements 
waiting to be processed. Thus, using set theory, 𝑅1 ← 𝑃1 ∪ 𝑆1	|	𝑃1 ∩ 𝑆1 = 	∅. 𝑆1 is the subset 
of 𝑅1 that is safe to remove a data slice from. To guarantee this, the SWMS must provide 
lock controls so that only the subset 𝑆1 will be reduced. In Section 5.2, we give details 
about how we implement this in a SWMS. 
4.3 Adaptive Monitoring 

In this section, we present an adaptive monitoring approach that combines monitoring 
and human adaptation. It helps users following the evolution of interesting parameters and 
result data to find which subsets of the dataset can be removed during execution. Also, 
since what users find interesting may change over time, this approach allows the user to 
adapt the monitoring definitions, such as which data should be monitored and how. The 
adaptive monitoring relies on online queries to the continuously populated wf-Database. 
Users can set up monitoring queries (as in Table 1 and Table 2), analyze monitoring results, 
and adapt monitoring settings. 

Monitoring works as follows. There is a set {𝑄}	composed of monitoring queries 𝑚𝑞1, 
0	 ≤ 	𝑖	 ≤ | 𝑄 |, each one to be executed at each 𝑑1 > 0 time intervals. Users do not need 
to specify queries at the beginning of execution, since they do not know everything they 
want to monitor. This is why {𝑄} starts empty. After users gain insights from the data, after 
interactive provenance data analyses, they can add monitoring queries to {𝑄}	in an ad-hoc 
manner. Each 𝑑1 can be adapted, meaning that users have control of the time frame of each 
𝑚𝑞1	during execution. The monitoring queries and settings are stored in the wf-Database. 

Each 𝑚𝑞1 execution generates a monitoring query result set 𝑚𝑞𝑟1u, 𝑡	 = 𝑘𝑑1|	𝑘	 ∈
ℕwx , at each time interval 𝑑1. This result set is also stored in the wf-Database. The users 
have the flexibility to adapt monitoring during workflow execution. To do so, at each time 
instant 𝑡 after each monitoring query result 𝑚𝑞𝑟1u	has been generated, the values for 𝑑1 and 
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Figure 5. Workflow representation of a user-steered Cut operation. 



𝑚𝑞1	are reloaded from the wf-Database. If any change has happened, it will be considered 
in the next iteration 𝑡	 +	𝑑1. Moreover, at each certain time during execution (also 
configured by the user), the system checks if the user has added new monitoring queries in 
{𝑄}. Our approach takes full advantage of the data stored online in the wf-Database to 
enable users to steer monitoring settings, including which data will be monitored and how. 
We show how an example of a user adapting monitoring settings in Section 7. 
4.4 Data Reduction in Workflow Execution Models 

Among the different workflow execution models presented in [21], our data reduction 
can be used in both acyclic (sequential and concurrent) and cyclic models. To exemplify a 
data reduction in these models, let us consider any two activities 𝐴𝑐𝑡1 and 𝐴𝑐𝑡13&	in a given 
workflow 𝑊, where one depends on the other. Using the data-centric algebraic 
representation, we have:  

𝑅13& ← 𝐷𝑇1 𝐴𝑐𝑡1, 𝑅1 ; 	𝑅13" ← 𝐷𝑇13& 𝐴𝑐𝑡13&, 𝑅13& . 
In a sequential execution between 𝐴𝑐𝑡1 and 𝐴𝑐𝑡13&, 𝐴𝑐𝑡13&	only starts to operate when 

𝐴𝑐𝑡1 completely finishes all its tasks [21]. Suppose that the user wants to reduce input data 
for 𝐴𝑐𝑡1. The safe subset 𝑆1 contains data elements that are ready to be processed but are 
only waiting for a free processor, considering that all other processors are still processing 
tasks from 𝐴𝑐𝑡1. This happens when there are more tasks than available processors, which 
frequently occurs in large-scale workflows. Then, after some tasks for 𝐴𝑐𝑡1	have been 
processed, the user can submit analytical queries using the output of 𝐴𝑐𝑡1, make a decision, 
and reduce input data from 𝑆1. In this case, the reduction favors 𝐴𝑐𝑡1	directly, and 𝐴𝑐𝑡13& 
indirectly because 𝐴𝑐𝑡13& has less data to consume. The same occurs when the user wants 
to reduce input data for 𝐴𝑐𝑡13&. 

In a concurrent execution between 𝐴𝑐𝑡1 and 𝐴𝑐𝑡13&, there is a pipeline of data elements, 
i.e., when 𝐴𝑐𝑡1	finishes processing one task that generates output elements, 𝐴𝑐𝑡13&	can 
process those input elements. In this case, the safe subset 𝑆1 contains elements that will be 
processed by 𝐴𝑐𝑡1. When they are removed, the tasks from 𝐴𝑐𝑡13& that would consume the 
outputs from 𝐴𝑐𝑡1	are not executed. In this case, the reduction favors both 𝐴𝑐𝑡1	and 
𝐴𝑐𝑡13&	directly, since a reduction in 𝐴𝑐𝑡1	removes a pipeline between 𝐴𝑐𝑡1	and 𝐴𝑐𝑡13&.  

Both sequential and concurrent execution models can be iterated in a cyclic model. 
Thus, at runtime, when the workflow is running in a specific cycle (iteration), online user-
steered data reduction can occur. There are four types of cyclic models [2]: (1) counting 
loops without dependencies between iterations (also known as parameter sweep), (2) 
counting loops with dependencies (iteration 𝑘 + 1 depends on iteration 𝑘), (3) conditional 
loops (𝑤ℎ𝑖𝑙𝑒 … 𝑑𝑜), and (4) dynamic loops (user adapts loop stop condition). In addition 
to reducing data inside an iteration, as described for the acyclic models, one can reduce 
iterations using a dynamic loop model [2]. Therefore, our user-steered data reduction 
approach can be used in almost all the execution models presented in [21], and is  a 
complementary approach to user-steered iteration reduction in cyclic execution models, as 
done in [2]. We carry out our experimental validation using the case study of Section 2, 
which combines acyclic (with both concurrent and sequential activities) and cyclic (more 
specifically, parameter sweep) models. 



4.5 Data Reduction in Real-world Scientific Workflows 

Several real-world scientific workflows have this same behavior: data elements 
organized in datasets flowing in a dataflow. To exemplify data reduction in other different 
workflow execution models, we use (i) SciPhy [10], which iterates over a time consuming 
input dataset from the bioinformatics domain; and (ii) Montage [11], which has been used 
to benchmark scientific workflow solutions [22] and represents data-intensive workflows. 

(i) SciPhy [10] is a bioinformatics workflow composed of eight activities for 
phylogenetic analysis. In Figure 6(a) and Figure 6(c), we show SciPhy with its dataflow 
and algebraic representation, respectively. SciPhy aims at producing phylogenetic trees that 
represent evolutionary relationships. These trees are analyzed to identify or discover drug 
targets.  Given an input set of new genomic sequences or genes, specific programs, which 
are both compute- and data-intensive, are used in a workflow to infer similarity and 
homology. These sequences are transformed through the dataflow until they arrive at the 
Model Generator activity, which is mostly compute-intensive, and takes a long time to 
calculate the similarity. Based on previous execution information stored in a provenance 
database, combined with domain-specific knowledge, the user can tell that a specific 
combination of genomic sequences will likely take an undesirable amount of time to 
complete. This is critical for executions in cloud environments, because it will significantly 
increase the costs. The constraint in this case is cost and not whether the input will lead to 
interesting results. The user simply cannot pay for the time the program will take to 
complete a specific slice of the input or the user prefers to spend more time on sequences 
that will take shorter time and will return results faster, contributing for the overall analysis. 
Without our solution, the user needs to stop execution, remove this undesired set of 
genomic sequences by hand, and restart. This is error-prone, the interactions are not 
integrated with the workflow execution, and it is time consuming. 

(ii) Montage [11] is a well-known toolkit for assembling astronomical images into 
custom mosaics of the sky. The workflow has been modeled using the data-centric algebra 
[7], with nine activities. In Figure 6(b), we illustrate with a visual representation of the 
workflow, showing the datasets between each workflow activity. In Figure 6(d), we show 
how we model Montage using the data-centric algebra [7]. The first activity extracts many 
Flexible Image Transport System (FITS) files. The contents of these files are data about 
common astronomy coordinate systems, arbitrary image sizes, rotations, and world 
coordinate system map projects. Each file has twenty different types of data, modeled as 
attributes of a dataset in the data-centric approach. The activity Create Mosaic builds a 
mosaic of a delimited region in the outer space and generates an image. Analyzing the 
generated mosaic, users can infer the presence of an interesting celestial object. Identifying 
them is hard, subjective, and requires domain expertise. 

By correlating specific combinations of input data values captured in those FITS files 
with the generated mosaics, the domain specialist can tell whether a certain region of the 
outer space is more or less likely to contain an interesting celestial object. Identifying this 
correlation is tricky and it may dynamically change during execution, depending on how 
the data values are evolving. In particular, users investigate the color intensity to detect 
potential regions of interest that may represent a celestial object. Thus, a pixel with high 
color intensity may represent an object emitting light or reflecting it. For this reason, the 
user needs to monitor the results looking for those color intensity changes. Based on the 



results, the user can identify regions of the space that are very unlikely to lead to significant 
color change. These regions, which are delimited in data values in the input FITS files, 
could be eliminated at runtime, thus reducing processed data and execution time. 

To show a specific case of data reduction, Figure 7 shows an excerpt of the Montage 
workflow.  List FITS activity consumes a list of compressed files and each produces a 
list of many FITS files (i.e., it has a SplitMap behavior). The list of FITS files is 
represented as 𝑅 7¡¢£¤u1¡¥ dataset, which contains paths to the actual files stored on disk. 
The modeled workflow extracts data values from those files and store in 𝑅 7¡¢£¤u1¡¥ 
dataset. Among these data values extracted, there are CRVAL1 and CRVAL2 that represent 
two coordinate values to determine a position in the native image coordinate system. The 
files in 𝑅 7¡¢£¤u1¡¥ are then processed by Projection activity, generating 
𝑅¦£§£¤u1¡¥¨7¡¢£¤u1¡¥© dataset, following the remainder of the dataflow. After some time has 
elapsed and files have been processed, a user runs several data analyses in the dataflow and 
determines that certain values for CRVAL1 and CRVAL2 will very unlikely lead to an 
interesting celestial object identification and these files containing the values can be cut off. 
Thus, the user does a reduction command using criteria C to cut a slice from 
𝑅 7¡¢£¤u1¡¥	dataset, transforming it into a reduced 𝑅′ 7¡¢£¤u1¡¥ to be consumed by 
Projection activity in the remainder of the dataflow. 

(i) Montage (ii) SciPhy  
Workflow Visual Representation 

 
(a) SciPhy visual representation.   

(b) Montage visual representation. 

Data-Centric Workflow Algebraic Representation 
𝑅𝑀𝑎𝑓𝑓𝑡 ← 𝑀𝑎𝑝(𝐷𝑎𝑡𝑎𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛, 𝑅𝐷𝑎𝑡𝑎𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛)	

𝑅𝑅𝑒𝑎𝑑𝑆𝑒𝑞 ← 𝑀𝑎𝑝(𝑀𝑎𝑓𝑓𝑡, 𝑅𝑀𝑎𝑓𝑓𝑡)	

𝑅𝑀𝑜𝑑𝑒𝑙𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 ← 𝑀𝑎𝑝(𝑅𝑒𝑎𝑑𝑆𝑒𝑞, 𝑅𝑅𝑒𝑎𝑑𝑆𝑒𝑞)	

𝑅𝑅𝑎𝑥𝑀𝐿 ← 𝑀𝑎𝑝(𝑀𝑜𝑑𝑒𝑙𝐺𝑒𝑛. , 𝑅𝑀𝑜𝑑𝑒𝑙𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟)	

𝑅𝑅𝑎𝑥𝑀𝐿1 ← 𝑀𝑎𝑝(𝑅𝑎𝑥𝑀𝐿_1,			𝑅𝑅𝑎𝑥𝑀𝐿)	

𝑅𝑅𝑎𝑥𝑀𝐿2 ← 𝑀𝑎𝑝(𝑅𝑎𝑥𝑀𝐿_2, 𝑅𝑅𝑎𝑥𝑀𝐿)	
𝑅𝑀𝑒𝑟𝑔𝑒𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑀𝑅𝑄𝑢𝑒𝑟𝑦(𝑗𝑜𝑖𝑛,

{𝑅𝑅𝑎𝑥𝑀𝐿1, 𝑅𝑅𝑎𝑥𝑀𝐿2})	

𝑅𝑅𝑎𝑥𝑀𝐿3 ← 𝑀𝑎𝑝(𝑅𝑎𝑥𝑀𝐿_3, 𝑅𝑀𝑒𝑟𝑔𝑒𝑅𝑒𝑠𝑢𝑙𝑡𝑠)	

(c) SciPhy algebraic representation. 

𝑅𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 ← 𝑆𝑝𝑙𝑖𝑡𝑀𝑎𝑝(𝑚𝐼𝑚𝑔𝑡𝑏𝑙, 𝑅𝐿𝑖𝑠𝑡𝐹𝐼𝑇𝑆)	

𝑅𝑆𝑒𝑙𝑒𝑐𝑡𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ← 𝐹𝑖𝑙𝑡𝑒𝑟(𝑚𝑃𝑟𝑜𝑗𝑒𝑐𝑡, 𝑅𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛)	

𝑅𝐶𝑈𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑠𝑎𝑖𝑐 ← 𝑅𝑒𝑑𝑢𝑐𝑒(𝑚𝐴𝑑𝑑,𝑀𝑂𝑆𝐴𝐼𝐶®¯ , 𝑅𝑆𝑒𝑙𝑒𝑐𝑡𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠)	

𝑅𝑈𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝐹𝐼𝑇𝑆 ← 𝑀𝑎𝑝(𝑚𝐽𝑃𝐸𝐺, 𝑅𝐶𝑈𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑠𝑎𝑖𝑐)	

𝑅𝐸𝑥𝑡𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 ← 𝑅𝑒𝑑𝑢𝑐𝑒(𝑚𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠, 𝑀𝑂𝑆𝐴𝐼𝐶®¯, 𝑅𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛)	

𝑅𝐶𝑎𝑙𝑐𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ← 𝑆𝑝𝑙𝑖𝑡𝑀𝑎𝑝(𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝐷𝑖𝑓𝑓𝑠, 𝑅𝐸𝑥𝑡𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠)	

𝑅𝐹𝑖𝑡𝑃𝑙𝑎𝑛𝑒 ← 𝑀𝑎𝑝(𝑚𝐷𝑖𝑓𝑓, 𝑅𝐶𝑎𝑙𝑐𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)	

𝑅𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑠𝑎𝑖𝑐 ← 𝐹𝑖𝑙𝑡𝑒𝑟(𝑚𝐹𝑖𝑡𝑃𝑙𝑎𝑛𝑒, 𝑅𝐹𝑖𝑡𝑃𝑙𝑎𝑛𝑒)	

𝑅𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝐹𝐼𝑇𝑆 ← 𝑅𝑒𝑑𝑢𝑐𝑒(𝑐𝑟𝑒𝑎𝑡𝑒𝑀𝑜𝑠𝑎𝑖𝑐, 𝑅𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑠𝑎𝑖𝑐)	

d) Montage algebraic representation.  

Figure 6. Real-world scientific workflows modeled using the data-centric workflow algebra. 



5. Implementation in d-Chiron 

d-Chiron [8] is a SWMS that implements the data-centric approach described in Section 
3.1. It collects and stores data at a fine-grain level in the wf-Database during workflow 
execution. d-Chiron takes advantage of a distributed in-memory database system (MySQL 
Cluster) to manage the wf-Database. Documentation on how to run d-Chiron and the data 
schema used to implement the wf-Database are publicly available on GitHub [23]. In this 
section, we explain how we implement user-steered data reduction and adaptive monitoring 
in the data-centric approach in d-Chiron. 
5.1 Using a Relational DBMS to Implement the Data-centric Approach 

Distributed and parallel relational database technology has been successful at managing 
very large datasets [24]. d-Chiron exploits this technology to support many user steering 
aspects described in Section 3.2. In this section, we give three reasons to explain why 
relational DBMS is a good choice to implement data reduction in a data-centric SWMS. 

(i) The first motivation is related to the need to find the slice to be removed. A 
relational DBMS has efficient querying capabilities to enable analysis of sets of data with a 
query language (SQL) and a query interface. Also, an integrated data modeling using a 
PROV-compliant data diagram enables complex data queries that analyze scientific 
domain, provenance, and workflow execution data. This highly contributes to the online 
analytical capabilities of the SWMS. In Section 6, we show how d-Chiron takes advantage 
of a query interface to enable users to query the data online to support data reduction. 

 (ii) The second motivation is related to the fact that scientific workflows are data-
centric. There is a flow of data elements organized in sets (datasets). The relational model 
is set-oriented and there are multiple native constructs that significantly ease managing the 
flow of data elements. Thus, not only the user can benefit from querying the data, but also 
the SWMS engine itself. d-Chiron engine uses SQL to access and modify the data in the 
wf-Database and uses these data in its internals functioning, such as task scheduling. Also, 

 
Figure 7. User-steered Cut in an excerpt of Montage workflow. The dataset 𝑹𝒑𝒓𝒐𝒋𝒆𝒄𝒕𝒊𝒐𝒏 is divided into subsets 
𝑷𝒑𝒓𝒐𝒋𝒆𝒄𝒕𝒊𝒐𝒏 and 𝑺𝒑𝒓𝒐𝒋𝒆𝒄𝒕𝒊𝒐𝒏. A slice is cut off from 𝑹𝒑𝒓𝒐𝒋𝒆𝒄𝒕𝒊𝒐𝒏 transforming it into 𝑹′𝒑𝒓𝒐𝒋𝒆𝒄𝒕𝒊𝒐𝒏 using criteria C. 

 



a relational data model eases data reduction. The user does not need to know about the task 
scheduling details in a data reduction action. Rather, only the slice criteria (domain data 
only) can be specified and d-Chiron will use SQL to join domain data with scheduling data 
to select the affected tasks by a reduction. We explain this in details in this section. 

(iii) The third motivation is related to consistency. It is essential that the data remains 
consistent within a user-steered data reduction. It is quite complex to guarantee a consistent 
execution when a user decides to reduce data, in particular in a large HPC execution and 
without stopping the workflow execution. On the other hand, all parallel and distributed 
relational DBMS natively provide atomicity, consistency, isolation, and durability (ACID) 
transactions [24]. We can take advantage of this capability and implement a user-steered 
data reduction in a way to outsource to the DBMS complex transaction control that 
guarantees consistency. We also explain this in this section. 
5.2 Supporting Consistent Data Reduction with a Relational DBMS 

Before actually reducing the data, we explain how a slice is defined in d-Chiron, using 
its relational DBMS, so it can later be safely removed while guarantying consistency after 
reduction.  Input data elements are consumed by the many parallel tasks (usually thousands 
in Many Task Computing workflows [1]) that need to be scheduled by the SWMS engine. 
Since there is this strong relationship between tasks and domain data elements, which 
contain scientific domain-specific data values, we represent it in a relational data schema 
(using crow’s foot database notation) where each task is related to one or more data 
elements of a domain-data dataset: 

 	Task		 		Domain	Dataset	. 
All datasets in set 𝑅 are specializations of 𝐷𝑜𝑚𝑎𝑖𝑛	𝐷𝑎𝑡𝑎𝑠𝑒𝑡 and the scheduling of 

input data elements to parallel tasks is represented as instances in 𝑇𝑎𝑠𝑘 table, which stores 
all tasks in the workflow execution. Thus, for a certain input dataset 𝑅1 ∈ 𝑅, the join (𝑅1 ⋈
𝑇𝑎𝑠𝑘) returns a set containing tasks with their input data elements in  𝑅1. Moreover, among 
other attributes, each task has an important 𝑠𝑡𝑎𝑡𝑒 attribute that determines if a task is 
READY to be executed (already knows its input data to start, but is waiting for a free CPU so 
it can be scheduled), RUNNING, COMPLETED (already been successfully executed), 
BLOCKED (even though there may be free CPUs, the task does not have the input to start 
yet), or any other state a task may assume. Depending on the data transformation performed 
by an activity, each task may consume one (e.g., Map, SplitMap, Filter) or more (e.g., 
Reduce, MRQuery) input data elements. Therefore, we distinguish between (i) activities in 
which each task consumes one data element (we denote such tasks as 𝑡𝑎𝑠𝑘𝑠&:&), and (ii) 
activities in which each task consumes more than one data element (we denote them as 
𝑡𝑎𝑠𝑘𝑠&:¥). 

(i) In activities with 𝑡𝑎𝑠𝑘𝑠&:&, removing input data element means “informing” the 
SWMS not to execute the tasks that would consume them, hence reducing overall execution 
time. To implement the set 𝑆1  (Section 4.2), a semi-join relational operation [24] is used to 
join input data elements from the input dataset 𝑅1 with tasks in READY state in order to only 
select the domain data elements that still need to be processed. Then, after having 𝑆1, the 
SWMS can obtain the elements in 𝑆1 that follow the criteria 𝐶. Since a set containing both 
the input data elements together with the related tasks that will consume them is important 
for the implementation of data reduction, we denote this set as §&:&, so that: 



	§&:& ← 	𝜎Á 𝑅1 ⋉ 𝜎©uÃu£ÄÅÆÇ¯È 𝑇𝑎𝑠𝑘 , 
where the ratio 1: 1 means that the tasks in this set are 𝑡𝑎𝑠𝑘𝑠&:& (as tasks for Map, Filter, 
and SplitMap) and the criteria 𝐶 is defined in the 𝐶𝑢𝑡 operator. Finally, the SWMS will 
know that tasks in §&:& should not be processed. 

 (ii) In activities with 𝑡𝑎𝑠𝑘𝑠&:¥, a data reduction in an input dataset 𝑅1 can only occur if 
the task that will consume them is in a BLOCKED state. The task has not started yet because 
the needed input data for it to start is still being generated by a running task in a previous 
activity. When this running task finishes, it signals that the BLOCKED task can start. While 
it is still blocked and the input data elements are being generated, the user can analyze them 
and identify data values that can be removed. In this case, we denote the set §&:¥ similarly 
to the previous one, but it rather returns the input data elements in 𝑅1 that are being 
consumed by the tasks in BLOCKED state: 

§&:¥ ← 	𝜎Á 𝑅1 ⋉ 𝜎©uÃu£ÄÉÊËÁÌÆ¯ 𝑇𝑎𝑠𝑘 , 
where the ratio 1: 𝑛 means that the tasks in this set are 𝑡𝑎𝑠𝑘𝑠&:¥ (as tasks for Reduce and 
MRQuery data transformations). Finally, the SWMS will know that tasks in §&:¥ should not 
be processed. In other words, d-Chiron will normally execute the tasks, but with a reduced 
dataset instead. This is different for 𝑡𝑎𝑠𝑘𝑠&:&	because they cannot be executed if their input 
datasets are removed. The SWMS will know how to handle the tasks in sets	§&:&or §&:¥ as 
long as it knows the type of data transformation of the activity that would consume the 
elements defined by the criteria 𝐶. Such verifications are important to guarantee 
consistency during reduction, which is better explained next. 
5.3 Steer Module: User-steered Data Reduction Implementation 

To ease slice removal in d-Chiron, we developed the Steer module. With the Steer 
module, users can issue command lines to inform the name of the input dataset 𝑅1 and the 
criteria 𝐶 (see 𝐶𝑢𝑡 definition). More specifically, the slice delimited by 𝐶 is added to the 
where clause in the SQL query that will form the select expressions. As an implementation 
decision, instead of physically removing the input data elements (either in §&:& or §&:¥) from 
the wf-Database, we move them to a Modified_Elements table, maintaining the 
relationships. Likewise, the tasks in §&:&, which cannot be executed, are not physically 
removed, but they have their state marked as REMOVED_BY_USER. By doing so, we enable 
these tasks and data elements to be later analyzed with provenance queries, similar to the 
ones shown in Table 1 and Table 2. 

To guarantee consistency, we take advantage of d-Chiron’s DBMS with ACID 
transactions. In a user-steered data reduction, both d-Chiron's engine and the Steer 
module need to concurrently update shared resources: Task and Domain Dataset tables 
in the wf-Database. The Steer module knows if it is about to reduce data elements 
within a slice of the type §&:& or type §&:¥, since it depends on the dataset being reduced, 
which is a parameter to the module. With respect to the input data elements (either in §&:& 
or in §&:¥), while d-Chiron's engine gets the input data elements to execute, the Steer 
module needs to concurrently move the cut off input data elements to the 
Modified_Elements table. With respect to the tasks in	§&:&, the Task table is a shared 
resource because while d-Chiron's engine updates the runnable tasks (select them, update 
their status to RUNNING, execute them, and mark them as completed), Steer needs to 
update the Task table to mark the tasks as removed by user, so that the engine will not get 



them for execution. These concurrent actions make concurrency control critical. Figure 8 
illustrates these steps with a sequence diagram. The Steer module acts concurrently with 
the SWMS engine on the shared resources, which are in red in the figure. The steps 1-3 in 
Steer module are put together in a single DBMS transaction, which is atomic. 

The wf-Database’ tables are distributed, thus making concurrency control of the tables’ 
partitions even more complex. In d-Chiron engine, distributed concurrency control in these 
tables is outsourced to the DBMS that guarantees the ACID properties [24]. We developed 
the Steer module to also exploit the DBMS in a way that the concurrency caused by the 
aforementioned updates is controlled by the DBMS. Therefore, we implement our approach 
such that both d-Chiron engine and the Steer module rely on the DBMS to outsource 
those complex distributed locks and releases of shared resources to guarantee that both 
execution and data remain consistent before and after a user-steered reduction. 

To store provenance of removed data elements, we extend the wf-Database schema 
with the table User_Query to store the queries that select the slice of the dataset to be 
removed. The description for each User_Query column is described in Table 3. We keep 
track of the removed data elements in table Modified_Elements, which is a table that 
represents a many-to-many relationship between User_Query and Domain Dataset.  

 

Table 3. User_Query table description. 
Column name Description 
query_id Auto increment identifier 
slice_query Query that selects the slice of the dataset to be removed. 
tasks_query Query generated by the SWMS to retrieve the ready tasks associated. 
issued_time Timestamp of the user interaction 

query_type Field that determines how the user interacted. It could be “Removal”, “Addition”, 
and others. 

user_id Relationship with the user who issued the interaction query 
wkfid To maintain relationship with the rest of workflow execution data. 

 

 
Figure 8. Sequence diagram showing what happens in a user-steered data reduction. 



5.4 Monitor Module: Adaptive Monitoring Implementation 

To implement our approach to adaptive monitoring, we extend the wf-Database 
schema. To store {𝑄}, we add the table Monitoring_Query, shown in Table 4. The main 
advantage of storing monitoring results in the wf-Database (and adequately linking the 
results with the remainder of the data already stored in this database) whenever a 
monitoring query result is executed is that users are able to query the results immediately 
after their generation. The wf-Database can also serve as data source for data visualization 
applications. We add another table: Monitoring_Query_Result, shown in Table 5, to 
store monitoring results in the wf-Database. In Section 5.5, we show the extensions of 
PROV-Wf for these adaptive monitoring concepts. 

 

 
A command line starts the Monitor module that runs in background. It establishes a 

connection with the distributed DBMS. Connection settings are provided in a configuration 
file. d-Chiron makes use of this configuration file to define the workflow design, workflow 
general settings, and other user-defined variables. Then, the Monitor program keeps 
querying the Monitoring_Query table at each 𝑠 time units to check if a new monitoring 
query was added. The default value for 𝑠 is 30 seconds, as the time interval to check if 
monitoring queries were added or removed. Users can customize this value. After the 
Monitor has started, users can add (or remove) monitoring queries to (or from) the 
Monitoring_Query table. Currently, users can add monitoring queries using a command 
line to inform which SQL query will be executed at each time interval and the time interval.  
Whenever the Monitor module identifies that the user added a new monitoring query, it 
launches a new thread. Each thread is responsible for executing each monitoring query in 

Table 4. Monitoring_Query table description.  
Column name Description 

monitoring_id Auto increment identifier 

interval Interval time (in seconds) between each monitoring query (𝑑1) 

monitoring_query Raw SQL query to be executed. 

wkfid 
Relationship between the monitoring queries and the current execution of the 
workflow. In d-Chiron’s wf-Database, there may be data from past executions 
for a same workflow. 

 
Table 5. Monitoring_Query_Result table description.  

Column name Description 
monitoring_result_id Auto increment identifier 
monitoring_id Relationship with the monitoring query that generated this result 
monitoring_values Results of the monitoring_query 

result_type 
Data type of the result values of both queries. Currently, “Integer”, 
“Double”, “Array[Integer]”, and “Array[Double]” 

 

1. Execute the monitoring query 𝒎𝒒𝒊 
2. Store query results in the wf-Database 
3. Reload all information for 𝒎𝒒𝒊	 from the wf-Database for the next time iteration. The user could 

have adapted any of this information. 
4. Wait for 𝒅𝒊 seconds 

Figure 9. Steps executed by each thread within a time interval. 

 



Monitoring_Query at each defined time interval. A thread is finished when a monitoring 
query is removed or when the workflow stops executing (in that case, all threads are 
finished). Figure 9 shows the steps executed at each time interval. 

To enable all these steering capabilities, three of these steps represent queries to the wf-
Database, including reads and writes. The stored results can be further analyzed a-
posteriori or, more interestingly, used as input for runtime data visualization tools, since 
results are immediately made available after they are generated. In Section 6, we show how 
users can interact with d-Chiron to add monitoring queries and use the Steer module. 

5.5 Extending PROV-Wf for Data Reduction and Adaptive Monitoring 

The data schema that governs the data organization in the wf-Database follows PROV-
Wf [6]. It adheres the W3C PROV [25] recommendations to help query specification, to 
maintain compatibility between different SWMSs, and facilitate interoperability between 
different databases. PROV-Wf specializes PROV concepts for scientific workflows. It is 
called PROV-Wf, which allows for domain, execution, and workflow provenance data 
representation at a finer grain than PROV. 

We propose extensions to PROV-Wf to accommodate the concepts presented in this 
work. These concepts extended are: UserQuery, MonitoringQuery, and 
MonitoringResult, as in Figure 10. Using PROV nomenclature, UserQuery is a PROV 
Activity that stores the slice that represents sets of data elements that will be removed. 
MonitoringQuery is a PROV Activity that contains the monitoring queries submitted by 
the user in specific time intervals. The monitoring queries generate PROV Entity 
MonitoringResult that stores the query results. 

6. Using d-Chiron 

The ultimate goal of this work is to contribute with user-steered workflows in HPC. In 
Section 3.2, we explained that there are at least six aspects that need to be considered for 
this: interactive analysis, monitoring, human adaptation, notification, interface for 
interaction, and computing model [4]. In this work, we mostly focused on the first three, 
considering human adaptation as the core of computational steering and the one we mostly 

Figure 10. Extended PROV-Wf entity-relationship diagram to accommodate modified tasks and monitoring. 



contributed with. As most related contributions to putting the human in the loop of HPC 
workflows [2,26,27], we focused on the efforts for engineering the backend enabling 
technology for user steering in an HPC workflow. More specifically, we contributed with 
allowing users to steer data reductions in scientific workflows online, focusing on 
providing a consistent execution within a data reduction, managing provenance data of user 
steering actions, and minimizing performance overheads in the HPC system (discussed in 
Section 7.4). Enabling such features without jeopardizing performance in an HPC 
environment is sufficiently complex. However, besides engineering the backend enabling 
technology, the interface for interaction is another aspect to be considered. 

Designing good interfaces requires usability studies to determine whether the interfaces 
are in fact good for the target user profile (i.e., computational scientists in our case). This 
would need a comprehensive user experience test to understand user behavior while 
interacting with their workflows, then we would develop interfaces based on the gathered 
design insights, and evaluate the usability. For a valid and comprehensive usability 
evaluation, we would need to ask multiple users to use the system and the modules 
developed, observe how they use, and interview them. However, the general scenario (HPC 
workflows) is very complex. Our user profile is quite rare (compared with general business 
applications) and the results depend on the domain and on the application in the domain. 
For example, if we want to measure the time a user takes to identify that a certain slice will 
not contribute for the final results and then remove it, a valid evaluation would require 
analyzing multiple users of a same application, in a same domain. Finding users of a same 
specific application is so rare that makes a comprehensive usability test extremely hard. 
Also, many other questions need to be addressed. For instance, “does the user expertise in 
the domain-application interfere in the results? – perhaps the more experienced the user is, 
the faster she will find which slice to remove and the better she understands the 
consequences of a reduction”; or “what if the tests were carried out on a different 
application for a same domain?”; or “what about a different domain?”. Additionally, an 
extra raises because using an HPC cluster requires scheduling. For a best usability test, the 
analyzer needs to observe the user while she is interacting with the HPC workflow, and 
thus the analyzer’s and the user’s scheduling must match the HPC job scheduling time, for 
each user. In other words, a valid and comprehensive usability test would require observing 
users of a same application, of different domains, of different expertise levels, and 
matching scheduling times with the HPC cluster. Combining these requirements makes it 
very hard and out of the scope of this work, which focuses on the enabling backend 
technology for steering an HPC workflow. 

Therefore, instead of usability tests, in this section, we show how users can use our 
modules Steer and Monitor in d-Chiron. Before developing, we interviewed few 
computational scientists. We found that they are very used to command line interfaces and 
they frequently have to learn new computational tools. They often browse logs in terminals 
and follow execution status of their simulations. To reduce data, they need to stop their 
workflow process, modify the input datasets by hand, and restart execution. For some users, 
this means resubmitting a job to an HPC cluster subject to scheduling. This may be really 
long (even weeks). Therefore, developing a technology that allows them to reduce data 
online, based on provenance data analysis through structured queries (rather than Unix-like 
shell commands to filter multiple logs in the file system – which is what most of them do) 
is a very desirable feature and we are not aware of any other SWMS that provides it. Thus, 



we developed simple command line interfaces to enable them to steer monitoring queries 
and reduce data online. Since developing the best interface and analyzing its usability is out 
of the scope, the command line interfaces are our current best effort to make the technology 
usable. As we show in Section 7, for validation purposes, a real user is able to use the 
system, after a d-Chiron specialist trained her and provided support.  

In d-Chiron, computer scientists who are experts in operating d-Chiron work closely 
with computational scientists, the target-user of this work. However, computational 
scientists are able to operate d-Chiron and steer the running workflow. Before steering a 
workflow, the workflow has to be modeled. The user identifies the input and output data 
elements of each of those activities and gives a name to the dataset that contains those 
elements (following the data-centric algebra presented in Section 3.1). When this is done, 
d-Chiron modules creates tables corresponding to those datasets, where each table column 
is an element produced or consumed by a workflow activity. If needed, application-specific 
extractor scripts are built to collect output data to be stored in the wf-Database [7]. 

The aspects of computational steering workflows tackled in this work are strongly 
related to how d-Chiron manages the data and the dataflow. It is all about the wf-Database 
being populated online by the SWMS. The workflow execution plan depends on the data in 
this database (hence can be adapted at runtime) and the wf-Database is available for user 
queries immediately after the workflow has started to run and data elements in the domain-
dataflow are stored while they are generated. Then, they are linked to execution and 
provenance data in the wf-Database to enable queries that integrate all these data.  

Therefore, the main way users can interact with a workflow execution in d-Chiron is 
through query interfaces, generally provided by the DBMS, to query the wf-Database. To 
be able to run queries, the user must understand the database schema [23] that logically 
organizes data in d-Chiron. Computational scientists can work with computer scientists (d-
Chiron experts in this case) so they can build complex analytical SQL queries to 
interactively analyze the dataflow. From our experience, computational scientists do not 
take much time to learn how to write simple queries to a relational database and they later 
learn how to write complex analytical queries on their own. d-Chiron uses MySQL Cluster 
to manage its wf-Database. MySQL users are accustomed to using MySQL Workbench as a 
visual interface to the DBMS. They can see the relational database schema, build and run 
SQL queries, and get their tabular results in the interface as the workflow runs. Figure 11 
shows how MySQL Workbench can be used to write Q5 (from Table 2 described as natural 
language in Section 3.2.1), which integrates domain, provenance and execution data in a 
same query. More queries with their natural langue descriptions are on GitHub [23]. 

However, such interactivity does not need to use SQL queries only. Some users prefer 
graphical user interfaces, so there are many other ways to interact with a DBMS: graphical 
interfaces with drag and drop boxes to help building queries, Natural Language to Database 
solutions to translate regular English sentences into SQL queries, dashboards that plot 
results from a query, etc. d-Chiron developers have been working on new tools to facilitate 
such interactions, including dashboards that plot monitoring charts or command line tools 
that does not require users to type raw SQL but simpler commands. In this work, discussing 
the usability of these interfaces is not the focus. However, we show how users currently use 
command line interfaces for the modules Steer and Monitor. 

For the Steer module (Figure 12), a user informs who is going to interact (this 



information is stored in the wf-Database for provenance) and passes a configuration file 
that contains information about the workflow, the HPC cluster, and the DBMS connection 
settings. After that, a user can run as many dataflow steering commands as necessary 
informing the input dataset 𝑅1 in the workflow that will be reduced and the C criteria to 
select the slice (operands from 𝐶𝑢𝑡 definition in Section 4.1). These actions are stored in 
the wf-Database for provenance. The response messages (in green) allow the user to 
understand what is happening after a command line is issued. In particular, after a 𝐶𝑢𝑡 
action, the response message informs the user of the number of data elements that were 
removed from the dataset to be processed. For more complex analyses on the consequences 
of those reductions, users can query the wf-Database using the tables introduced in this 
work to verify, for example, if there were files and their sizes to quantify the number of 
bytes that were not processed. We do those analyses in the next section. 

 
For the Monitor module (Figure 13), a user runs a command to start the monitoring 

module as a background process on any cluster node that has access to the DBMS, usually 
the same node from which the SWMS execution was launched. Then, users can add 
monitoring queries at any time. The monitoring query results are also properly stored in the 

1. $> ./Steer --user="Peter" --conf=SC.xml 
Next workflow interactions will be issued by user Peter. 
2. $> ./Steer --cut --dataset="opreprocessing" --criteria="wind_speed < 12.0 and wave_freq 
> 2.0" 
177 data elements were cut off from OPREPROCESSING dataset. 
3. $> ./Steer --cut --dataset="opreprocessing" --criteria="wind_speed < 11.3 and wave_freq 
> 1.8" 
55 data elements were cut off from OPREPROCESSING dataset. 

Figure 12. Steer module command line interface. 

1. $> ./Monitor --start --conf=SC.xml 
System is ready to accept new monitoring queries. 
2. $> ./Monitor --add --mq="`cat q1.sql`" --label="query 1" --interval=30 
Monitoring query "query 1" will be executed at each 30 seconds. 
3. $> ./Monitor --add --mq="`cat q2.sql`" --label="query 2" --interval=20 
Monitoring query "query 2" will be executed at each 20 seconds. 
4. $> ./Monitor --update --label="query 2" --interval=5 
Monitoring query "query 2" was updated. It will be executed at each 5 seconds. 
5. $> vi q1.sql 
6. $> ./Monitor --update --label="query 1" --mq="`cat q1.sql`" 
Monitoring query "query 1" was updated.  

Figure 13. Monitor module command line interface. 

 
Figure 11. Using MySQL Workbench to query wf-Database at workflow runtime 



wf-Database, as they are generated. Dashboard graphic visualization applications can query 
these results to deliver better data visualization for the user. 

In this example, after the user starts the monitoring module (line 1), two monitoring 
queries are added with intervals 30 and 20 seconds, respectively (lines 2 and 3). The user 
wrote the queries in text files (q1.sql and q2.sql), which are loaded in the Monitor --add 
commands, using cat Unix command. Those query files are only to facilitate the command 
lines and they are not a requirement. A user could write the query string directly in the 
command line. After some time, user decides to decrease the time interval in the monitoring 
of query with label “query 2” by issuing line 4. In line 5, user decides to modify a specific 
query aspect (e.g., increase the result limit) by editing the query text file and in line 6 he 
modifies the monitoring query.  All these interactions are properly stored in the wf-
Database for provenance, following the data schema extensions provided in Section 5.5. 
7. Experimental Validation 

In this section, we validate our solution for online data reduction based on a real case 
study. Section 7.1 shows the experimental setup. Section 7.2 presents a use case where the 
user deals with the Steer  and Monitor modules. Section 7.3 provides broader analyses 
of reduction and Section 7.4 analyzes the added overheads.  
7.1 Experimental Setup 

Scientific workflow. We use the Riser Fatigue Analysis workflow (see Figure 1), 
which is based on a real-world case study. The workflow processes over 350 GB of raw 
data. In all executions, we use the same dataset, which spans over 60,000 data elements to 
be processed in parallel. Depending on the workflow activity, tasks may take few seconds 
(e.g., Activity 1) or up to one minute on average (e.g., Activity 3). The execution model is 
an iterative workflow (parameter sweep) with concurrent activities, except for the last 
activity (Activity 7), which is a 𝑅𝑒𝑑𝑢𝑐𝑒 that requires that Activity 6 completely finishes 
before it can start.  

Software. In all executions, we use d-Chiron [8] with MySQL Cluster 7.4.9 as its in-
memory distributed database system to manage the wf-Database. The code to run d-Chiron 
and setup files are available on GitHub [23]. 

Hardware. The experiments were conducted in Grid5000 using a cluster with 39 
nodes, containing 24 cores each (summing 936 cores). Every node has two AMD Opteron 
1.7 GHz 12-core processors, 48GB RAM, and 250GB of local disk. All nodes are 
connected via Gigabit Ethernet and access a shared storage of 10TB. 
7.2 Test Case 

Let us consider the following scenario. Peter is an offshore engineer, expert in riser 
analysis and learned how to set up monitoring, analyze d-Chiron’s wf-Database, and use 
the Steer module developed in this work. In Peter’s project, the Design Fatigue Factor is 
set to 3 and service life is set to 20 years, meaning that fatigue life must be at least 60 years 
(Section 2). Peter is only interested in analyzing risers with low fatigue life values, because 
they are critical and might need repair or replacement. During workflow execution, it 
would be interesting if Peter could inform the SWMS, which input values would lead to 
low risk of fatigue, so they could be removed. However, this is not simple because it is hard 
to determine the specific range of values (i.e., the slice to be removed). For this, Peter first 



needs to understand the pattern of input values associated to low risk of fatigue life values. 
In the workflow (Figure 1), the final value of fatigue life is calculated in Activity 6, but 
input values are obtained as output of Activity 1, gathered from raw input files. Keeping 
provenance is essential to associate data from Activity 1 with data from Activity 6. 

To understand which input values are leading to high fatigue life values, Peter monitors 
the generated data online. For simplicity, we consider wind speed, which is only one out of 
the many environmental condition parameter values captured by Activity 1 to serve as input 
for Activity 2. Peter knows that wind speed has a strong correlation with fatigue life in 
risers. He expects that with low speed winds, there is a lower risk of accident. 

When workflow execution starts, the Monitor module is initialized. Then, Peter adds 
two monitoring queries: 𝑚𝑞& 	shows the average of the 10 greatest values of fatigue life 
calculated in the last 30s of workflow execution, setting 𝑑& 	= 	30	s; and 𝑚𝑞"  shows the 
average wind speed associated to the 10 greatest values of fatigue life calculated in the last 
30s, also setting the query interval 𝑑" 	= 	30s. We recall from Table 1 that 𝑚𝑞& is similar 
to 𝑄1, but only considering data processed in the last 30 s. 𝑚𝑞& and 𝑚𝑞"	queries are added 
to the Monitoring_Query table.  

Peter monitors the results using the Monitoring_Result table. These results can be 
a data source for a visualization tool that plots dashboards dynamically, refreshed according 
to the query intervals. After gaining insights from the results and understanding patterns, he 
can start removing the undesired values for wind speed. The monitoring query results 
𝑚𝑞𝑟&u and 𝑚𝑞𝑟"u	for the two previously listed queries, as well as when the user reduced the 
data, are plotted along the workflow elapsed time, as shown in Figure 14. It shows 
𝑚𝑞𝑟&u	(Fatigue life) in green line with square markers and 𝑚𝑞𝑟"u (Wind speed) in blue line 
with triangle markers. These markers determine when the monitoring occurred. 

The workflow execution starts at 𝑡	 = 	0, but only after approximately 150 s, the first 
output results from Activity 6 start to be generated. From the first results, at t=150 and 
t=180, Peter checks that when wind speed is less than 16 km/h (see horizontal dashed line 
in 𝑤𝑖𝑛𝑑	𝑠𝑝𝑒𝑒𝑑	 = 	16 in Figure 14, the results lead to the largest fatigue life values. Since 
risers with large fatigue life values are not interesting in this analysis, he decides, at t =190, 
to remove all input data elements that contain wind speed less than 16 km/h. For this, the 
first user query 𝑞& is issued with a command line to the Steer module. User queries are 
represented with red circles in the horizontal axis (Elapsed time). The time a user issued an 

 
Figure 14. Use case plot to analyze impact of user steering comparing Wind Speed (input) with Fatigue life. 

 



interaction query is stored in User_Query table. 
The next marker after 𝑞& happens at 𝑡	 = 	210. Comparing with the previous 

monitoring mark, at 𝑡	 = 	180, we can observe that this Peter’s steering (𝑞&) increases the 
minimum wind speed values to be considered from 14.2 km/h to 24.1 km/h. Also, we 
observe a significant decrease in the slope of the largest values for fatigue life (10.6% 
lower). This means that the removal of these input data containing wind speed less than 16 
km/h made the SWMS not process data containing low wind speed values, which would 
lead to larger fatigue life results. 

Then, monitoring continues, but that slope decrease calls Peter’s attention. To obtain a 
finer detail of what is happening, he decides to adjust monitoring settings, the monitoring 
interval times (𝑑&	and 𝑑") in this case, at runtime. He reduces them to 10 s to get 
monitoring feedbacks more frequently. We can observe that for both lines 𝑚𝑞𝑟&u	and 
𝑚𝑞𝑟"u, the markers become more frequent during 𝑡	 = 	 [220, 270]. This is because a 
monitoring is registered at every 10 s. Although we show monitoring correlations between 
wind speed and fatigue life, other monitoring correlations could also be analyzed and users 
can add, remove or adjust monitoring queries at any time during execution. After verifying 
that the results are reasonable, he decides to adjust the monitoring setting to increase back 
the monitoring query intervals for both queries to 30s after 𝑡	 = 	270. Then he observes that 
since 𝑞&, wind speed less than 25 km/h are leading to large fatigue life values. Then, at 𝑡	 =
	310, he calls Steer again to issue 𝑞" that removes input data for wind speed < 25 km/h. 
The next markers after 𝑞"	shows that this steering made the wind speed value associated to 
large fatigue life be at least 30.5 Km/h and a decrease of 6.5% in large fatigue life values 
between 𝑡	 = 	300 and 𝑡	 = 	330.  

Similarly, Peter continues to monitor and steer the execution. He issues 𝑞m	at 𝑡	 = 	370 
to remove input data with wind speed < 30.5 km/h, making a decrease of 4.9% in large 
fatigue life (comparing fatigue life in 𝑡	 = 	360 and 𝑡	 = 	390). Then, he issues 𝑞Ó	at 𝑡	 =
	430 to remove input data with wind speed < 34.5, attaining a decrease of 1.7% in large 
fatigue life (comparing fatigue life in 𝑡	 = 	420 and 𝑡	 = 	450). Despite this small decrease, 
he decides at t = 520 to further remove data, but with wind speed < 35.5 km/h. However, no 
decrease greater than 1% in the large fatigue life values was registered after this last Peter’s 
steering. Thus, he keeps analyzing the monitoring results, but does not remove input data 
anymore until the end of execution.  

We store each interaction in the User_Query table and map (in table 
Modified_Elements) its rows with rows in Domain Dataset and Task tables, to 
consistently keep provenance of which data elements were modified (in this case, removed) 
by each specific user steering. Thus, keeping provenance of user steering helps analyzing 
how specific interactions impacted the results. Figure 14 shows that some specific 
interactions imply significant changes in lines’ slopes (key output values for the user). 

7.3 Analyzing User-steered Data Reduction 
In this section, we analyze how those previous user interactions impact the amount of 

resources saved during the workflow execution. More specifically, we analyze three 
aspects: (i) the number of data elements reduced, (ii) the time that was saved due to the 
input data not processed, and (iii) the number of bytes of the raw data files that were not 
processed. For validation purposes, we can count the resources saved as consequences of a 



data reduction. For this, we compare the executions with and without user-steering. We run 
the exact same workflow and input datasets for both scenarios. The workflow execution 
with no steering processes all input data, including those containing wind speed values that 
lead to risers with low risk of fatigue, which are not valuable for Peter’s analyses. 

In Figure 15, we depict the three analyzed aspects per activity in the workflow. In other 
words, we count the total input data elements each activity consumes; the total number of 
gigabytes of data files processed in each activity; and the total time each activity took to 
complete. In total, considering all activities, the workflow with no steering processed 
60,939 input data elements in parallel, 356GB of domain data files, and the overall 
execution time was 16.3 min running on the 936-cores cluster. 

Then, we can compare these numbers with analogous numbers in the scenario with 
user-steered data reductions. Table 6 summarizes the user interactions (i.e., user-steered 
reductions) performed as described in the previous section. Figure 16 illustrates how each 
interaction 𝑞1	affected the three analyzed aspects in each workflow activity: Figure 16(a) 
shows the number of input data elements reduced, Figure 16(b) shows the time saved, and 
Figure 16(c) shows the amount of gigabytes not processed due to data reduction. In the 
three charts, although the reductions happen in dataset 𝑅"	consumed by 𝐴𝑐𝑡", we can see 
that they impact all subsequent activities (𝐴𝑐𝑡&, which is a preceding activity, is not 
affected by the reductions). In particular, we can see that the first interaction 
𝑞&	alone	causes a time reduction of 15% (𝑞& makes 𝐴𝑐𝑡m complete 33s faster, whereas 
without reductions 𝐴𝑐𝑡m would take 221 s). 

Figure 17 shows the summary of the impacts in the entire workflow by each interaction 
𝑞1. Overall, the steering reductions in this experimental validation yield a reduction of 
7,854 out of 60,939 data elements (12.89%), including elements in 𝑅" and elements in 
subsequent datasets as consequences of the reduction in 𝑅". Also, the interactions make the 
SWMS not process 51GB out of 356GB (14.3% of data files processing reduction) and the 
activities run faster, reducing in total 5.3 min out of 16.3 min (32% of total workflow 
execution time reduction) in the 936-cores cluster. In particular, we see that the first user-
steered reduction 𝑞& represents 45% of the total amount of time saved, meaning that at the 
beginning, the user can identify a large slice of the input data that would not lead to 
interesting results, and we see that the last interaction	𝑞c did not considerably affect 
execution. These results were obtained by querying the wf-Database at the end of 
execution. 
7.4 Analyzing the Monitoring Overhead 

The SWMS we used to implement our solution implements the data-centric algebraic 
approach and captures and manages domain dataflow, provenance, and execution data in a 
fine-grain level during execution, enabling users to query these data online. These 
functionalities add some overhead. Measuring this overhead is out of the scope of this 
work, but some measurements are provided in [8,14,28]. 

However, in this section, we discuss the overhead caused by the solutions proposed in 
this work. First, when a user-steered data reduction happens, there are data movements in 
the wf-Database, i.e., some tasks and input data elements are updated or transferred from a 
table to another (see Section 5.3). Time spent doing these updates in the database is 
significantly lower than the overall workflow execution time. In fact, each data reduction  



 

 
Figure 15. Total data elements, gigabytes, and time consumed by workflow activity running with no user steering. 

Table 6. Summary of the user-steered reductions (𝒒𝟏–𝒒𝟓) with their user-defined slices. 
Interaction Issued time (s) Slice query 

𝑞& 190 wind_speed < 16 

𝑞" 310 wind_speed < 25 

𝑞m 370 wind_speed < 30 

𝑞Ó 430 wind_speed < 34.5 

𝑞c 520 wind_speed < 35.5 

 
Figure 16. Reduced resources by activity caused by each user-steered reduction 𝒒𝒊. 

 
Figure 17. Summary of all online user-steered reductions (𝒒𝟏–𝒒𝟓) in the workflow. 

 



𝑞1	(Table 6) takes less than 1 second to finish, whereas the overall execution time of the 
workflow, after the reductions, is 661 s. Thus, we consider those data movements’ 
overhead negligible. Second, our adaptive monitoring solution adds overheads and need to 
be measured. Recall that every monitoring query 𝑚𝑞1 in {𝑄} is run by a thread at each 𝑑1 
seconds. Depending on the number of threads (|{𝑄}|) and on the interval 𝑑1 there may be 
too many concurrent accesses to the wf-Database, which may add overhead. 

To measure this, we set up the Monitor module to run queries, which are variations of 
the queries 𝑄1-𝑄7 (Table 1 and Table 2). For example, in 𝑄2, we vary the curvature value. 
We also modify them to calculate only the results over the last 𝑑 seconds, at each 𝑑 
seconds. To evaluate the overheads, we measure execution time without monitoring and 
then with monitoring, but varying the number of queries |{𝑄}| and the interval 𝑑, which is 
considered the same for all queries in {𝑄} in this experiment. The experiments were 
repeated until the standard deviation of workflow elapsed times was less than 1%. The 
results are the average of these times within the 1% margin. Figure 18 shows the results, 
where the blue portion represents the workflow execution time when no monitoring is used 
and the red portion represents the difference between the workflow execution time with and 
without monitoring (i.e., the monitoring overhead). 

 
Figure 18. Results of adaptive monitoring overhead. 

From these results, we observe that when the interval 𝑑 is equal to 30s, the overhead is 
negligible. For 1s interval, the overhead is higher when the number of monitoring threads is 
also higher. This happens because three queries are executed in each time interval (see 
Figure 9), for each thread. In the scenarios with 30 threads, there will be 120 queries in a 
single time interval 𝑑. In that case, if 𝑑 is small (e.g., 𝑑 = 1), there are 120 queries being 
executed per second, just for the monitoring. The database that is queried by the monitors is 
also concurrently queried by the SWMS engine, thus adding higher overhead. However, 
even in this specific scenario that shows higher overhead (|{𝑄}| = 30 and 𝑑 = 1), it is only 
33 s or 3.19% higher than when no monitoring is used. Most of the real monitoring cases 
do not need such frequent (every second) updates. If 30s is frequent enough for the user, 
there might be no added overhead, like in this test case. We also evaluated the same 
scenarios without storing monitoring results in the wf-Database, but rather appending in 
CSV files, which is simpler. As Figure 18 shows, the results are nearly the same as in either 
cases (saving in the wf-Database or saving in CSV files). This suggests storing all 
monitoring results in the wf-Database at runtime, which enables users to submit powerful 



queries as the monitoring results are generated, with all other provenance data. This would 
not be possible with a solution that appends data to CSV. 
8. Related Work 

Considering our contributions, we discuss the SWMSs with respect to human 
adaptation (especially data reduction), online provenance support, and monitoring features. 

We proposed a data-centric data reduction approach, which requires modifications in 
the workflow scheduling, since tasks associated to the removed input data should not be 
executed. Consequently, they should not be a part of the workflow execution plan. To be 
able to support online human adaptation, the SWMS needs to employ a data-centric 
execution model. Although online human adaptation is the core of computational steering, 
there are few SWMSs [29–31]  that support it. These solutions have monitoring services 
and are highly scalable, but do not allow for online data reduction as a mean to reduce 
execution time. WorkWays [27] is a powerful science gateway that enables users to steer 
and dynamically reduce data being processed online by dimension reduction or by reducing 
the range of some parameters, sharing similar motivations to our work. It uses Nimrod/K as 
its underlying parallel workflow engine, which is an extension of the Kepler workflow 
system [32]. WorkWays presents several tools for user interaction contributing to human-
in-the-loop workflows, such as graphic user interfaces, data visualization, and 
interoperability among others. However, WorkWays does not provide for provenance 
representation and users may not define an online query involving simulation data, 
execution data, metadata, and provenance, all related in a database, which limits the power 
of online computational steering. For example, it prevents ad-hoc data analysis using both 
domain and workflow execution data, such as those presented in Table 1 and Table 2, 
which support the user in defining which slice of the dataset should be removed. In 
contrast, d-Chiron uses an in-memory distributed database system to manage and relate 
analytical data involved in the workflow execution. Moreover, the lack of provenance data 
support in WorkWays, either online or post-mortem, does not support reproducibility and 
prevents from registering user adaptations, missing opportunities to determine how specific 
user interactions influenced workflow results. Another SWMS example is WINGS/Pegasus 
[33], which focuses on assisting users in automatic data discovery. It helps generating and 
executing multiple combinations of workflows based on user contraints,  selecting 
appropriate input data, and eliminating workflows that are not viable. However, it differs 
from our solution in that it tries to explore multiple workflows until finding the most 
suitable one, whereas we often model our experiments as one single scientific workflow to 
be fine tuned as the results come out. Also, it does not employ a data-centric execution 
model and does not aim at providing online computational steering support to actively 
eliminate subsets of an input dataset, especially based on extensive ad-hoc intermediate 
data analysis online. It has a static execution model, in the sense that the execution is 
predefined, submitted to the HPC environment, and no online human adaptation is enabled. 
Additionally, as WorkWays, provenance data is not collected online, nor is it integrated 
with domain-specific and execution data for enhanced analysis. Likewise, solutions like 
VisTrails and Kepler do not support data-centric online human adaptations. 

Different from those SWMSs, Swift [15] has a data-centric execution model. It has a 
parallel dataflow programming language that allows to write scripts for distributing tasks 
across distributed computing resources. It runs multiple programs in parallel as soon as 



their input data are available. It generates tasks at runtime and, consequently, it has 
potential to enable online human-adaptation in the execution plan. However, to the best of 
our knowledge, it does not support user-steered online input data reduction, nor does it 
store provenance data related to domain data during workflow execution. 

Moreover, while our data reduction techniques aim at avoiding data to be generated, 
there is an intense area of data reduction research focused on reducing data already 
generated by the simulation. For example, initiatives like CODAR [34] propose data 
reduction strategies such as dimension reduction, outlier detection and compression also 
based on online data analyses, which are complementary to our approach. 

Although human adaptation is a desired feature that remains an open problem in 
SWMSs, monitoring is widely supported in several existing SWMSs [4,35]. For example, 
Pegasus [36] provides a framework to monitor workflow executions and has rich 
capabilities for online performance monitoring, troubleshooting, and debugging. However, 
in such solutions, it is not possible to monitor workflow execution data associating to 
provenance and domain data, or run ad-hoc online data queries, as we do using data in the 
wf-Database. To the best of our knowledge, no related work allows for online data 
reduction based on a rich analytical support with adaptive monitoring and provenance 
registration of human adaptations in HPC workflows. These features allow for performance 
improvements of scientific workflows, while keeping data reduction consistency and 
provenance queries that can show the history of user-steering actions and results. 
9. Conclusion 

This work contributes to putting the human in the loop of online scientific workflow 
executions, especially when users can actively steer and reduce data to improve 
performance. As a solution to the input data reduction problem, we make use of a data-
centric algebraic approach that organizes workflow data to be processed as sets of data 
elements stored in a wf-Database, managed by an in-memory distributed database system at 
runtime. We introduced 𝐶𝑢𝑡 as part of a new class of algebraic operators that only exist 
because of dynamic human adaptation actions. This is the first work that introduces this 
representation for dynamic workflow adaptations. 𝐶𝑢𝑡 is just one among many other user 
adaptation possibilities that are yet to be explored. We developed a mechanism coupled to 
d-Chiron, a distributed version of Chiron SWMS, to implement 𝐶𝑢𝑡 and maintain both data 
and execution consistency after a reduction, and track provenance of user adaptations. A 
major challenge to the problem of data reduction is to identify which subset of the data 
should be removed. To address it, we proposed an adaptive monitoring approach that aids 
users in analyzing partial result data at runtime. Based on the evaluation of input data 
elements and its corresponding results, the user may find which subset of the input data is 
not interesting for a particular execution, hence can be removed. The adaptive monitoring 
allows users not only to follow the evolution of the workflow, but also to dynamically 
adjust monitoring aspects during execution. We extended our previous workflow 
provenance data diagram to be able to represent provenance of the online data reduction 
actions by users and the monitoring results. Although we implemented our solution in d-
Chiron, other SWMS could be used if provenance, execution, and domain dataflow data are 
managed in a database at runtime. 

To validate our solution, we executed a data-intensive parameter sweep workflow based 
on a real case study from oil and gas industry, running on a 936-cores cluster. A test case 



demonstrated how the user can monitor the execution, dynamically adapt monitoring 
settings, and remove uninteresting data to be processed, all during execution. Results for 
this test case show that the user interactions reduced the execution time by 32% and total 
amount of data processed by 14%. Although the test case was from the oil and gas domain, 
other workflow applications could have been used, like the ones discussed in 
bioinformatics and astronomy domains (Section 4.5). In SciPhy workflow, users frequently 
run in cloud environments where the longer the workflow takes to execute, the more 
expensive the final costs will be. Being able to dynamically identify certain combinations 
of genomic sequences that will make the execution take undesirably longer and remove 
such combinations online are very beneficial features to SciPhy’s users. Whereas in 
Montage workflow, users can identify certain regions of the outer space that are unlikely to 
contain celestial objects and remove delimited regions from the input dataset during 
execution. Thus, as long as users can tell which slice is not interesting, our solution 
supports dynamic reduction from the input data with no harm to the final results. 

To the best of our knowledge, this is the first work that explores user-steered online 
data reduction in scientific workflows steered by ad-hoc queries and adaptive monitoring, 
while maintaining provenance of user interactions. The results motivate us to extend our 
solution and explore different aspects that can be adapted based on dataflow online data 
analysis. Our solution is currently dependent on the users’ knowledge to identify 
correlations between input and output data to determine which subsets are uninteresting. 
We plan to address in-situ data visualization using adaptive monitoring and interactive 
queries results and develop recommendation models to suggest correlations based on the 
history stored in the wf-Database to help identifying such correlations. Other future works 
include: enabling users to set priorities to different slices of the data in a way that the 
SWMS system will process critic slices before; exploring the potential of the solution in a 
higher extent; and improving usability of the system by improving the system’s interfaces. 
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