
HAL Id: lirmm-01679967
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01679967

Submitted on 10 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data reduction in scientific workflows using provenance
monitoring and user steering

Renan Souza, Vitor Silva, Alvaro Luiz Gayoso de Azeredo Coutinho, Patrick
Valduriez, Marta Mattoso

To cite this version:
Renan Souza, Vitor Silva, Alvaro Luiz Gayoso de Azeredo Coutinho, Patrick Valduriez, Marta Mat-
toso. Data reduction in scientific workflows using provenance monitoring and user steering. Fu-
ture Generation Computer Systems, 2020, 110, pp.481-501. �10.1016/j.future.2017.11.028�. �lirmm-
01679967�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01679967
https://hal.archives-ouvertes.fr

Data Reduction in Scientific Workflows using
 Provenance Monitoring and User Steering

Renan Souzaa,b, Vítor Silvaa, Alvaro L G A Coutinhoa,
 Patrick Valduriezc, Marta Mattosoa

aCOPPE/Federal University of Rio de Janeiro, Brazil
bIBM Research, Brazil

cInria and LIRMM, Montpellier, France

Abstract

Scientific workflows need to be iteratively, and often interactively, executed for large input
datasets. Reducing data from input datasets is a powerful way to reduce overall execution
time in such workflows. When this is accomplished online (i.e., without requiring the user
to stop execution to reduce the data, and then resume), it can save much time. However,
determining which subsets of the input data should be removed becomes a major problem.
A related problem is to guarantee that the workflow system will maintain execution and
data consistent with the reduction. Keeping track of how users interact with the workflow is
essential for data provenance purposes. In this paper, we adopt the “human-in-the-loop”
approach, which enables users to steer the running workflow and reduce subsets from
datasets online. We propose an adaptive workflow monitoring approach that combines
provenance data monitoring and computational steering to support users in analyzing the
evolution of key parameters and determining the subset of data to remove. We extend a
provenance data model to keep track of users’ interactions when they reduce data at
runtime. In our experimental validation, we develop a test case from the oil and gas
domain, using a 936-cores cluster. The results on this test case show that the approach
yields reductions of 32% of execution time and 14% of the data processed.
Keywords
Scientific Workflows; Human in the Loop; Online Data Reduction; Provenance Data; Dynamic Workflows.

1. Introduction

Scientific Workflow Management Systems (SWMSs) with parallel capabilities have
been designed for executing data-intensive scientific workflows, or scientific workflows for
short, in High Performance Computing (HPC) environments. A typical execution may
involve thousands of parallel tasks with large input datasets [1]. When it is iterative, the
workflow is repeatedly executed for each element of an input dataset. The more the data to
process, the longer the workflow may take, which may be days depending on the problem
and HPC environment [2]. Configuring a scientific workflow with parameters and data is
hard. Users1 typically need to try several input data or parameter combinations in different
workflow executions. These trials make the scientific experiment take even longer. The
obvious solution to improve performance in HPC is through parallel processing. However,
reducing the input data to be processed can be also very effective to reduce workflow
execution time [3].

In scientific workflows, the total amount of data is large, but not necessarily the entire
input dataset has relevant data for achieving the goal of the workflow execution. This is

1 Our target-user profile is a computational scientist, who is expert in domain-specific systems (e.g., bioinformatician,

computational physicist, or engineer).

particularly true when a large parameter space needs to be processed in parameter sweep
workflows. There may be slices of the parameter space that have no (or little) influence on
the results and thus, as with a “branch and bound” optimization strategy, can be bounded
before its evaluation. A similar scenario occurs when the workflow involves a large input
dataset. When users can actively participate in the computational process, practice
frequently referred to as “human-in-the-loop”, they may analyze partial result data and tell
which part of the data is relevant for the final result [4]. Then, based on their domain
knowledge, users can identify which subset of the data is not interesting and thus should be
discarded from the execution by the SWMS, thereby reducing execution time.

Data reduction can be accomplished in at least three different forms. First, it can be
done before the execution starts. However, in most complex scenarios, the high number of
possibilities make it impossible to know beforehand the uninteresting subsets, without any
prior execution. Furthermore, not only the initial dataset can be reduced, but also the
intermediate data generated by the workflow, since the activities composing it continuously
produce significant amounts of data that are consumed by other activities. A second form of
data reduction is online. When the SWMS allows for partial result data analysis, the user
may analyze the partial data, find which slice of the dataset is not interesting, and reduce
the dataset online. We use the term online when user is able to inspect the workflow
execution, analyze partial and execution data, and dynamically adapt workflow settings
while the workflow is running (i.e., at runtime). The third form of data reduction is by
stopping the execution, reducing the data offline, and then resume with the reduced dataset.
Because of the difficulty in defining the exploratory input dataset and the long execution
time of such workflows, users frequently adopt the third form. However, in the offline
form, the SWMS is not aware of the changes, and the results with one workflow
configuration are not related to the others. Therefore, this is generally more time-
consuming, there is no control or registration of user interactions, and the execution may
become inconsistent [2].

Online data reduction has obvious advantages but introduces several challenges related
to computational steering in HPC environments [4]. First, because of the complexity of the
scientific scenario and the huge amount of data, users do not know beforehand which data
subset should be kept or removed. Identifying these subsets involves relating input data to
intermediate data and final results. Also, if users cannot actively follow the result data
evolution online, in particular, domain data associated to execution and provenance data
(history of data derivation), they can be driven to misleading conclusions when trying to
identify the uninteresting data subset. Second, if they can find which subset to remove and
try to remove it, the SWMS must allow for such online reduction and guarantee that the
operation will be done consistently. Otherwise, it can introduce anomalous data, with no
control over data elimination, data redundancy, or even execution failure. Third, in a long
run, there may be more than one interaction, each removing more subsets, at different
times. If the SWMS does not keep track of the user’s actions, it negatively impacts the
results’ reproducibility and reliability. Although data reduction is not new in SWMSs [3],
the problem of doing this online, steered by users, while maintaining data provenance has
not been addressed before.

To address these challenges, we propose a data reduction approach. The key idea is to
consider input datasets as sets of input data elements that can be manipulated and related to
their following data elements along the dataflow generation. Provenance data management

is at the core of the approach. In addition to the traditional advantages of managing
provenance data in scientific workflows (i.e., reproducibility, reliability, and quality of
result data) [5], online provenance data management eases interactive domain data analysis
[6,7]. Such analysis helps finding the data subset to be removed. Moreover, the SWMS
must guarantee data consistency in the execution before and after the reduction, and keep
track of user steering actions to maintain provenance of adaptations.

Chiron is a SWMS that implements a data-centric approach. It has successfully been
used to manage scientific workflow applications in domains such as bioinformatics [6],
computational fluid dynamics [2], and astronomy [7]. However, Chiron does not control
changes in input datasets, including removing a subset. To implement our data reduction
approach in Chiron, we add new operators and modules to enable users to reduce sets of
input data for workflow activities online, and maintain consistency of the provenance of the
removed data. We take advantage of a distributed in-memory database system (MySQL
Cluster) in a version called d-Chiron that is significantly more scalable than Chiron [8], to
address consistency issues with respect to data reduction. We make the following
contributions:
• A mechanism coupled to d-Chiron SWMS for online input data reduction, which allows

users to remove data subsets at runtime. It guarantees that both execution and data
remain consistent after reduction.

• An extension to a provenance data diagram (which is W3C PROV compliant) to
maintain the history of user adaptations when users reduce data online.

• A module to track provenance of human adaptation when users reduce data online. The
mechanism collects provenance of human-adaptation data when data reductions are done
in the datasets being consumed by the workflow. The provenance data is inserted online
in the wf-Database, which implements the extended data diagram.

This paper is a major extension of [9], which introduces the initial ideas of online input
data reduction in scientific workflows. In this paper, we extend [9] with: (i) a formalization
of the core concepts of the solution; (ii) a formal definition of the user steering operator to
reduce input data; (iii) practical examples of how other real-world scientific workflows
(other than the one used in the experimental validation), such as SciPhy [10] and Montage
[11], could benefit from our solution; (iv) explanation about how consistency is tackled in
the approach, and a detailed description about how we implement it; (v) details about how
users use the system; (vi) the exploration of different aspects of the benefits of our solution
through a broader set of experiments; and (vii) more related work.
Paper organization. Section 2 gives our motivating example. Section 3 describes the
background for this work. We present our main contribution in Section 4 and its
implementation in Section 5. Section 6 shows how users use the system, Section 7 presents
an experimental validation, Section 8 shows related work, and Section 9 concludes.
2. Motivating Case-study in the Oil and Gas Industry

In ultra-deep water oil production systems, a major application is to perform risers’
analyses. Risers are fluid conduits between subsea equipment and the offshore oil floating
production unit. They are susceptible to a wide variation of environmental conditions (e.g.,
sea currents, wind speed, ocean waves, temperature), which may damage their structure.
The fatigue analysis workflow adopts a cumulative damage approach as part of the riser's
risk assessment procedure considering a wide combination of possible conditions. The

result is the estimate of riser’s fatigue life, which is the length of time that the riser will
safely operate. The Design Fatigue Factor (DFF) may range from 3 to 10, meaning that the
riser’s fatigue life must be at least DFF times higher than the service life [12].

Sensors located at the offshore platform collect external conditions and floating unit
data, which are stored in multiple raw files. Offshore engineers use specialized programs
(mostly simulation solvers) to consume the files, evaluate the impact of environmental
loads on the risers in the near future (e.g., risk of fractures), and estimate the risers’ fatigue
life. Figure 1 shows a scientific workflow composed of seven piped programs (represented
by workflow activities) with a dataset in between, forming a flow of sets of data elements
within linked tasks. The <<Stereotypes>> and dataflow concepts are explained in Section 3.1.

Figure 1. Risers Fatigue Analysis Workflow.

Each task of Data Gathering (Activity 1) decompresses one large file into many
files containing important input data, reads the decompressed files, and gathers specific
values (environmental conditions, floating unit movements, and other data), which are used
by the following activities. Preprocessing (Activity 2) performs pre-calculations and
data cleansing over some other finite element mesh files that will be processed in the
following activities. Stress Analysis (Activity 3) runs a computational structural
mechanics program to calculate the stress applied to the riser. Each task consumes pre-
processed meshes and other important input data values (gathered from first activity) and
generates result data files, such as histograms of stresses applied throughout the riser (this
is an output file), and stress intensity factors in the riser and principal stress tensor
components. It also calculates the current curvature of the riser. Then, Stress Critical
Case Selection (Activity 4) and Curvature Critical Case Selection
(Activity 5) calculate the fatigue life of the riser based on the stresses and curvature,
respectively. These two activities filter out results corresponding to risers that certainly are
in a good state (no critical stress or curvature values were identified). Those cases are of no
interest to the analysis. Calculate Fatigue Life (Activity 6) uses previously
calculated values to execute a standard methodology [12] and calculate the final fatigue
life value of a riser. Compress Results (Activity 7) compresses output files by riser.

Most of these activities generate result data (both raw data files and some other domain-
specific data values), which are consumed by the subsequent activities. These intermediate
data need to be analyzed during workflow execution. More importantly, depending on a
specific range of data values for an output result data (e.g., fatigue life value), there may be
a specific combination of input data (e.g., environmental conditions) that are more or less
important during an interval of time within the workflow execution. The specific range is
frequently hard to determine and requires a domain expert to analyze partial data during
execution. For example, an input data element for Activity 2 is a file that contains a large
matrix of data values, composed of thousands of rows and dozens of columns. Each column
contains data for an environmental condition and each row has data collected for a given

time instant. Each row can be processed in parallel and the domain application needs to
consume and produce other data files (on average, about 14 MB consumed and 6 MB
produced per processed input data element). After many analyses online, the user finds that,
for waves greater than 38 m with frequency less than 1Hz, a riser fatigue will never happen.
Thus, within the entire matrix, any input data element that contains this specific
uninteresting range does not need to be processed. Therefore, by reducing the input dataset,
the overall data processed and generated are reduced and thus the overall execution time. In
this paper, we use this workflow as basis for our examples.
3. Background

It is known that scientific workflows are data-centric. Data management in scientific
workflows is critical due to the inherent complexity of the scientific domain data and the
HPC requirements, such as efficient exploitation of data parallelism. In this section, we
provide the background for this work, which relies on a data-centric algebraic approach for
scientific workflows [13,14]. It provides constructs, mechanisms, and conceptualizations
which in essence aim at valorizing fine-grained elements of data flowing throughout the
workflow activities, rather than just the chaining of tasks (i.e., chaining of programs or
processes). This enables building solutions for dynamic data analyses and even adaptations
in the dataflow. This data-centric approach is used by several modern parallel systems, such
as Swift [15], Apache Spark [16], and Panda [17], in order to exploit data parallelism. In
Section 3.1, we describe the data-centric approach and in Section 3.2, we explain user-
steered workflows, which together set the foundation for this work.
3.1 Data-Centric Algebraic Approach for Scientific Workflows

A scientific workflow is composed of a set of activities. An activity can be a program, a
script or a function that consumes in parallel input datasets, computes, and produces output
datasets. The output dataset of a certain activity can become an input dataset of another,
defining a data dependency between these two activities. A dataset (either input or output)
is a set of data elements. A data element can contain simple primitive data values (e.g.,
integers, strings) or complex data objects (e.g., matrices, finite element meshes, images).
An input data element has the necessary data to be consumed by a workflow activity
computation, or task. In a workflow execution, in addition to the data dependency between
chained workflow activities, there may be thousands of independent tasks running in
parallel within each activity, as in the Many Task-Computing paradigm [1]. Figure 2
illustrates a generic representation of a scientific workflow, where the dataset 𝑅" of output
data elements of activity 𝐴𝑐𝑡&	is also a set of input data elements for activity 𝐴𝑐𝑡".

Figure 2. Data dependency between activities.

3.1.1 Data-centric Algebraic Notation

A workflow 𝑊 is a chaining of activities 𝐴	 = 	 {𝐴𝑐𝑡&, … , 𝐴𝑐𝑡-}, 𝑘	 = |𝐴|. An activity
𝐴𝑐𝑡1 ∈ 𝐴 consumes input datasets 𝑅1	and produces output datasets 𝑅13&	, which can be

consumed, as input datasets, by an activity 𝐴𝑐𝑡13& ∈ 𝐴, for all activities in 𝐴, forming a
dataflow. This is presented in [7], inspired by concepts proposed by Ikeda et al. [17].

Not necessarily all workflow activities consume the data elements in the same way. For
example, an activity 𝐴𝑐𝑡1 may produce one output data element in 𝑅13&	for each input data
element consumed from 𝑅1	 (i.e., 1: 1 ratio between the cardinalities of the input and output
datasets); and a chained activity 𝐴𝑐𝑡13& may consume all 𝑛 elements from 𝑅13&	 to produce
a dataset 𝑅13"	with a single data element (𝑛: 1 ratio). Workflow engines can highly benefit
from this information to anticipate runtime optimizations of data parallel operations [14].

We distinguish between input and output datasets. Input datasets are composed of input
data elements and are consumed by activities. Output datasets are composed of output data
elements and are produced by activities. Then, let 𝑅	 = 	 {𝑅&, … , 𝑅7}, with 𝑟	 = 	 |𝑅|, be the
set that contains all datasets (either input our output) for the activities in a workflow 𝑊.
The data dependencies of the datasets form the dataflow. Considering these concepts,
Ogasawara et al. [14] formalize the general form of the data-centric workflow algebra as:

	𝑅13& ← 𝐷𝑇 𝐴𝑐𝑡1, 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠 , 𝑅1 ,
where	𝐷𝑇 ∈ 	 {𝑀𝑎𝑝, 𝑅𝑒𝑑𝑢𝑐𝑒, 𝐹𝑖𝑙𝑡𝑒𝑟,𝑀𝑅𝑄𝑢𝑒𝑟𝑦, 𝑆𝑝𝑙𝑖𝑡𝑀𝑎𝑝} is a data transformation and
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙	𝑜𝑝𝑒𝑟𝑎𝑛𝑑𝑠 are additional operands that may be needed by some	𝐷𝑇, such as

Reduce. 𝐷𝑇 is a dataflow operator that determines how input data elements are transformed
into output data elements, in particular, the ratio between number 𝑛 of input data elements
consumed and number 𝑚 of produced output data elements in a workflow activity 𝐴𝑐𝑡1. For
example, Map has 1:1 ratio, Reduce has 𝑛: 1, SplitMap has 1:𝑚, filter has 1: (1|0), and
MRQuery (e.g., a join of two datasets) has 𝑛:𝑚 ratio. Figure 3 shows a data-centric
algebraic representation of the Risers Fatigue Analysis workflow shown in Figure 1.

𝑅𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 ← 𝑆𝑝𝑙𝑖𝑡𝑀𝑎𝑝 𝐷𝑎𝑡𝑎𝐺𝑎𝑡ℎ𝑒𝑟, 𝑅𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔
𝑅𝑆𝑡𝑟𝑒𝑠𝑠𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 ← 𝑀𝑎𝑝 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔, 𝑅𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔
𝑅𝑆𝑡𝑟𝑒𝑠𝑠𝐶𝑎𝑠𝑒𝑆𝑒𝑙 ← 𝐹𝑖𝑙𝑡𝑒𝑟 𝑆𝑡𝑟𝑒𝑠𝑠𝐶𝑎𝑠𝑒𝑆𝑒𝑙, 𝑅𝑆𝑡𝑟𝑒𝑠𝑠𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠
𝑅𝐶𝐹𝑎𝑡𝑖𝑔𝑢𝑒𝐿𝑖𝑓𝑒 ← 𝐹𝑖𝑙𝑡𝑒𝑟 𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒𝐶𝑎𝑠𝑒𝑆𝑒𝑙, 𝑅𝑆𝑡𝑟𝑒𝑠𝑠𝐶𝑎𝑠𝑒𝑆𝑒𝑙
𝑅𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑀𝑎𝑝 𝐶𝑎𝑙𝑐𝐹𝑎𝑡𝑖𝑔𝑢𝑒𝐿𝑖𝑓𝑒, 𝑅𝐶𝐹𝑎𝑡𝑖𝑔𝑢𝑒𝐿𝑖𝑓𝑒
𝑅𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑅𝑒𝑑𝑢𝑐𝑒 𝐶𝑎𝑙𝑐𝐹𝑎𝑡𝑖𝑔𝑢𝑒𝐿𝑖𝑓𝑒, 𝑐𝑎𝑠𝑒, 𝑅𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑅𝑒𝑠𝑢𝑙𝑡𝑠

Figure 3. Risers Fatigue Analysis workflow using the algebraic dataflow representation.

All datasets 𝑅1	 ∈ 𝑅 have a predetermined data schema 𝓢 𝑅1	 = (attributei1:
datatypei1,…, attributeiu: datatypeiu), with 𝑢 = number of attributes of 𝓢 𝑅1	 . The data
elements of 𝑅1	follow the schema 𝓢 𝑅1	 . For example, suppose that 𝑅& ∈ 𝑅 contains input
environmental conditions and 𝑅" ∈ 𝑅 contains output fatigue life values, then possible
schemas for these datasets could be: 𝓢 𝑅1 	= (wind_speed: float, wave_frequency: float,
air_temperature: float, humidity: float, mesh_path: string) and 𝓢 𝑅2 = (fatigue_life:
integer, histogram_path: string). Thus, the structure of the data flowing between activities
is enhanced. The user is also familiar with those domain terms. This not only contributes to
the workflow engine for data parallelism, but also enables submitting structured queries on
dataflow generation, which includes domain-data values in the flow.
3.1.2 Scientific Domain Data Management using the Algebraic Approach

In addition to efficiently managing data parallelism, the SWMS needs to manage the
scientific domain data. Structured queries ease data analysis and the algebraic approach is
useful here [2,4,7]. Two types of data are stored in those datasets: domain-specific values
and other larger or more complex data. The algebraic approach enables expressing the

scientific datasets in a structured way following a data schema 𝓢 𝑅1	 with known data
types. Often, scientific programs require the processing of other complex large datasets,
such as large matrices, binary data, unstructured information, or other domain-specific data
representations. We use paths that point to these data files on disk in the attributes of the
data elements composing the datasets 𝑅1 ∈ 𝑅 whenever a file is read or written by an
activity [7]. Some other domain-specific data values within those files can be extracted or
generated based on the content of the file and represented as attributes in the data elements,
also increasing the expressivity of the file descriptions [13,14]. These domain-specific
quantities can be decisive for the domain so they need to be tracked. Since tracking all fine-
grained data elements the user wants may be impractical due to the huge amount of data,
the domain expert determines which domain-specific values need to be extracted and
tracked. All these data management features enable users to query, analyze, and inspect the
scientific raw data and the dataflow as the workflow is being processed.
3.2 User-steered Workflows

There are at least six aspects of computational steering in scientific workflows:
interactive analysis, monitoring, human adaptation, notification, interface for interaction,
and computing model [4]. Despite the importance of them all, the first three are essential
and are the ones this work focuses on. Human adaptation is definitely at the core of
computational steering. However, users will only know how to fine-tune parameters or
which subset needs further focus if they can explore partial result data during a long-term
execution. Thus, interactive analysis and monitoring are important to put the human in the
loop. Online provenance data management in SWMSs is an essential asset to support all six
aspects of computational steering in scientific workflows. In this section, we explain the
three computational steering aspects explored in this paper and how the data-centric
algebraic approach supports them.
3.2.1 Interactive Analysis

To allow for interactive analysis, the data-centric approach designs how fine-grained
domain-specific data, workflow execution data, performance data, and provenance data are
collected by the workflow engine. It also specifies how they are stored in a database (the
wf-Database) to be queried by users. We address two aspects of workflow data that can be
interactively analyzed: (A) domain dataflow and (B) workflow execution [4].

(A) Domain dataflow. To allow for domain dataflow interactive analysis, dataflow
provenance data are stored in the wf-Database. The input and output data elements are
continuously collected and stored in the wf-Database at each task execution at runtime. The
output elements are linked to the inputs, so that the flow of data elements can be easily
retrieved through provenance queries. This approach enables online fine-grained domain
dataflow analysis [6] as well as the analysis of related domain data files through file flow
relationships [7], as in Figure 4.

To exemplify some possible interactive queries, Table 1 has some typical analyses that
are executed for the riser fatigue analysis workflow involving domain and provenance
dataflow analysis. In an earlier work, we also observed similar query patterns for scientific
data analysis in different domains [18]. For Queries 𝑄1-𝑄4, the SWMS needs to store the
history of the data elements generated in Activities 4 and 5 since the beginning of the flow,
linking each element-flow in between. For example, environmental conditions (𝑄1) and

hull conditions (𝑄2) are obtained in Activity 1, and stress- and curvature-related values are
obtained in Activities 4 and 5, respectively. To correlate output elements from Activity 4 or
5 to output elements from Activity 1, provenance data relationships are required.

Users can analyze the dataflow by running queries in the database query interface at any
time during execution or using any application that connects to the database to plot data
visualization. Without such structured query support, users need to look for files in their
directories, open and analyze them, and try to do this analysis in an ad-hoc way.
Frequently, they write scripts to search in these result files. They often interrupt the
execution to fine tune input data and save execution time. This user behavior is observed
not only in the oil and gas domain, but also in several other domains, such as
bioinformatics, computational physics, and astronomy. More examples exploring how this
data-centric approach enables querying domain dataflow together with provenance data to
enhance online data analysis in scientific workflows can be found in [6,7,18].

Table 1. Domain dataflow provenance interactive queries.

𝑸𝟏
What is the average of the 10 environmental conditions that are leading to the largest fatigue life
value?

𝑸𝟐 What are the water craft’s hull conditions that are leading to risers’ curvature lower than 800?
𝑸𝟑 What are the top 5 raw data files that contain original data that are leading to lowest fatigue life value?

𝑸𝟒 What are the histograms and finite element mesh files related when computed fatigue life based on
stress analysis is lower than 60?

Table 2. Provenance and domain data linked to execution data.

𝑸𝟓

Determine the average of each environmental conditions (output of Data Gathering – Activity 1)
associated to the tasks that are taking more than the double of the average execution time of
Curvature Critical Case Selection (Activity 5), grouping the results by the machines
(hostnames) where the tasks of Activity 5 were executed.

𝑸𝟔 Determine the finite element meshes files (output of Preprocessing – Activity 2) associated to the
tasks that are finishing with error status.

𝑸𝟕 List information about the 5 computing nodes with the greatest number of Preprocessing
activity tasks that are consuming data elements that contain wind speed values greater than 70 Km/h.

Figure 4. Scientific domain data management showing how the data elements flowing between activities are

stored as datasets linked with workflow execution data and dataflow provenance in the wf-Database.

B. Workflow execution. Lower level execution engine information, such as physical
location (i.e., virtual machine or cluster node) where a task is being executed, can highly
benefit data analysis and debugging in large-scale HPC executions. Users may want to
interactively investigate how many parallel tasks each node is running. Moreover, this
approach eases debugging. Tasks run domain applications that can result in errors. If there
are thousands of tasks in a large execution, how to determine which tasks resulted in
domain application errors and what the errors were? Furthermore, performance data
analysis is very useful. Users are frequently interested in knowing how long tasks are
taking, how much computing resources (memory, CPU, disk IO, network throughput, etc.)
are being consumed [19]. All this workflow execution data are important to be analyzed
and can deliver interesting insights when linked to domain dataflow data. When execution
data is stored separately from domain and provenance data, these steering queries are not
possible or require combining different tools and writing specific analysis programs [7]. To
support all this, the data-centric approach allows for recording parallel workflow execution
data in a way that they can be linked to domain and provenance data. Table 1 shows some
provenance queries for the Risers Analysis workflow that link workflow execution data to
domain dataflow. Figure 4 shows how the domain-data elements flowing within the
activities of Risers Fatigue Analysis workflow are managed as datasets in the wf-Database,
linked to workflow execution data and dataflow provenance. Also, the datasets contain
paths to raw data files on disk [7].
3.2.2 Human Adaptation

After users have analyzed partial data and gained insights, they may decide to adapt the
workflow execution. It brings powerful abilities to users, putting the human in control of a
scientific workflow execution. Many aspects can be adapted by humans, but very few
systems support human-in-the-loop actions [4]. The human-adaptable aspects range from
computing resources involved in the execution (e.g., adding or removing nodes), to check-
pointing and rolling-back (debugging), loop break conditions, reducing datasets,
modification of filter conditions, and parameter fine-tuning.

Populating the wf-Database during workflow execution helps all these aspects. For
example, in [20], it is shown that it is possible to change filter conditions during execution.
Also, in [2], a data-centric algebraic approach is proposed to adapt loop conditions of
iterative workflows (e.g., modify number of iterations or loop stop conditions). These
works show that adaptations can significantly reduce overall execution time, since users are
able to identify a satisfactory result before the programmed number of iterations. Prior to
this work, no work has been developed to tackle user-steered data reduction online taking
advantage of a data-centric approach.

Since provenance data is so beneficial, we consider that when a user interacts with the
workflow execution, new data (user steering data) are generated, and thus their provenance
must be registered as well. In a long-running execution, many interactive data analysis and
adaptations may occur. If the SWMS does not adequately register the provenance of
interaction data, users can easily lose track of what they have changed in the past. This is
critical if the entire computational experiment takes days and many adaptations occurred,
since it may be impossible to remember in the last day of execution what they have steered
in the first days. Furthermore, adding human-adaptation data to the wf-Database enriches
its content and enables future interaction analysis. One example of how such data can be

exploited is that the registered adaptation data could be used by artificial intelligence
algorithms to understand interaction patterns and recommend future adaptations. Thus, the
SWMS that enables computational steering should collect provenance of user interaction
data. To the best of our knowledge, this has not been done before.
3.2.3 The Role of Scientists in SWMSs

This work aims at supporting one type of scientist, i.e., computational scientists, who
are the typical users of a steered workflow. However, running complex data-centric
workflows in HPC usually involves several scientists with different levels of expertise on
each of the aspects involved in the process. We consider three types of scientists: (a)
domain scientist, (b) computational scientist, and (c) computer scientist. All these scientists
collaborate to scientific discovery.

(a) Domain scientists. Examples are geologists, biologists, and experimental physicists.
They are very familiar with concepts, nomenclature, and semantics of the domain. They are
commonly very good at understanding the scientific hypothesis, results and data
interpretation. They may not have programming or computational skills. The resulting data
of a complex computational simulation are often delivered to them as well organized,
cured, and with some aggregations, visualizations, plots, and dashboards. Their main work
is typically to give sense to these cured data.

(b) Computational scientists. Examples are engineers, bioinformaticians, and
computational physicists. They are not domain specialists, but have knowledge on the
domain. However, they are more focused on the computational aspects. They typically have
programming and computational skills, and they are familiar with command line interfaces.
They are more prone to learning new computing technologies and use new systems that
support their computational simulations. They know how to analyze domain-specific data
and metadata and organize large raw data files into analyzed data so they can work together
with domain scientists to deeply interpret the data. They know how to chain the different
simulation programs and design a scientific workflow to attend the main goal of a computer
simulation. They are able to operate a SWMS or dispatch jobs in an HPC cluster.

(c) Computer scientists. They are experts in developing tools, methods, or systems that
support large-scale simulations. Examples are HPC, data management, workflow solution
specialists. They do not necessarily have domain knowledge. Often, computer scientists
work closely with computational scientists to obtain the best performance for an HPC
simulation and achieve the final goal. They can analyze performance, linked with domain
and provenance data to help adjusting the system, debugging, and fixing errors.
4. User-steered Online Data Reduction and Adaptive Monitoring

In this section, we show our main contributions. In the data-centric approach, removing
a subset of the entire dataset to be processed means removing a set of input data elements
from a dataset to be consumed by a workflow activity. As a consequence of this removal,
the tasks that would process the elements within the removed subset will not be executed,
hence, reducing both workflow execution time and data processing. Data processing
reduction becomes more evident if the removed data elements contain paths to large raw
data files that would be consumed by tasks if the elements were not removed. Furthermore,
if an input data element of a given activity is removed, the following elements forming the
element-flow of the next linked activities will not be processed too, reducing data and,

more importantly, execution time in cascade. In Section 4.1, we introduce a new data-
centric algebraic operator for user-steered data reduction. In Section 4.2, we discuss the
importance of maintaining data consistent after reduction. In Section 4.3, propose an
adaptive monitoring approach. In Section 4.4, we explain our approach in the context of
existing workflow execution models. In Section 4.5, we exemplify how real-world
scientific workflows can highly benefit from our approach.
4.1 An Operator for Data Reduction

Once users analyze data elements that have already been processed, they might identify
data elements that will be processed, following the pre-specified dataflow, but will not
contribute to the final results. To tackle this, we extend the data-centric algebraic operators
(Section 3.1) with a new user-steered operator, 𝐶𝑢𝑡, to enable users to cut off a slice
containing input data elements.
Definition (Cut): 𝐶𝑢𝑡 is a user-steered data-centric operator that removes a subset of a
dataset 𝑅1	based on activity 𝐴𝑐𝑡 that evaluates the criteria 𝐶. Its general form is:

𝑅1a ← 𝐶𝑢𝑡 𝐴𝑐𝑡, 𝐶, 𝑅1
It transforms an input dataset 𝑅1 ∈ 𝑅 in the dataflow into the output dataset 𝑅1a and the ratio
between 𝑛 input data elements and 𝑚 output data elements is 𝑛:𝑚, with 𝑛 ≥ 	𝑚. 𝑅1 and
𝑅1a	follow the same data schema 𝓢 𝑅1 . 𝐶 is the criteria that addresses the slice of input data
elements that are removed. 𝐶 may be either a simple predicate (e.g., 𝑎𝑡𝑡𝑟&c 	= ′𝐹𝐴𝑇𝐼𝐺𝑈𝐸′)
or a minterm predicate (e.g., 𝑎𝑡𝑡𝑟&& > 38	 ∧ 𝑎𝑡𝑡𝑟&" > 0.1 ∧ 𝑎𝑡𝑡𝑟&m < 1.0).

As any other dataflow operator (e.g., Map, Reduce, Filter, SplitMap, etc.), 𝐶𝑢𝑡
performs data transformation. However, it is not part of the initially designed workflow
composition. Differently than the other operators, 𝐶𝑢𝑡 is not initially defined in the
workflow composition. Rather, it is dynamically inserted in the dataflow as a result of a
user steering action. Then, after the transformation of 𝑅1 into 𝑅1a, it is naturally consumed
by the subsequent activities that would consume 𝑅1 if no reduction happened. 𝐶𝑢𝑡 allows
the SWMS to keep track of user adaptations during a dataset reduction, closely relating the
metadata about the human action (e.g., data about the user who performed the action, when
the action was performed, how the action occurred, relating with the 𝐶 criteria used in the
reduction, etc.) to the actual data that have been reduced in a 𝐶𝑢𝑡. In Section 5.5, we
propose extensions to a W3C-PROV compliant data diagram to represent provenance data
collected. Figure 5 illustrates how 𝐶𝑢𝑡 would be dynamically inserted by a user in the
Risers Fatigue Analysis workflow, using the algebraic representation.
4.2 Consistency Issues in a User-steered Data Reduction

 𝐶𝑢𝑡 can only operate on input data elements that are waiting to be processed in the
workflow. When a 𝐶𝑢𝑡 happens, the dataset 𝑅1 that will be reduced is a shared resource
between the SWMS engine that is normally processing the workflow in a batch job and the
user who wants to remove a slice from 𝑅1. Thus, race conditions can occur. Suppose, for
example, that at a given instant 𝜏 in time, the SWMS finishes processing a set of data
elements and then needs to get new data elements that were waiting to be processed. If at
the same time 𝜏, the user decides to remove some of those input data elements that were
waiting to be processed, the SWMS may go to an inconsistent state because it could try to
process elements that were removed. Or, the user may try to remove a slice that the SWMS
already considered to process, thus generating errors. These inconsistencies are even more

likely to occur in a highly concurrent execution, such as executions on large HPC clusters
with thousands of computing cores.

To address this problem, we specify a safe subset of an input dataset 𝑅1	to be applied
the reduction. We split 𝑅1 into two subsets 𝑃1 and 𝑆1, where 𝑃1 is the subset of 𝑅1 with input
data elements that have already been processed and 𝑆1 is the subset of 𝑅1 with elements
waiting to be processed. Thus, using set theory, 𝑅1 ← 𝑃1 ∪ 𝑆1	|	𝑃1 ∩ 𝑆1 = 	∅. 𝑆1 is the subset
of 𝑅1 that is safe to remove a data slice from. To guarantee this, the SWMS must provide
lock controls so that only the subset 𝑆1 will be reduced. In Section 5.2, we give details
about how we implement this in a SWMS.
4.3 Adaptive Monitoring

In this section, we present an adaptive monitoring approach that combines monitoring
and human adaptation. It helps users following the evolution of interesting parameters and
result data to find which subsets of the dataset can be removed during execution. Also,
since what users find interesting may change over time, this approach allows the user to
adapt the monitoring definitions, such as which data should be monitored and how. The
adaptive monitoring relies on online queries to the continuously populated wf-Database.
Users can set up monitoring queries (as in Table 1 and Table 2), analyze monitoring results,
and adapt monitoring settings.

Monitoring works as follows. There is a set {𝑄}	composed of monitoring queries 𝑚𝑞1,
0	 ≤ 	𝑖	 ≤ | 𝑄 |, each one to be executed at each 𝑑1 > 0 time intervals. Users do not need
to specify queries at the beginning of execution, since they do not know everything they
want to monitor. This is why {𝑄} starts empty. After users gain insights from the data, after
interactive provenance data analyses, they can add monitoring queries to {𝑄}	in an ad-hoc
manner. Each 𝑑1 can be adapted, meaning that users have control of the time frame of each
𝑚𝑞1	during execution. The monitoring queries and settings are stored in the wf-Database.

Each 𝑚𝑞1 execution generates a monitoring query result set 𝑚𝑞𝑟1u, 𝑡	 = 𝑘𝑑1|	𝑘	 ∈
ℕwx , at each time interval 𝑑1. This result set is also stored in the wf-Database. The users
have the flexibility to adapt monitoring during workflow execution. To do so, at each time
instant 𝑡 after each monitoring query result 𝑚𝑞𝑟1u	has been generated, the values for 𝑑1 and

Initially designed workflow composition User-steered 𝑪𝒖𝒕 in a dataset
𝑅𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 ← 𝑆𝑝𝑙𝑖𝑡𝑀𝑎𝑝 | 𝐷𝑎𝑡𝑎𝐺𝑎𝑡ℎ𝑒𝑟,

𝑅𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔}

𝑅𝑆𝑡𝑟𝑒𝑠𝑠𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 ← 𝑀𝑎𝑝 |
𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,
𝑅𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔	}

𝑅𝑆𝑡𝑟𝑒𝑠𝑠𝐶𝑎𝑠𝑒𝑆𝑒𝑙 ← 𝐹𝑖𝑙𝑡𝑒𝑟 | 𝑆𝑡𝑟𝑒𝑠𝑠𝐶𝑎𝑠𝑒𝑆𝑒𝑙,𝑅𝑆𝑡𝑟𝑒𝑠𝑠𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠}

𝑅𝐶𝐹𝑎𝑡𝑖𝑔𝑢𝑒𝐿𝑖𝑓𝑒 ← 𝐹𝑖𝑙𝑡𝑒𝑟 ~𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒𝐶𝑎𝑠𝑒𝑆𝑒𝑙,𝑅𝑆𝑡𝑟𝑒𝑠𝑠𝐶𝑎𝑠𝑒𝑆𝑒𝑙 �

𝑅𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑀𝑎𝑝 |
𝐶𝑎𝑙𝑐𝐹𝑎𝑡𝑖𝑔𝑢𝑒𝐿𝑖𝑓𝑒,
𝑅𝐶𝐹𝑎𝑡𝑖𝑔𝑢𝑒𝐿𝑖𝑓𝑒 }

𝑅𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑅𝑒𝑑𝑢𝑐𝑒 �
𝐶𝑎𝑙𝑐𝐹𝑎𝑡𝑖𝑔𝑢𝑒𝐿𝑖𝑓𝑒,

𝑐𝑎𝑠𝑒,
𝑅𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑅𝑒𝑠𝑢𝑙𝑡𝑠

�

𝑅𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 ← 𝑆𝑝𝑙𝑖𝑡𝑀𝑎𝑝 ~ 𝐷𝑎𝑡𝑎𝐺𝑎𝑡ℎ𝑒𝑟,	𝑅𝐷𝑎𝑡𝑎𝐺𝑎𝑡ℎ𝑒𝑟�

𝑹𝑷𝒓𝒆𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈a ← 𝑪𝒖𝒕

⎝

⎜
⎛
𝒑𝒓𝒆𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈_𝒓𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏,

�
𝒘𝒊𝒏𝒅_𝒔𝒑𝒆𝒆𝒅 < 𝟏𝟑

∧
𝒘𝒂𝒗𝒆_𝒇𝒓𝒆𝒒 > 𝟏. 𝟖

� ,

𝑹𝑷𝒓𝒆𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈 ⎠

⎟
⎞

𝑅𝑆𝑡𝑟𝑒𝑠𝑠𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 ← 𝑀𝑎𝑝 |
𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,
𝑅𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔′}

𝑅𝑆𝑡𝑟𝑒𝑠𝑠𝐶𝑎𝑠𝑒𝑆𝑒𝑙 ← 𝐹𝑖𝑙𝑡𝑒𝑟 | 𝑆𝑡𝑟𝑒𝑠𝑠𝐶𝑎𝑠𝑒𝑆𝑒𝑙,𝑅𝑆𝑡𝑟𝑒𝑠𝑠𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠}

𝑅𝐶𝐹𝑎𝑡𝑖𝑔𝑢𝑒𝐿𝑖𝑓𝑒 ← 𝐹𝑖𝑙𝑡𝑒𝑟 ~𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒𝐶𝑎𝑠𝑒𝑆𝑒𝑙,𝑅𝑆𝑡𝑟𝑒𝑠𝑠𝐶𝑎𝑠𝑒𝑆𝑒𝑙 �

𝑅𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑀𝑎𝑝 |
𝐶𝑎𝑙𝑐𝐹𝑎𝑡𝑖𝑔𝑢𝑒𝐿𝑖𝑓𝑒,
𝑅𝐶𝐹𝑎𝑡𝑖𝑔𝑢𝑒𝐿𝑖𝑓𝑒 }

𝑅𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑅𝑒𝑑𝑢𝑐𝑒 �
𝐶𝑎𝑙𝑐𝐹𝑎𝑡𝑖𝑔𝑢𝑒𝐿𝑖𝑓𝑒,

𝑐𝑎𝑠𝑒,
𝑅𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑅𝑒𝑠𝑢𝑙𝑡𝑠

�

Figure 5. Workflow representation of a user-steered Cut operation.

𝑚𝑞1	are reloaded from the wf-Database. If any change has happened, it will be considered
in the next iteration 𝑡	 +	𝑑1. Moreover, at each certain time during execution (also
configured by the user), the system checks if the user has added new monitoring queries in
{𝑄}. Our approach takes full advantage of the data stored online in the wf-Database to
enable users to steer monitoring settings, including which data will be monitored and how.
We show how an example of a user adapting monitoring settings in Section 7.
4.4 Data Reduction in Workflow Execution Models

Among the different workflow execution models presented in [21], our data reduction
can be used in both acyclic (sequential and concurrent) and cyclic models. To exemplify a
data reduction in these models, let us consider any two activities 𝐴𝑐𝑡1 and 𝐴𝑐𝑡13&	in a given
workflow 𝑊, where one depends on the other. Using the data-centric algebraic
representation, we have:

𝑅13& ← 𝐷𝑇1 𝐴𝑐𝑡1, 𝑅1 ; 	𝑅13" ← 𝐷𝑇13& 𝐴𝑐𝑡13&, 𝑅13& .
In a sequential execution between 𝐴𝑐𝑡1 and 𝐴𝑐𝑡13&, 𝐴𝑐𝑡13&	only starts to operate when

𝐴𝑐𝑡1 completely finishes all its tasks [21]. Suppose that the user wants to reduce input data
for 𝐴𝑐𝑡1. The safe subset 𝑆1 contains data elements that are ready to be processed but are
only waiting for a free processor, considering that all other processors are still processing
tasks from 𝐴𝑐𝑡1. This happens when there are more tasks than available processors, which
frequently occurs in large-scale workflows. Then, after some tasks for 𝐴𝑐𝑡1	have been
processed, the user can submit analytical queries using the output of 𝐴𝑐𝑡1, make a decision,
and reduce input data from 𝑆1. In this case, the reduction favors 𝐴𝑐𝑡1	directly, and 𝐴𝑐𝑡13&
indirectly because 𝐴𝑐𝑡13& has less data to consume. The same occurs when the user wants
to reduce input data for 𝐴𝑐𝑡13&.

In a concurrent execution between 𝐴𝑐𝑡1 and 𝐴𝑐𝑡13&, there is a pipeline of data elements,
i.e., when 𝐴𝑐𝑡1	finishes processing one task that generates output elements, 𝐴𝑐𝑡13&	can
process those input elements. In this case, the safe subset 𝑆1 contains elements that will be
processed by 𝐴𝑐𝑡1. When they are removed, the tasks from 𝐴𝑐𝑡13& that would consume the
outputs from 𝐴𝑐𝑡1	are not executed. In this case, the reduction favors both 𝐴𝑐𝑡1	and
𝐴𝑐𝑡13&	directly, since a reduction in 𝐴𝑐𝑡1	removes a pipeline between 𝐴𝑐𝑡1	and 𝐴𝑐𝑡13&.

Both sequential and concurrent execution models can be iterated in a cyclic model.
Thus, at runtime, when the workflow is running in a specific cycle (iteration), online user-
steered data reduction can occur. There are four types of cyclic models [2]: (1) counting
loops without dependencies between iterations (also known as parameter sweep), (2)
counting loops with dependencies (iteration 𝑘 + 1 depends on iteration 𝑘), (3) conditional
loops (𝑤ℎ𝑖𝑙𝑒 … 𝑑𝑜), and (4) dynamic loops (user adapts loop stop condition). In addition
to reducing data inside an iteration, as described for the acyclic models, one can reduce
iterations using a dynamic loop model [2]. Therefore, our user-steered data reduction
approach can be used in almost all the execution models presented in [21], and is a
complementary approach to user-steered iteration reduction in cyclic execution models, as
done in [2]. We carry out our experimental validation using the case study of Section 2,
which combines acyclic (with both concurrent and sequential activities) and cyclic (more
specifically, parameter sweep) models.

4.5 Data Reduction in Real-world Scientific Workflows

Several real-world scientific workflows have this same behavior: data elements
organized in datasets flowing in a dataflow. To exemplify data reduction in other different
workflow execution models, we use (i) SciPhy [10], which iterates over a time consuming
input dataset from the bioinformatics domain; and (ii) Montage [11], which has been used
to benchmark scientific workflow solutions [22] and represents data-intensive workflows.

(i) SciPhy [10] is a bioinformatics workflow composed of eight activities for
phylogenetic analysis. In Figure 6(a) and Figure 6(c), we show SciPhy with its dataflow
and algebraic representation, respectively. SciPhy aims at producing phylogenetic trees that
represent evolutionary relationships. These trees are analyzed to identify or discover drug
targets. Given an input set of new genomic sequences or genes, specific programs, which
are both compute- and data-intensive, are used in a workflow to infer similarity and
homology. These sequences are transformed through the dataflow until they arrive at the
Model Generator activity, which is mostly compute-intensive, and takes a long time to
calculate the similarity. Based on previous execution information stored in a provenance
database, combined with domain-specific knowledge, the user can tell that a specific
combination of genomic sequences will likely take an undesirable amount of time to
complete. This is critical for executions in cloud environments, because it will significantly
increase the costs. The constraint in this case is cost and not whether the input will lead to
interesting results. The user simply cannot pay for the time the program will take to
complete a specific slice of the input or the user prefers to spend more time on sequences
that will take shorter time and will return results faster, contributing for the overall analysis.
Without our solution, the user needs to stop execution, remove this undesired set of
genomic sequences by hand, and restart. This is error-prone, the interactions are not
integrated with the workflow execution, and it is time consuming.

(ii) Montage [11] is a well-known toolkit for assembling astronomical images into
custom mosaics of the sky. The workflow has been modeled using the data-centric algebra
[7], with nine activities. In Figure 6(b), we illustrate with a visual representation of the
workflow, showing the datasets between each workflow activity. In Figure 6(d), we show
how we model Montage using the data-centric algebra [7]. The first activity extracts many
Flexible Image Transport System (FITS) files. The contents of these files are data about
common astronomy coordinate systems, arbitrary image sizes, rotations, and world
coordinate system map projects. Each file has twenty different types of data, modeled as
attributes of a dataset in the data-centric approach. The activity Create Mosaic builds a
mosaic of a delimited region in the outer space and generates an image. Analyzing the
generated mosaic, users can infer the presence of an interesting celestial object. Identifying
them is hard, subjective, and requires domain expertise.

By correlating specific combinations of input data values captured in those FITS files
with the generated mosaics, the domain specialist can tell whether a certain region of the
outer space is more or less likely to contain an interesting celestial object. Identifying this
correlation is tricky and it may dynamically change during execution, depending on how
the data values are evolving. In particular, users investigate the color intensity to detect
potential regions of interest that may represent a celestial object. Thus, a pixel with high
color intensity may represent an object emitting light or reflecting it. For this reason, the
user needs to monitor the results looking for those color intensity changes. Based on the

results, the user can identify regions of the space that are very unlikely to lead to significant
color change. These regions, which are delimited in data values in the input FITS files,
could be eliminated at runtime, thus reducing processed data and execution time.

To show a specific case of data reduction, Figure 7 shows an excerpt of the Montage
workflow. List FITS activity consumes a list of compressed files and each produces a
list of many FITS files (i.e., it has a SplitMap behavior). The list of FITS files is
represented as 𝑅 7¡¢£¤u1¡¥ dataset, which contains paths to the actual files stored on disk.
The modeled workflow extracts data values from those files and store in 𝑅 7¡¢£¤u1¡¥
dataset. Among these data values extracted, there are CRVAL1 and CRVAL2 that represent
two coordinate values to determine a position in the native image coordinate system. The
files in 𝑅 7¡¢£¤u1¡¥ are then processed by Projection activity, generating
𝑅¦£§£¤u1¡¥¨7¡¢£¤u1¡¥© dataset, following the remainder of the dataflow. After some time has
elapsed and files have been processed, a user runs several data analyses in the dataflow and
determines that certain values for CRVAL1 and CRVAL2 will very unlikely lead to an
interesting celestial object identification and these files containing the values can be cut off.
Thus, the user does a reduction command using criteria C to cut a slice from
𝑅 7¡¢£¤u1¡¥	dataset, transforming it into a reduced 𝑅′ 7¡¢£¤u1¡¥ to be consumed by
Projection activity in the remainder of the dataflow.

(i) Montage (ii) SciPhy
Workflow Visual Representation

(a) SciPhy visual representation.

(b) Montage visual representation.

Data-Centric Workflow Algebraic Representation
𝑅𝑀𝑎𝑓𝑓𝑡 ← 𝑀𝑎𝑝(𝐷𝑎𝑡𝑎𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛, 𝑅𝐷𝑎𝑡𝑎𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛)	

𝑅𝑅𝑒𝑎𝑑𝑆𝑒𝑞 ← 𝑀𝑎𝑝(𝑀𝑎𝑓𝑓𝑡, 𝑅𝑀𝑎𝑓𝑓𝑡)	

𝑅𝑀𝑜𝑑𝑒𝑙𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 ← 𝑀𝑎𝑝(𝑅𝑒𝑎𝑑𝑆𝑒𝑞, 𝑅𝑅𝑒𝑎𝑑𝑆𝑒𝑞)	

𝑅𝑅𝑎𝑥𝑀𝐿 ← 𝑀𝑎𝑝(𝑀𝑜𝑑𝑒𝑙𝐺𝑒𝑛. , 𝑅𝑀𝑜𝑑𝑒𝑙𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟)	

𝑅𝑅𝑎𝑥𝑀𝐿1 ← 𝑀𝑎𝑝(𝑅𝑎𝑥𝑀𝐿_1,			𝑅𝑅𝑎𝑥𝑀𝐿)	

𝑅𝑅𝑎𝑥𝑀𝐿2 ← 𝑀𝑎𝑝(𝑅𝑎𝑥𝑀𝐿_2, 𝑅𝑅𝑎𝑥𝑀𝐿)	
𝑅𝑀𝑒𝑟𝑔𝑒𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑀𝑅𝑄𝑢𝑒𝑟𝑦(𝑗𝑜𝑖𝑛,

{𝑅𝑅𝑎𝑥𝑀𝐿1, 𝑅𝑅𝑎𝑥𝑀𝐿2})	

𝑅𝑅𝑎𝑥𝑀𝐿3 ← 𝑀𝑎𝑝(𝑅𝑎𝑥𝑀𝐿_3, 𝑅𝑀𝑒𝑟𝑔𝑒𝑅𝑒𝑠𝑢𝑙𝑡𝑠)	

(c) SciPhy algebraic representation.

𝑅𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 ← 𝑆𝑝𝑙𝑖𝑡𝑀𝑎𝑝(𝑚𝐼𝑚𝑔𝑡𝑏𝑙, 𝑅𝐿𝑖𝑠𝑡𝐹𝐼𝑇𝑆)	

𝑅𝑆𝑒𝑙𝑒𝑐𝑡𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ← 𝐹𝑖𝑙𝑡𝑒𝑟(𝑚𝑃𝑟𝑜𝑗𝑒𝑐𝑡, 𝑅𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛)	

𝑅𝐶𝑈𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑠𝑎𝑖𝑐 ← 𝑅𝑒𝑑𝑢𝑐𝑒(𝑚𝐴𝑑𝑑,𝑀𝑂𝑆𝐴𝐼𝐶®¯ , 𝑅𝑆𝑒𝑙𝑒𝑐𝑡𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠)	

𝑅𝑈𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝐹𝐼𝑇𝑆 ← 𝑀𝑎𝑝(𝑚𝐽𝑃𝐸𝐺, 𝑅𝐶𝑈𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑠𝑎𝑖𝑐)	

𝑅𝐸𝑥𝑡𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 ← 𝑅𝑒𝑑𝑢𝑐𝑒(𝑚𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠, 𝑀𝑂𝑆𝐴𝐼𝐶®¯, 𝑅𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛)	

𝑅𝐶𝑎𝑙𝑐𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ← 𝑆𝑝𝑙𝑖𝑡𝑀𝑎𝑝(𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝐷𝑖𝑓𝑓𝑠, 𝑅𝐸𝑥𝑡𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠)	

𝑅𝐹𝑖𝑡𝑃𝑙𝑎𝑛𝑒 ← 𝑀𝑎𝑝(𝑚𝐷𝑖𝑓𝑓, 𝑅𝐶𝑎𝑙𝑐𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)	

𝑅𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑠𝑎𝑖𝑐 ← 𝐹𝑖𝑙𝑡𝑒𝑟(𝑚𝐹𝑖𝑡𝑃𝑙𝑎𝑛𝑒, 𝑅𝐹𝑖𝑡𝑃𝑙𝑎𝑛𝑒)	

𝑅𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝐹𝐼𝑇𝑆 ← 𝑅𝑒𝑑𝑢𝑐𝑒(𝑐𝑟𝑒𝑎𝑡𝑒𝑀𝑜𝑠𝑎𝑖𝑐, 𝑅𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑠𝑎𝑖𝑐)	

d) Montage algebraic representation.

Figure 6. Real-world scientific workflows modeled using the data-centric workflow algebra.

5. Implementation in d-Chiron

d-Chiron [8] is a SWMS that implements the data-centric approach described in Section
3.1. It collects and stores data at a fine-grain level in the wf-Database during workflow
execution. d-Chiron takes advantage of a distributed in-memory database system (MySQL
Cluster) to manage the wf-Database. Documentation on how to run d-Chiron and the data
schema used to implement the wf-Database are publicly available on GitHub [23]. In this
section, we explain how we implement user-steered data reduction and adaptive monitoring
in the data-centric approach in d-Chiron.
5.1 Using a Relational DBMS to Implement the Data-centric Approach

Distributed and parallel relational database technology has been successful at managing
very large datasets [24]. d-Chiron exploits this technology to support many user steering
aspects described in Section 3.2. In this section, we give three reasons to explain why
relational DBMS is a good choice to implement data reduction in a data-centric SWMS.

(i) The first motivation is related to the need to find the slice to be removed. A
relational DBMS has efficient querying capabilities to enable analysis of sets of data with a
query language (SQL) and a query interface. Also, an integrated data modeling using a
PROV-compliant data diagram enables complex data queries that analyze scientific
domain, provenance, and workflow execution data. This highly contributes to the online
analytical capabilities of the SWMS. In Section 6, we show how d-Chiron takes advantage
of a query interface to enable users to query the data online to support data reduction.

 (ii) The second motivation is related to the fact that scientific workflows are data-
centric. There is a flow of data elements organized in sets (datasets). The relational model
is set-oriented and there are multiple native constructs that significantly ease managing the
flow of data elements. Thus, not only the user can benefit from querying the data, but also
the SWMS engine itself. d-Chiron engine uses SQL to access and modify the data in the
wf-Database and uses these data in its internals functioning, such as task scheduling. Also,

Figure 7. User-steered Cut in an excerpt of Montage workflow. The dataset 𝑹𝒑𝒓𝒐𝒋𝒆𝒄𝒕𝒊𝒐𝒏 is divided into subsets
𝑷𝒑𝒓𝒐𝒋𝒆𝒄𝒕𝒊𝒐𝒏 and 𝑺𝒑𝒓𝒐𝒋𝒆𝒄𝒕𝒊𝒐𝒏. A slice is cut off from 𝑹𝒑𝒓𝒐𝒋𝒆𝒄𝒕𝒊𝒐𝒏 transforming it into 𝑹′𝒑𝒓𝒐𝒋𝒆𝒄𝒕𝒊𝒐𝒏 using criteria C.

a relational data model eases data reduction. The user does not need to know about the task
scheduling details in a data reduction action. Rather, only the slice criteria (domain data
only) can be specified and d-Chiron will use SQL to join domain data with scheduling data
to select the affected tasks by a reduction. We explain this in details in this section.

(iii) The third motivation is related to consistency. It is essential that the data remains
consistent within a user-steered data reduction. It is quite complex to guarantee a consistent
execution when a user decides to reduce data, in particular in a large HPC execution and
without stopping the workflow execution. On the other hand, all parallel and distributed
relational DBMS natively provide atomicity, consistency, isolation, and durability (ACID)
transactions [24]. We can take advantage of this capability and implement a user-steered
data reduction in a way to outsource to the DBMS complex transaction control that
guarantees consistency. We also explain this in this section.
5.2 Supporting Consistent Data Reduction with a Relational DBMS

Before actually reducing the data, we explain how a slice is defined in d-Chiron, using
its relational DBMS, so it can later be safely removed while guarantying consistency after
reduction. Input data elements are consumed by the many parallel tasks (usually thousands
in Many Task Computing workflows [1]) that need to be scheduled by the SWMS engine.
Since there is this strong relationship between tasks and domain data elements, which
contain scientific domain-specific data values, we represent it in a relational data schema
(using crow’s foot database notation) where each task is related to one or more data
elements of a domain-data dataset:

 	Task		 		Domain	Dataset	.
All datasets in set 𝑅 are specializations of 𝐷𝑜𝑚𝑎𝑖𝑛	𝐷𝑎𝑡𝑎𝑠𝑒𝑡 and the scheduling of

input data elements to parallel tasks is represented as instances in 𝑇𝑎𝑠𝑘 table, which stores
all tasks in the workflow execution. Thus, for a certain input dataset 𝑅1 ∈ 𝑅, the join (𝑅1 ⋈
𝑇𝑎𝑠𝑘) returns a set containing tasks with their input data elements in 𝑅1. Moreover, among
other attributes, each task has an important 𝑠𝑡𝑎𝑡𝑒 attribute that determines if a task is
READY to be executed (already knows its input data to start, but is waiting for a free CPU so
it can be scheduled), RUNNING, COMPLETED (already been successfully executed),
BLOCKED (even though there may be free CPUs, the task does not have the input to start
yet), or any other state a task may assume. Depending on the data transformation performed
by an activity, each task may consume one (e.g., Map, SplitMap, Filter) or more (e.g.,
Reduce, MRQuery) input data elements. Therefore, we distinguish between (i) activities in
which each task consumes one data element (we denote such tasks as 𝑡𝑎𝑠𝑘𝑠&:&), and (ii)
activities in which each task consumes more than one data element (we denote them as
𝑡𝑎𝑠𝑘𝑠&:¥).

(i) In activities with 𝑡𝑎𝑠𝑘𝑠&:&, removing input data element means “informing” the
SWMS not to execute the tasks that would consume them, hence reducing overall execution
time. To implement the set 𝑆1 (Section 4.2), a semi-join relational operation [24] is used to
join input data elements from the input dataset 𝑅1 with tasks in READY state in order to only
select the domain data elements that still need to be processed. Then, after having 𝑆1, the
SWMS can obtain the elements in 𝑆1 that follow the criteria 𝐶. Since a set containing both
the input data elements together with the related tasks that will consume them is important
for the implementation of data reduction, we denote this set as §&:&, so that:

	§&:& ← 	𝜎Á 𝑅1 ⋉ 𝜎©uÃu£ÄÅÆÇ¯È 𝑇𝑎𝑠𝑘 ,
where the ratio 1: 1 means that the tasks in this set are 𝑡𝑎𝑠𝑘𝑠&:& (as tasks for Map, Filter,
and SplitMap) and the criteria 𝐶 is defined in the 𝐶𝑢𝑡 operator. Finally, the SWMS will
know that tasks in §&:& should not be processed.

 (ii) In activities with 𝑡𝑎𝑠𝑘𝑠&:¥, a data reduction in an input dataset 𝑅1 can only occur if
the task that will consume them is in a BLOCKED state. The task has not started yet because
the needed input data for it to start is still being generated by a running task in a previous
activity. When this running task finishes, it signals that the BLOCKED task can start. While
it is still blocked and the input data elements are being generated, the user can analyze them
and identify data values that can be removed. In this case, we denote the set §&:¥ similarly
to the previous one, but it rather returns the input data elements in 𝑅1 that are being
consumed by the tasks in BLOCKED state:

§&:¥ ← 	𝜎Á 𝑅1 ⋉ 𝜎©uÃu£ÄÉÊËÁÌÆ¯ 𝑇𝑎𝑠𝑘 ,
where the ratio 1: 𝑛 means that the tasks in this set are 𝑡𝑎𝑠𝑘𝑠&:¥ (as tasks for Reduce and
MRQuery data transformations). Finally, the SWMS will know that tasks in §&:¥ should not
be processed. In other words, d-Chiron will normally execute the tasks, but with a reduced
dataset instead. This is different for 𝑡𝑎𝑠𝑘𝑠&:&	because they cannot be executed if their input
datasets are removed. The SWMS will know how to handle the tasks in sets	§&:&or §&:¥ as
long as it knows the type of data transformation of the activity that would consume the
elements defined by the criteria 𝐶. Such verifications are important to guarantee
consistency during reduction, which is better explained next.
5.3 Steer Module: User-steered Data Reduction Implementation

To ease slice removal in d-Chiron, we developed the Steer module. With the Steer
module, users can issue command lines to inform the name of the input dataset 𝑅1 and the
criteria 𝐶 (see 𝐶𝑢𝑡 definition). More specifically, the slice delimited by 𝐶 is added to the
where clause in the SQL query that will form the select expressions. As an implementation
decision, instead of physically removing the input data elements (either in §&:& or §&:¥) from
the wf-Database, we move them to a Modified_Elements table, maintaining the
relationships. Likewise, the tasks in §&:&, which cannot be executed, are not physically
removed, but they have their state marked as REMOVED_BY_USER. By doing so, we enable
these tasks and data elements to be later analyzed with provenance queries, similar to the
ones shown in Table 1 and Table 2.

To guarantee consistency, we take advantage of d-Chiron’s DBMS with ACID
transactions. In a user-steered data reduction, both d-Chiron's engine and the Steer
module need to concurrently update shared resources: Task and Domain Dataset tables
in the wf-Database. The Steer module knows if it is about to reduce data elements
within a slice of the type §&:& or type §&:¥, since it depends on the dataset being reduced,
which is a parameter to the module. With respect to the input data elements (either in §&:&
or in §&:¥), while d-Chiron's engine gets the input data elements to execute, the Steer
module needs to concurrently move the cut off input data elements to the
Modified_Elements table. With respect to the tasks in	§&:&, the Task table is a shared
resource because while d-Chiron's engine updates the runnable tasks (select them, update
their status to RUNNING, execute them, and mark them as completed), Steer needs to
update the Task table to mark the tasks as removed by user, so that the engine will not get

them for execution. These concurrent actions make concurrency control critical. Figure 8
illustrates these steps with a sequence diagram. The Steer module acts concurrently with
the SWMS engine on the shared resources, which are in red in the figure. The steps 1-3 in
Steer module are put together in a single DBMS transaction, which is atomic.

The wf-Database’ tables are distributed, thus making concurrency control of the tables’
partitions even more complex. In d-Chiron engine, distributed concurrency control in these
tables is outsourced to the DBMS that guarantees the ACID properties [24]. We developed
the Steer module to also exploit the DBMS in a way that the concurrency caused by the
aforementioned updates is controlled by the DBMS. Therefore, we implement our approach
such that both d-Chiron engine and the Steer module rely on the DBMS to outsource
those complex distributed locks and releases of shared resources to guarantee that both
execution and data remain consistent before and after a user-steered reduction.

To store provenance of removed data elements, we extend the wf-Database schema
with the table User_Query to store the queries that select the slice of the dataset to be
removed. The description for each User_Query column is described in Table 3. We keep
track of the removed data elements in table Modified_Elements, which is a table that
represents a many-to-many relationship between User_Query and Domain Dataset.

Table 3. User_Query table description.
Column name Description
query_id Auto increment identifier
slice_query Query that selects the slice of the dataset to be removed.
tasks_query Query generated by the SWMS to retrieve the ready tasks associated.
issued_time Timestamp of the user interaction

query_type Field that determines how the user interacted. It could be “Removal”, “Addition”,
and others.

user_id Relationship with the user who issued the interaction query
wkfid To maintain relationship with the rest of workflow execution data.

Figure 8. Sequence diagram showing what happens in a user-steered data reduction.

5.4 Monitor Module: Adaptive Monitoring Implementation

To implement our approach to adaptive monitoring, we extend the wf-Database
schema. To store {𝑄}, we add the table Monitoring_Query, shown in Table 4. The main
advantage of storing monitoring results in the wf-Database (and adequately linking the
results with the remainder of the data already stored in this database) whenever a
monitoring query result is executed is that users are able to query the results immediately
after their generation. The wf-Database can also serve as data source for data visualization
applications. We add another table: Monitoring_Query_Result, shown in Table 5, to
store monitoring results in the wf-Database. In Section 5.5, we show the extensions of
PROV-Wf for these adaptive monitoring concepts.

A command line starts the Monitor module that runs in background. It establishes a

connection with the distributed DBMS. Connection settings are provided in a configuration
file. d-Chiron makes use of this configuration file to define the workflow design, workflow
general settings, and other user-defined variables. Then, the Monitor program keeps
querying the Monitoring_Query table at each 𝑠 time units to check if a new monitoring
query was added. The default value for 𝑠 is 30 seconds, as the time interval to check if
monitoring queries were added or removed. Users can customize this value. After the
Monitor has started, users can add (or remove) monitoring queries to (or from) the
Monitoring_Query table. Currently, users can add monitoring queries using a command
line to inform which SQL query will be executed at each time interval and the time interval.
Whenever the Monitor module identifies that the user added a new monitoring query, it
launches a new thread. Each thread is responsible for executing each monitoring query in

Table 4. Monitoring_Query table description.
Column name Description

monitoring_id Auto increment identifier

interval Interval time (in seconds) between each monitoring query (𝑑1)

monitoring_query Raw SQL query to be executed.

wkfid
Relationship between the monitoring queries and the current execution of the
workflow. In d-Chiron’s wf-Database, there may be data from past executions
for a same workflow.

Table 5. Monitoring_Query_Result table description.

Column name Description
monitoring_result_id Auto increment identifier
monitoring_id Relationship with the monitoring query that generated this result
monitoring_values Results of the monitoring_query

result_type
Data type of the result values of both queries. Currently, “Integer”,
“Double”, “Array[Integer]”, and “Array[Double]”

1. Execute the monitoring query 𝒎𝒒𝒊
2. Store query results in the wf-Database
3. Reload all information for 𝒎𝒒𝒊	 from the wf-Database for the next time iteration. The user could

have adapted any of this information.
4. Wait for 𝒅𝒊 seconds

Figure 9. Steps executed by each thread within a time interval.

Monitoring_Query at each defined time interval. A thread is finished when a monitoring
query is removed or when the workflow stops executing (in that case, all threads are
finished). Figure 9 shows the steps executed at each time interval.

To enable all these steering capabilities, three of these steps represent queries to the wf-
Database, including reads and writes. The stored results can be further analyzed a-
posteriori or, more interestingly, used as input for runtime data visualization tools, since
results are immediately made available after they are generated. In Section 6, we show how
users can interact with d-Chiron to add monitoring queries and use the Steer module.

5.5 Extending PROV-Wf for Data Reduction and Adaptive Monitoring

The data schema that governs the data organization in the wf-Database follows PROV-
Wf [6]. It adheres the W3C PROV [25] recommendations to help query specification, to
maintain compatibility between different SWMSs, and facilitate interoperability between
different databases. PROV-Wf specializes PROV concepts for scientific workflows. It is
called PROV-Wf, which allows for domain, execution, and workflow provenance data
representation at a finer grain than PROV.

We propose extensions to PROV-Wf to accommodate the concepts presented in this
work. These concepts extended are: UserQuery, MonitoringQuery, and
MonitoringResult, as in Figure 10. Using PROV nomenclature, UserQuery is a PROV
Activity that stores the slice that represents sets of data elements that will be removed.
MonitoringQuery is a PROV Activity that contains the monitoring queries submitted by
the user in specific time intervals. The monitoring queries generate PROV Entity
MonitoringResult that stores the query results.

6. Using d-Chiron

The ultimate goal of this work is to contribute with user-steered workflows in HPC. In
Section 3.2, we explained that there are at least six aspects that need to be considered for
this: interactive analysis, monitoring, human adaptation, notification, interface for
interaction, and computing model [4]. In this work, we mostly focused on the first three,
considering human adaptation as the core of computational steering and the one we mostly

Figure 10. Extended PROV-Wf entity-relationship diagram to accommodate modified tasks and monitoring.

contributed with. As most related contributions to putting the human in the loop of HPC
workflows [2,26,27], we focused on the efforts for engineering the backend enabling
technology for user steering in an HPC workflow. More specifically, we contributed with
allowing users to steer data reductions in scientific workflows online, focusing on
providing a consistent execution within a data reduction, managing provenance data of user
steering actions, and minimizing performance overheads in the HPC system (discussed in
Section 7.4). Enabling such features without jeopardizing performance in an HPC
environment is sufficiently complex. However, besides engineering the backend enabling
technology, the interface for interaction is another aspect to be considered.

Designing good interfaces requires usability studies to determine whether the interfaces
are in fact good for the target user profile (i.e., computational scientists in our case). This
would need a comprehensive user experience test to understand user behavior while
interacting with their workflows, then we would develop interfaces based on the gathered
design insights, and evaluate the usability. For a valid and comprehensive usability
evaluation, we would need to ask multiple users to use the system and the modules
developed, observe how they use, and interview them. However, the general scenario (HPC
workflows) is very complex. Our user profile is quite rare (compared with general business
applications) and the results depend on the domain and on the application in the domain.
For example, if we want to measure the time a user takes to identify that a certain slice will
not contribute for the final results and then remove it, a valid evaluation would require
analyzing multiple users of a same application, in a same domain. Finding users of a same
specific application is so rare that makes a comprehensive usability test extremely hard.
Also, many other questions need to be addressed. For instance, “does the user expertise in
the domain-application interfere in the results? – perhaps the more experienced the user is,
the faster she will find which slice to remove and the better she understands the
consequences of a reduction”; or “what if the tests were carried out on a different
application for a same domain?”; or “what about a different domain?”. Additionally, an
extra raises because using an HPC cluster requires scheduling. For a best usability test, the
analyzer needs to observe the user while she is interacting with the HPC workflow, and
thus the analyzer’s and the user’s scheduling must match the HPC job scheduling time, for
each user. In other words, a valid and comprehensive usability test would require observing
users of a same application, of different domains, of different expertise levels, and
matching scheduling times with the HPC cluster. Combining these requirements makes it
very hard and out of the scope of this work, which focuses on the enabling backend
technology for steering an HPC workflow.

Therefore, instead of usability tests, in this section, we show how users can use our
modules Steer and Monitor in d-Chiron. Before developing, we interviewed few
computational scientists. We found that they are very used to command line interfaces and
they frequently have to learn new computational tools. They often browse logs in terminals
and follow execution status of their simulations. To reduce data, they need to stop their
workflow process, modify the input datasets by hand, and restart execution. For some users,
this means resubmitting a job to an HPC cluster subject to scheduling. This may be really
long (even weeks). Therefore, developing a technology that allows them to reduce data
online, based on provenance data analysis through structured queries (rather than Unix-like
shell commands to filter multiple logs in the file system – which is what most of them do)
is a very desirable feature and we are not aware of any other SWMS that provides it. Thus,

we developed simple command line interfaces to enable them to steer monitoring queries
and reduce data online. Since developing the best interface and analyzing its usability is out
of the scope, the command line interfaces are our current best effort to make the technology
usable. As we show in Section 7, for validation purposes, a real user is able to use the
system, after a d-Chiron specialist trained her and provided support.

In d-Chiron, computer scientists who are experts in operating d-Chiron work closely
with computational scientists, the target-user of this work. However, computational
scientists are able to operate d-Chiron and steer the running workflow. Before steering a
workflow, the workflow has to be modeled. The user identifies the input and output data
elements of each of those activities and gives a name to the dataset that contains those
elements (following the data-centric algebra presented in Section 3.1). When this is done,
d-Chiron modules creates tables corresponding to those datasets, where each table column
is an element produced or consumed by a workflow activity. If needed, application-specific
extractor scripts are built to collect output data to be stored in the wf-Database [7].

The aspects of computational steering workflows tackled in this work are strongly
related to how d-Chiron manages the data and the dataflow. It is all about the wf-Database
being populated online by the SWMS. The workflow execution plan depends on the data in
this database (hence can be adapted at runtime) and the wf-Database is available for user
queries immediately after the workflow has started to run and data elements in the domain-
dataflow are stored while they are generated. Then, they are linked to execution and
provenance data in the wf-Database to enable queries that integrate all these data.

Therefore, the main way users can interact with a workflow execution in d-Chiron is
through query interfaces, generally provided by the DBMS, to query the wf-Database. To
be able to run queries, the user must understand the database schema [23] that logically
organizes data in d-Chiron. Computational scientists can work with computer scientists (d-
Chiron experts in this case) so they can build complex analytical SQL queries to
interactively analyze the dataflow. From our experience, computational scientists do not
take much time to learn how to write simple queries to a relational database and they later
learn how to write complex analytical queries on their own. d-Chiron uses MySQL Cluster
to manage its wf-Database. MySQL users are accustomed to using MySQL Workbench as a
visual interface to the DBMS. They can see the relational database schema, build and run
SQL queries, and get their tabular results in the interface as the workflow runs. Figure 11
shows how MySQL Workbench can be used to write Q5 (from Table 2 described as natural
language in Section 3.2.1), which integrates domain, provenance and execution data in a
same query. More queries with their natural langue descriptions are on GitHub [23].

However, such interactivity does not need to use SQL queries only. Some users prefer
graphical user interfaces, so there are many other ways to interact with a DBMS: graphical
interfaces with drag and drop boxes to help building queries, Natural Language to Database
solutions to translate regular English sentences into SQL queries, dashboards that plot
results from a query, etc. d-Chiron developers have been working on new tools to facilitate
such interactions, including dashboards that plot monitoring charts or command line tools
that does not require users to type raw SQL but simpler commands. In this work, discussing
the usability of these interfaces is not the focus. However, we show how users currently use
command line interfaces for the modules Steer and Monitor.

For the Steer module (Figure 12), a user informs who is going to interact (this

information is stored in the wf-Database for provenance) and passes a configuration file
that contains information about the workflow, the HPC cluster, and the DBMS connection
settings. After that, a user can run as many dataflow steering commands as necessary
informing the input dataset 𝑅1 in the workflow that will be reduced and the C criteria to
select the slice (operands from 𝐶𝑢𝑡 definition in Section 4.1). These actions are stored in
the wf-Database for provenance. The response messages (in green) allow the user to
understand what is happening after a command line is issued. In particular, after a 𝐶𝑢𝑡
action, the response message informs the user of the number of data elements that were
removed from the dataset to be processed. For more complex analyses on the consequences
of those reductions, users can query the wf-Database using the tables introduced in this
work to verify, for example, if there were files and their sizes to quantify the number of
bytes that were not processed. We do those analyses in the next section.

For the Monitor module (Figure 13), a user runs a command to start the monitoring

module as a background process on any cluster node that has access to the DBMS, usually
the same node from which the SWMS execution was launched. Then, users can add
monitoring queries at any time. The monitoring query results are also properly stored in the

1. $> ./Steer --user="Peter" --conf=SC.xml
Next workflow interactions will be issued by user Peter.
2. $> ./Steer --cut --dataset="opreprocessing" --criteria="wind_speed < 12.0 and wave_freq
> 2.0"
177 data elements were cut off from OPREPROCESSING dataset.
3. $> ./Steer --cut --dataset="opreprocessing" --criteria="wind_speed < 11.3 and wave_freq
> 1.8"
55 data elements were cut off from OPREPROCESSING dataset.

Figure 12. Steer module command line interface.

1. $> ./Monitor --start --conf=SC.xml
System is ready to accept new monitoring queries.
2. $> ./Monitor --add --mq="`cat q1.sql`" --label="query 1" --interval=30
Monitoring query "query 1" will be executed at each 30 seconds.
3. $> ./Monitor --add --mq="`cat q2.sql`" --label="query 2" --interval=20
Monitoring query "query 2" will be executed at each 20 seconds.
4. $> ./Monitor --update --label="query 2" --interval=5
Monitoring query "query 2" was updated. It will be executed at each 5 seconds.
5. $> vi q1.sql
6. $> ./Monitor --update --label="query 1" --mq="`cat q1.sql`"
Monitoring query "query 1" was updated.

Figure 13. Monitor module command line interface.

Figure 11. Using MySQL Workbench to query wf-Database at workflow runtime

wf-Database, as they are generated. Dashboard graphic visualization applications can query
these results to deliver better data visualization for the user.

In this example, after the user starts the monitoring module (line 1), two monitoring
queries are added with intervals 30 and 20 seconds, respectively (lines 2 and 3). The user
wrote the queries in text files (q1.sql and q2.sql), which are loaded in the Monitor --add
commands, using cat Unix command. Those query files are only to facilitate the command
lines and they are not a requirement. A user could write the query string directly in the
command line. After some time, user decides to decrease the time interval in the monitoring
of query with label “query 2” by issuing line 4. In line 5, user decides to modify a specific
query aspect (e.g., increase the result limit) by editing the query text file and in line 6 he
modifies the monitoring query. All these interactions are properly stored in the wf-
Database for provenance, following the data schema extensions provided in Section 5.5.
7. Experimental Validation

In this section, we validate our solution for online data reduction based on a real case
study. Section 7.1 shows the experimental setup. Section 7.2 presents a use case where the
user deals with the Steer and Monitor modules. Section 7.3 provides broader analyses
of reduction and Section 7.4 analyzes the added overheads.
7.1 Experimental Setup

Scientific workflow. We use the Riser Fatigue Analysis workflow (see Figure 1),
which is based on a real-world case study. The workflow processes over 350 GB of raw
data. In all executions, we use the same dataset, which spans over 60,000 data elements to
be processed in parallel. Depending on the workflow activity, tasks may take few seconds
(e.g., Activity 1) or up to one minute on average (e.g., Activity 3). The execution model is
an iterative workflow (parameter sweep) with concurrent activities, except for the last
activity (Activity 7), which is a 𝑅𝑒𝑑𝑢𝑐𝑒 that requires that Activity 6 completely finishes
before it can start.

Software. In all executions, we use d-Chiron [8] with MySQL Cluster 7.4.9 as its in-
memory distributed database system to manage the wf-Database. The code to run d-Chiron
and setup files are available on GitHub [23].

Hardware. The experiments were conducted in Grid5000 using a cluster with 39
nodes, containing 24 cores each (summing 936 cores). Every node has two AMD Opteron
1.7 GHz 12-core processors, 48GB RAM, and 250GB of local disk. All nodes are
connected via Gigabit Ethernet and access a shared storage of 10TB.
7.2 Test Case

Let us consider the following scenario. Peter is an offshore engineer, expert in riser
analysis and learned how to set up monitoring, analyze d-Chiron’s wf-Database, and use
the Steer module developed in this work. In Peter’s project, the Design Fatigue Factor is
set to 3 and service life is set to 20 years, meaning that fatigue life must be at least 60 years
(Section 2). Peter is only interested in analyzing risers with low fatigue life values, because
they are critical and might need repair or replacement. During workflow execution, it
would be interesting if Peter could inform the SWMS, which input values would lead to
low risk of fatigue, so they could be removed. However, this is not simple because it is hard
to determine the specific range of values (i.e., the slice to be removed). For this, Peter first

needs to understand the pattern of input values associated to low risk of fatigue life values.
In the workflow (Figure 1), the final value of fatigue life is calculated in Activity 6, but
input values are obtained as output of Activity 1, gathered from raw input files. Keeping
provenance is essential to associate data from Activity 1 with data from Activity 6.

To understand which input values are leading to high fatigue life values, Peter monitors
the generated data online. For simplicity, we consider wind speed, which is only one out of
the many environmental condition parameter values captured by Activity 1 to serve as input
for Activity 2. Peter knows that wind speed has a strong correlation with fatigue life in
risers. He expects that with low speed winds, there is a lower risk of accident.

When workflow execution starts, the Monitor module is initialized. Then, Peter adds
two monitoring queries: 𝑚𝑞& 	shows the average of the 10 greatest values of fatigue life
calculated in the last 30s of workflow execution, setting 𝑑& 	= 	30	s; and 𝑚𝑞" shows the
average wind speed associated to the 10 greatest values of fatigue life calculated in the last
30s, also setting the query interval 𝑑" 	= 	30s. We recall from Table 1 that 𝑚𝑞& is similar
to 𝑄1, but only considering data processed in the last 30 s. 𝑚𝑞& and 𝑚𝑞"	queries are added
to the Monitoring_Query table.

Peter monitors the results using the Monitoring_Result table. These results can be
a data source for a visualization tool that plots dashboards dynamically, refreshed according
to the query intervals. After gaining insights from the results and understanding patterns, he
can start removing the undesired values for wind speed. The monitoring query results
𝑚𝑞𝑟&u and 𝑚𝑞𝑟"u	for the two previously listed queries, as well as when the user reduced the
data, are plotted along the workflow elapsed time, as shown in Figure 14. It shows
𝑚𝑞𝑟&u	(Fatigue life) in green line with square markers and 𝑚𝑞𝑟"u (Wind speed) in blue line
with triangle markers. These markers determine when the monitoring occurred.

The workflow execution starts at 𝑡	 = 	0, but only after approximately 150 s, the first
output results from Activity 6 start to be generated. From the first results, at t=150 and
t=180, Peter checks that when wind speed is less than 16 km/h (see horizontal dashed line
in 𝑤𝑖𝑛𝑑	𝑠𝑝𝑒𝑒𝑑	 = 	16 in Figure 14, the results lead to the largest fatigue life values. Since
risers with large fatigue life values are not interesting in this analysis, he decides, at t =190,
to remove all input data elements that contain wind speed less than 16 km/h. For this, the
first user query 𝑞& is issued with a command line to the Steer module. User queries are
represented with red circles in the horizontal axis (Elapsed time). The time a user issued an

Figure 14. Use case plot to analyze impact of user steering comparing Wind Speed (input) with Fatigue life.

interaction query is stored in User_Query table.
The next marker after 𝑞& happens at 𝑡	 = 	210. Comparing with the previous

monitoring mark, at 𝑡	 = 	180, we can observe that this Peter’s steering (𝑞&) increases the
minimum wind speed values to be considered from 14.2 km/h to 24.1 km/h. Also, we
observe a significant decrease in the slope of the largest values for fatigue life (10.6%
lower). This means that the removal of these input data containing wind speed less than 16
km/h made the SWMS not process data containing low wind speed values, which would
lead to larger fatigue life results.

Then, monitoring continues, but that slope decrease calls Peter’s attention. To obtain a
finer detail of what is happening, he decides to adjust monitoring settings, the monitoring
interval times (𝑑&	and 𝑑") in this case, at runtime. He reduces them to 10 s to get
monitoring feedbacks more frequently. We can observe that for both lines 𝑚𝑞𝑟&u	and
𝑚𝑞𝑟"u, the markers become more frequent during 𝑡	 = 	 [220, 270]. This is because a
monitoring is registered at every 10 s. Although we show monitoring correlations between
wind speed and fatigue life, other monitoring correlations could also be analyzed and users
can add, remove or adjust monitoring queries at any time during execution. After verifying
that the results are reasonable, he decides to adjust the monitoring setting to increase back
the monitoring query intervals for both queries to 30s after 𝑡	 = 	270. Then he observes that
since 𝑞&, wind speed less than 25 km/h are leading to large fatigue life values. Then, at 𝑡	 =
	310, he calls Steer again to issue 𝑞" that removes input data for wind speed < 25 km/h.
The next markers after 𝑞"	shows that this steering made the wind speed value associated to
large fatigue life be at least 30.5 Km/h and a decrease of 6.5% in large fatigue life values
between 𝑡	 = 	300 and 𝑡	 = 	330.

Similarly, Peter continues to monitor and steer the execution. He issues 𝑞m	at 𝑡	 = 	370
to remove input data with wind speed < 30.5 km/h, making a decrease of 4.9% in large
fatigue life (comparing fatigue life in 𝑡	 = 	360 and 𝑡	 = 	390). Then, he issues 𝑞Ó	at 𝑡	 =
	430 to remove input data with wind speed < 34.5, attaining a decrease of 1.7% in large
fatigue life (comparing fatigue life in 𝑡	 = 	420 and 𝑡	 = 	450). Despite this small decrease,
he decides at t = 520 to further remove data, but with wind speed < 35.5 km/h. However, no
decrease greater than 1% in the large fatigue life values was registered after this last Peter’s
steering. Thus, he keeps analyzing the monitoring results, but does not remove input data
anymore until the end of execution.

We store each interaction in the User_Query table and map (in table
Modified_Elements) its rows with rows in Domain Dataset and Task tables, to
consistently keep provenance of which data elements were modified (in this case, removed)
by each specific user steering. Thus, keeping provenance of user steering helps analyzing
how specific interactions impacted the results. Figure 14 shows that some specific
interactions imply significant changes in lines’ slopes (key output values for the user).

7.3 Analyzing User-steered Data Reduction
In this section, we analyze how those previous user interactions impact the amount of

resources saved during the workflow execution. More specifically, we analyze three
aspects: (i) the number of data elements reduced, (ii) the time that was saved due to the
input data not processed, and (iii) the number of bytes of the raw data files that were not
processed. For validation purposes, we can count the resources saved as consequences of a

data reduction. For this, we compare the executions with and without user-steering. We run
the exact same workflow and input datasets for both scenarios. The workflow execution
with no steering processes all input data, including those containing wind speed values that
lead to risers with low risk of fatigue, which are not valuable for Peter’s analyses.

In Figure 15, we depict the three analyzed aspects per activity in the workflow. In other
words, we count the total input data elements each activity consumes; the total number of
gigabytes of data files processed in each activity; and the total time each activity took to
complete. In total, considering all activities, the workflow with no steering processed
60,939 input data elements in parallel, 356GB of domain data files, and the overall
execution time was 16.3 min running on the 936-cores cluster.

Then, we can compare these numbers with analogous numbers in the scenario with
user-steered data reductions. Table 6 summarizes the user interactions (i.e., user-steered
reductions) performed as described in the previous section. Figure 16 illustrates how each
interaction 𝑞1	affected the three analyzed aspects in each workflow activity: Figure 16(a)
shows the number of input data elements reduced, Figure 16(b) shows the time saved, and
Figure 16(c) shows the amount of gigabytes not processed due to data reduction. In the
three charts, although the reductions happen in dataset 𝑅"	consumed by 𝐴𝑐𝑡", we can see
that they impact all subsequent activities (𝐴𝑐𝑡&, which is a preceding activity, is not
affected by the reductions). In particular, we can see that the first interaction
𝑞&	alone	causes a time reduction of 15% (𝑞& makes 𝐴𝑐𝑡m complete 33s faster, whereas
without reductions 𝐴𝑐𝑡m would take 221 s).

Figure 17 shows the summary of the impacts in the entire workflow by each interaction
𝑞1. Overall, the steering reductions in this experimental validation yield a reduction of
7,854 out of 60,939 data elements (12.89%), including elements in 𝑅" and elements in
subsequent datasets as consequences of the reduction in 𝑅". Also, the interactions make the
SWMS not process 51GB out of 356GB (14.3% of data files processing reduction) and the
activities run faster, reducing in total 5.3 min out of 16.3 min (32% of total workflow
execution time reduction) in the 936-cores cluster. In particular, we see that the first user-
steered reduction 𝑞& represents 45% of the total amount of time saved, meaning that at the
beginning, the user can identify a large slice of the input data that would not lead to
interesting results, and we see that the last interaction	𝑞c did not considerably affect
execution. These results were obtained by querying the wf-Database at the end of
execution.
7.4 Analyzing the Monitoring Overhead

The SWMS we used to implement our solution implements the data-centric algebraic
approach and captures and manages domain dataflow, provenance, and execution data in a
fine-grain level during execution, enabling users to query these data online. These
functionalities add some overhead. Measuring this overhead is out of the scope of this
work, but some measurements are provided in [8,14,28].

However, in this section, we discuss the overhead caused by the solutions proposed in
this work. First, when a user-steered data reduction happens, there are data movements in
the wf-Database, i.e., some tasks and input data elements are updated or transferred from a
table to another (see Section 5.3). Time spent doing these updates in the database is
significantly lower than the overall workflow execution time. In fact, each data reduction

Figure 15. Total data elements, gigabytes, and time consumed by workflow activity running with no user steering.

Table 6. Summary of the user-steered reductions (𝒒𝟏–𝒒𝟓) with their user-defined slices.
Interaction Issued time (s) Slice query

𝑞& 190 wind_speed < 16

𝑞" 310 wind_speed < 25

𝑞m 370 wind_speed < 30

𝑞Ó 430 wind_speed < 34.5

𝑞c 520 wind_speed < 35.5

Figure 16. Reduced resources by activity caused by each user-steered reduction 𝒒𝒊.

Figure 17. Summary of all online user-steered reductions (𝒒𝟏–𝒒𝟓) in the workflow.

𝑞1	(Table 6) takes less than 1 second to finish, whereas the overall execution time of the
workflow, after the reductions, is 661 s. Thus, we consider those data movements’
overhead negligible. Second, our adaptive monitoring solution adds overheads and need to
be measured. Recall that every monitoring query 𝑚𝑞1 in {𝑄} is run by a thread at each 𝑑1
seconds. Depending on the number of threads (|{𝑄}|) and on the interval 𝑑1 there may be
too many concurrent accesses to the wf-Database, which may add overhead.

To measure this, we set up the Monitor module to run queries, which are variations of
the queries 𝑄1-𝑄7 (Table 1 and Table 2). For example, in 𝑄2, we vary the curvature value.
We also modify them to calculate only the results over the last 𝑑 seconds, at each 𝑑
seconds. To evaluate the overheads, we measure execution time without monitoring and
then with monitoring, but varying the number of queries |{𝑄}| and the interval 𝑑, which is
considered the same for all queries in {𝑄} in this experiment. The experiments were
repeated until the standard deviation of workflow elapsed times was less than 1%. The
results are the average of these times within the 1% margin. Figure 18 shows the results,
where the blue portion represents the workflow execution time when no monitoring is used
and the red portion represents the difference between the workflow execution time with and
without monitoring (i.e., the monitoring overhead).

Figure 18. Results of adaptive monitoring overhead.

From these results, we observe that when the interval 𝑑 is equal to 30s, the overhead is
negligible. For 1s interval, the overhead is higher when the number of monitoring threads is
also higher. This happens because three queries are executed in each time interval (see
Figure 9), for each thread. In the scenarios with 30 threads, there will be 120 queries in a
single time interval 𝑑. In that case, if 𝑑 is small (e.g., 𝑑 = 1), there are 120 queries being
executed per second, just for the monitoring. The database that is queried by the monitors is
also concurrently queried by the SWMS engine, thus adding higher overhead. However,
even in this specific scenario that shows higher overhead (|{𝑄}| = 30 and 𝑑 = 1), it is only
33 s or 3.19% higher than when no monitoring is used. Most of the real monitoring cases
do not need such frequent (every second) updates. If 30s is frequent enough for the user,
there might be no added overhead, like in this test case. We also evaluated the same
scenarios without storing monitoring results in the wf-Database, but rather appending in
CSV files, which is simpler. As Figure 18 shows, the results are nearly the same as in either
cases (saving in the wf-Database or saving in CSV files). This suggests storing all
monitoring results in the wf-Database at runtime, which enables users to submit powerful

queries as the monitoring results are generated, with all other provenance data. This would
not be possible with a solution that appends data to CSV.
8. Related Work

Considering our contributions, we discuss the SWMSs with respect to human
adaptation (especially data reduction), online provenance support, and monitoring features.

We proposed a data-centric data reduction approach, which requires modifications in
the workflow scheduling, since tasks associated to the removed input data should not be
executed. Consequently, they should not be a part of the workflow execution plan. To be
able to support online human adaptation, the SWMS needs to employ a data-centric
execution model. Although online human adaptation is the core of computational steering,
there are few SWMSs [29–31] that support it. These solutions have monitoring services
and are highly scalable, but do not allow for online data reduction as a mean to reduce
execution time. WorkWays [27] is a powerful science gateway that enables users to steer
and dynamically reduce data being processed online by dimension reduction or by reducing
the range of some parameters, sharing similar motivations to our work. It uses Nimrod/K as
its underlying parallel workflow engine, which is an extension of the Kepler workflow
system [32]. WorkWays presents several tools for user interaction contributing to human-
in-the-loop workflows, such as graphic user interfaces, data visualization, and
interoperability among others. However, WorkWays does not provide for provenance
representation and users may not define an online query involving simulation data,
execution data, metadata, and provenance, all related in a database, which limits the power
of online computational steering. For example, it prevents ad-hoc data analysis using both
domain and workflow execution data, such as those presented in Table 1 and Table 2,
which support the user in defining which slice of the dataset should be removed. In
contrast, d-Chiron uses an in-memory distributed database system to manage and relate
analytical data involved in the workflow execution. Moreover, the lack of provenance data
support in WorkWays, either online or post-mortem, does not support reproducibility and
prevents from registering user adaptations, missing opportunities to determine how specific
user interactions influenced workflow results. Another SWMS example is WINGS/Pegasus
[33], which focuses on assisting users in automatic data discovery. It helps generating and
executing multiple combinations of workflows based on user contraints, selecting
appropriate input data, and eliminating workflows that are not viable. However, it differs
from our solution in that it tries to explore multiple workflows until finding the most
suitable one, whereas we often model our experiments as one single scientific workflow to
be fine tuned as the results come out. Also, it does not employ a data-centric execution
model and does not aim at providing online computational steering support to actively
eliminate subsets of an input dataset, especially based on extensive ad-hoc intermediate
data analysis online. It has a static execution model, in the sense that the execution is
predefined, submitted to the HPC environment, and no online human adaptation is enabled.
Additionally, as WorkWays, provenance data is not collected online, nor is it integrated
with domain-specific and execution data for enhanced analysis. Likewise, solutions like
VisTrails and Kepler do not support data-centric online human adaptations.

Different from those SWMSs, Swift [15] has a data-centric execution model. It has a
parallel dataflow programming language that allows to write scripts for distributing tasks
across distributed computing resources. It runs multiple programs in parallel as soon as

their input data are available. It generates tasks at runtime and, consequently, it has
potential to enable online human-adaptation in the execution plan. However, to the best of
our knowledge, it does not support user-steered online input data reduction, nor does it
store provenance data related to domain data during workflow execution.

Moreover, while our data reduction techniques aim at avoiding data to be generated,
there is an intense area of data reduction research focused on reducing data already
generated by the simulation. For example, initiatives like CODAR [34] propose data
reduction strategies such as dimension reduction, outlier detection and compression also
based on online data analyses, which are complementary to our approach.

Although human adaptation is a desired feature that remains an open problem in
SWMSs, monitoring is widely supported in several existing SWMSs [4,35]. For example,
Pegasus [36] provides a framework to monitor workflow executions and has rich
capabilities for online performance monitoring, troubleshooting, and debugging. However,
in such solutions, it is not possible to monitor workflow execution data associating to
provenance and domain data, or run ad-hoc online data queries, as we do using data in the
wf-Database. To the best of our knowledge, no related work allows for online data
reduction based on a rich analytical support with adaptive monitoring and provenance
registration of human adaptations in HPC workflows. These features allow for performance
improvements of scientific workflows, while keeping data reduction consistency and
provenance queries that can show the history of user-steering actions and results.
9. Conclusion

This work contributes to putting the human in the loop of online scientific workflow
executions, especially when users can actively steer and reduce data to improve
performance. As a solution to the input data reduction problem, we make use of a data-
centric algebraic approach that organizes workflow data to be processed as sets of data
elements stored in a wf-Database, managed by an in-memory distributed database system at
runtime. We introduced 𝐶𝑢𝑡 as part of a new class of algebraic operators that only exist
because of dynamic human adaptation actions. This is the first work that introduces this
representation for dynamic workflow adaptations. 𝐶𝑢𝑡 is just one among many other user
adaptation possibilities that are yet to be explored. We developed a mechanism coupled to
d-Chiron, a distributed version of Chiron SWMS, to implement 𝐶𝑢𝑡 and maintain both data
and execution consistency after a reduction, and track provenance of user adaptations. A
major challenge to the problem of data reduction is to identify which subset of the data
should be removed. To address it, we proposed an adaptive monitoring approach that aids
users in analyzing partial result data at runtime. Based on the evaluation of input data
elements and its corresponding results, the user may find which subset of the input data is
not interesting for a particular execution, hence can be removed. The adaptive monitoring
allows users not only to follow the evolution of the workflow, but also to dynamically
adjust monitoring aspects during execution. We extended our previous workflow
provenance data diagram to be able to represent provenance of the online data reduction
actions by users and the monitoring results. Although we implemented our solution in d-
Chiron, other SWMS could be used if provenance, execution, and domain dataflow data are
managed in a database at runtime.

To validate our solution, we executed a data-intensive parameter sweep workflow based
on a real case study from oil and gas industry, running on a 936-cores cluster. A test case

demonstrated how the user can monitor the execution, dynamically adapt monitoring
settings, and remove uninteresting data to be processed, all during execution. Results for
this test case show that the user interactions reduced the execution time by 32% and total
amount of data processed by 14%. Although the test case was from the oil and gas domain,
other workflow applications could have been used, like the ones discussed in
bioinformatics and astronomy domains (Section 4.5). In SciPhy workflow, users frequently
run in cloud environments where the longer the workflow takes to execute, the more
expensive the final costs will be. Being able to dynamically identify certain combinations
of genomic sequences that will make the execution take undesirably longer and remove
such combinations online are very beneficial features to SciPhy’s users. Whereas in
Montage workflow, users can identify certain regions of the outer space that are unlikely to
contain celestial objects and remove delimited regions from the input dataset during
execution. Thus, as long as users can tell which slice is not interesting, our solution
supports dynamic reduction from the input data with no harm to the final results.

To the best of our knowledge, this is the first work that explores user-steered online
data reduction in scientific workflows steered by ad-hoc queries and adaptive monitoring,
while maintaining provenance of user interactions. The results motivate us to extend our
solution and explore different aspects that can be adapted based on dataflow online data
analysis. Our solution is currently dependent on the users’ knowledge to identify
correlations between input and output data to determine which subsets are uninteresting.
We plan to address in-situ data visualization using adaptive monitoring and interactive
queries results and develop recommendation models to suggest correlations based on the
history stored in the wf-Database to help identifying such correlations. Other future works
include: enabling users to set priorities to different slices of the data in a way that the
SWMS system will process critic slices before; exploring the potential of the solution in a
higher extent; and improving usability of the system by improving the system’s interfaces.
Acknowledgments

This work was partially funded by CNPq, FAPERJ and Inria (SciDISC project), EU H2020 Programme
and MCTI/RNP-Brazil (HPC4E grant no. 689772), and performed (for P. Valduriez) in the context of the
Computational Biology Institute (www.ibc-montpellier.fr). The experiments were carried out using Grid'5000
(https://www.grid5000.fr). The authors would like to thank Andres Codas, Juliana Jansen, and Heloisa
Candello from IBM Research for their help on how the system is being used by scientists for data reduction.

References
[1] I. Raicu, I.T. Foster, and Yong Zhao. Many-task computing for grids and supercomputers. MTAGS, 1–11, 2008.
[2] J. Dias, G. Guerra, F. Rochinha, A.L.G.A. Coutinho, P. Valduriez, and M. Mattoso. Data-centric iteration in dynamic

workflows. FGCS, 46(C):114–126, 2015.
[3] E. Deelman, D. Gannon, M. Shields, and I. Taylor. Workflows and e-Science: an overview of workflow system

features and capabilities. FGCS, 25(5):528–540, 2009.
[4] M. Mattoso, J. Dias, K.A.C.S. Ocaña, E. Ogasawara, F. Costa, F. Horta, V. Silva, and D. de Oliveira. Dynamic

steering of HPC scientific workflows: A survey. FGCS, 46:100–113, 2015.
[5] S.B. Davidson and J. Freire. Provenance and scientific workflows: challenges and opportunities. SIGMOD, 1345–

1350, 2008.
[6] F. Costa, V. Silva, D. de Oliveira, K. Ocaña, E. Ogasawara, J. Dias, and M. Mattoso. Capturing and querying

workflow runtime provenance with PROV: a practical approach. EDBT/ICDT Workshops, 282–289, 2013.
[7] V. Silva, D. de Oliveira, P. Valduriez, and M. Mattoso. Analyzing related raw data files through dataflows. CCPE,

28(8):2528–2545, 2015.
[8] R. Souza, V. Silva, Oliveira, Daniel, P. Valduriez, A.A.B. Lima, and M. Mattoso. Parallel execution of workflows

driven by a distributed database management system. Poster in IEEE/ACM Supercomputing, 1–3, 2015.
[9] R. Souza, V. Silva, A.L.G.A. Coutinho, P. Valduriez, and M. Mattoso. Online input data reduction in scientific

workflows. WORKS, 44–53, 2016.

[10] K.A.C.S. Ocaña, D. de Oliveira, E. Ogasawara, A.M.R. Dávila, A.A.B. Lima, and M. Mattoso. SciPhy: A Cloud-
Based Workflow for Phylogenetic Analysis of Drug Targets in Protozoan Genomes. Advances in Bioinformatics and
Computational Biology, 66–70, 2011.

[11] J.C. Jacob, D.S. Katz, G.B. Berriman, J.C. Good, A.C. Laity, E. Deelman, C. Kesselman, G. Singh, M.-H. Su, et al.
Montage: a grid portal and software toolkit for science-grade astronomical image mosaicking. International Journal of
Computational Science and Engineering (IJCSE), 4(2):73–87, 2009.

[12] Det Norse Veritas. Recommended practice: riser fatigue. DNV-RP-F204, 2010.
[13] V. Silva, J. Leite, J.J. Camata, D. de Oliveira, A.L.G.A. Coutinho, P. Valduriez, and M. Mattoso. Raw data queries

during data-intensive parallel workflow execution. FGCS, 75:402–422, 2017.
[14] E. Ogasawara, J. Dias, D. Oliveira, F. Porto, P. Valduriez, and M. Mattoso. An algebraic approach for data-centric

scientific workflows. PVLDB, 4(12):1328–1339, 2011.
[15] J.M. Wozniak, T.G. Armstrong, M. Wilde, D.S. Katz, E. Lusk, and I.T. Foster. Swift/T: large-scale application

composition via distributed-memory dataflow processing. IEEE/ACM Int. Symp. Cluster, Cloud and Grid Computing,
95–102, 2013.

[16] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I. Stoica. Spark: cluster computing with working sets.
Proceedings of the 2nd USENIX conference on Hot topics in cloud computing, 10–17, 2010.

[17] R. Ikeda, A. Das Sarma, and J. Widom. Logical provenance in data-oriented workflows?. Proceedings of the 2013
IEEE International Conference on Data Engineering (ICDE 2013), 877–888, 2013.

[18] D. De Oliveira, V. Silva, and M. Mattoso. How Much Domain Data Should Be in Provenance Databases?.
Proceeding of the 7th USENIX Workshop on the Theory and Practice of Provenance (TaPP 15), 2015.

[19] V. Silva, L. Neves, R. Souza, A. Coutinho, D. de Oliveira, and M. Mattoso. Integrating domain-data steering with
code-profiling tools to debug data-intensive workflows. WORKS, 2016.

[20] J. Dias, E. Ogasawara, D. Oliveira, F. Porto, A.L.G.A. Coutinho, and M. Mattoso. Supporting dynamic parameter
sweep in adaptive and user-steered workflow. WORKS, 31–36, 2011.

[21] R. F. da Silva, R. Filgueira, I. Pietri, M. Jiang, R. Sakellariou, and E. Deelman. A characterization of workflow
management systems for extreme-scale applications. FGCS, 75:228–238, 2017.

[22] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi. Characterizing and profiling scientific
workflows. FGCS, 29(3):682–692, 2013.

[23] GitHub. d-Chiron Repository. Available at: github.com/hpcdb/d-Chiron
[24] M.T. Özsu and P. Valduriez. Principles of distributed database systems. 3 ed. New York, Springer, 2011.
[25] L. Moreau and P. Missier. PROV-DM: the PROV data model. Available at: http://www.w3.org/TR/prov-dm

Accessed: 1 Aug 2016., 2013.
[26] M. Mattoso, K. Ocaña, F. Horta, J. Dias, E. Ogasawara, V. Silva, D. de Oliveira, F. Costa, and I. Araújo. User-

steering of HPC workflows: state-of-the-art and future directions. Proceedings of the 2nd ACM SIGMOD Workshop
on Scalable Workflow Execution Engines and Technologies (SWEET), 1–6, 2013.

[27] H.A. Nguyen, D. Abramson, T. Kiporous, A. Janke, and G. Galloway. WorkWays: interacting with scientific
workflows. Gateway Computing Environments Workshop, 21–24, 2014.

[28] M. Abouelhoda, S. Issa, and M. Ghanem. Tavaxy: Integrating Taverna and Galaxy workflows with cloud computing
support. BMC Bioinformatics, 13:77, 2012.

[29] R. Reuillon, M. Leclaire, and S. Rey-Coyrehourcq. OpenMOLE, a workflow engine specifically tailored for the
distributed exploration of simulation models. FGCS, 29(8):1981–1990, 2013.

[30] A. Jain, S.P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman, G. Petretto, G.-M. Rignanese, et al.
FireWorks: a dynamic workflow system designed for high-throughput applications. CCPE, 27(17):5037–5059, 2015.

[31] J. Kephart and R. Das. Achieving Self-Management via Utility Functions. IEEE Internet Computing, 11(1):40–48,
2007.

[32] D. Abramson, C. Enticott, and I. Altinas. Nimrod/K: Towards massively parallel dynamic grid workflows.
Supercomputing, 24:1–24:11, 2008.

[33] Y. Gil, V. Ratnakar, J. Kim, P. Gonzalez-Calero, P. Groth, J. Moody, and E. Deelman. Wings: intelligent workflow-
based design of computational experiments. IEEE Intellig. Sys., 26(1):62–72, 2011.

[34] I. Foster, M. Ainsworth, B. Allen, J. Bessac, F. Cappello, J.Y. Choi, E. Constantinescu, P.E. Davis, S. Di, et al.
Computing just what you need: online data analysis and reduction at extreme scales. Euro-Par, 3–19, 2017.

[35] A. Mandal, P. Ruth, I. Baldin, D. Krol, G. Juve, R. Mayani, R. Ferreira Da Silva, E. Deelman, J.S. Meredith, et al.
Toward an end-to-end framework for modeling, monitoring and anomaly detection for scientific workflows. IPDPSW,
1370–1379, 2016.

[36] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P.J. Maechling, R. Mayani, W. Chen, R. Ferreira da Silva, et
al. Pegasus, a workflow management system for science automation. FGCS, 46(C):17–35, 2015.

