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Abstract: Cloud and big data technologies are now converging to enable
organizations to outsource data in the cloud and get value from data through
big data analytics. Big data systems typically exploit computer clusters to gain
scalability and obtain a good cost-performance ratio. However, scheduling a
workload in a computer cluster remains a well-known open problem. Scheduling
methods are typically implemented in a scheduling framework and may have
different objectives. In this paper, we survey scheduling methods and frameworks
for big data systems, propose a taxonomy and analyze the features of the different
categories of scheduling frameworks. These frameworks have been designed
initially for the cloud (MapReduce) to process Web data. We examine sixteen
popular scheduling frameworks and discuss their features. Our study shows that
different frameworks are proposed for different big data systems, different scales
of computer clusters and different objectives. We propose the main dimensions for
workloads and metrics for benchmarks to evaluate these scheduling frameworks.

Finally, we analyze their limitations and propose new research directions.
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1 Introduction

Companies and research organizations capture more and more big data for their customers or
experiments. For instance, Facebook processed 4 petabytes of data per day in 2016 and IBM
estimates that 2.5 quintillion bytes of data were produced every day in 2017. To deal with
big data, computer clusters (clusters for short) composed of nodes, i.e. computer servers,
are widely used because they provide a good cost-performance ratio and the opportunity
to scale out. Thus, big data systems deployed in clusters must efficiently manage nodes to
store and process the data. A big data system is a data processing system, which can store
and process large amount of data, built upon multiple servers.

Cloud and big data technologies are now converging to promise cost-effective delivery
of big data services. The ability to produce high-value information and knowledge from big
data makes it critical for many applications such as decision support, forecasting, business
intelligence, research, and (data-intensive) science. Cloud computing, on the other hand,
encompasses on demand, reliable services provided over the Internet with easy access to
virtually infinite computing, storage and networking resources. Cloud computing provides
computing, storage and network resources through infrastructure (IaaS), platform (PaaS)
and software (SaaS) services, with the illusion that resources are unlimited [LPVM135].
Through simple Web interfaces, users can outsource complex tasks, such as data storage,
system administration, or application deployment, to very large data centers operated by
cloud providers. Although cloud and big data have different goals (big data aims at added
value and operational performance while cloud targets flexibility and reduced cost), they
can well help each other by (1) encouraging organizations to outsource more and more
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strategic internal data in the cloud and (2) get value out of it (for instance, by integrating
with external data) through big data analytics.

Web companies such as Facebook, Google, Microsoft, and Yahoo! as well as open source
software foundations such as Apache have designed big data frameworks, which can highly
parallelize data processing based on data partitioning, i.e. using data-based parallelism. For
example, MapReduce [DGO8|, Hadoop [Had], Cosmos [CILT08|| and Spark [ZCE™10]
are big data systems that can process huge amounts of Web data and run high numbers of
jobs, e.g. MapReduce jobs, DAG-based jobs and MPI jobs (large parallel jobs that use the
standard Message Passing Interface). These frameworks have been designed initially as a
paradigm for I/O intensive distributed computing on commodity hardware and some may
be used for the cloud environments. A big data system stores and processes huge amounts
of data by exploiting very big clusters. The data is typically stored in a distributed file
system!, such as GFS [GGLO03] or HDFS [Had], in a shared-nothing cluster. Shared-nothing
is a highly-scalable architecture with no sharing of either disk or memory among nodes
[LPVM15, [ValQ9]], i.e. each node is composed of processor, main memory and disk and
communicates with other nodes through the interconnection network [Val09]. The data is
partitioned into multiple chunks and each chunk is stored in a node. A job is a unit of work
submitted by users. Each job is composed of several stages linked by data dependencies. A
stage is a logical data processing unit, such as a Map or Reduce function in a MapReduce
job. Each stage consists of multiple tasks, i.e. the components of a job with corresponding
data chunks, and each task can be scheduled to a node to be executed. A task is the smallest
unit of computation, which can be restarted in case of failure to provide fault-tolerance. A
DAG-based job, also called a workflow, is composed of a set of stages and data dependencies
that can be described as a Directed Acyclic Graph (DAG) [LPVM15].

In order to efficiently process big data with high numbers of nodes, the resources should
be efficiently managed. The big data systems exploit scheduling frameworks, such as Yarn
[VMD™13], Omega [SKAEMW13] and Jockey [FBK™12], to schedule the workload to
nodes. A scheduling framework in a big data system is a structured software that provides
both extensible scheduling functionality (scheduling methods) and related functionalities
[FKHMOq], e.g. gathering the information on tasks, jobs and nodes and the interaction
among tasks, jobs and nodes, etc. A scheduling method, as implemented in a scheduling
framework, is the combination of policies, rules or algorithms to map the workload to the
nodes in order to achieve one ore several objectives. The workload can refer to jobs or tasks
according to different scheduling granularities. The scheduling problem is to decide how
to allocate nodes or slots of nodes to run the corresponding tasks based on some objective
function when given a workload of multiple jobs. This is an NP-hard problem [JBM™15].
A slot defines the time period, the amount of memory and the number of CPUs of a node
that can be used to perform execution. The objectives can be to reduce execution time or
the amounts of data transferred in the network, etc. The scheduling frameworks can be used
within a cloud infrastructure to manage the physical computers or within a big data system
build upon virtual machines (VMs) provided by the cloud. In the latter case, the scheduling
frameworks need to handle specific aspects of the cloud environment, such as elasticity, by
managing VMs that are dynamically added or removed.

Some scheduling methods are useful for big data systems [GPDCI15], such as data
location based scheduling [ZBS™ 10, capacity scheduling [WCZI3], etc. Most of them
are designed for MapReduce jobs, which schedule Map or Reduce tasks to nodes. But
they have many drawbacks. First, they do not consider other types of jobs, such as DAG-
based jobs. Second, they cannot efficiently manage high numbers of nodes [ZLT™14] and
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tasks. Third, they lack support for some user-defined objectives, such as job completion
deadline. Some other scheduling methods are used in scheduling frameworks, such as
job isolation scheduling in Heracles [LCG™15] and the scheduling method based on
task requirements in DAGPS [GKR™16]|. Scheduling frameworks can implement different
scheduling methods for diverse objectives. Scheduling frameworks can be categorized
according to different elements, such as granularity, architecture, execution time, adaptation
to the execution environment, etc. Both makespan and response time represent execution
time while makespan is used for batch jobs and response time is used for real-time requests
or streaming data processing [FRO§]]. Although some scheduling frameworks attempt to
achieve fairness among different jobs, they use different techniques at the job and task levels.
If fairness among different jobs is not obtained, then there may be starvation, i.e. some jobs
cannot get executed for a long time while the nodes are busy running other long-running
jobs. The objectives of scheduling frameworks can depend on the user’s perspective or the
service provider’s perspective.

Scheduling frameworks have been designed for different big data systems. They are
targeted at different objectives and scales of clusters with diverse optimization methods.
In this paper, we survey sixteen popular scheduling frameworks, developed by companies
or communities, which we classify in four types: resource managers, Spark schedulers,
Microsoft Cosmos [CJL™08]] scheduler and YARN-Based scheduler.

Some benchmarks have been proposed to evaluate scheduling frameworks in big data
systems. They typically focus on execution time, throughput of jobs [AMP] or tasks and the
financial cost and energy consumption to execute jobs [TPCb]. The throughput represents
the number of jobs or tasks that can be processed by the big data system within a time unit.
In order to have a comprehensive comparison of scheduling frameworks in big data systems,
some other metrics and diverse types of workloads should be examined. For instance, the
mixed workloads of small jobs and long running jobs should be considered. Some other
important metrics can be the amount of data transferred over the network, the utilization of
nodes, the failures of jobs or tasks, etc.

Sakr et al. [SLBA11] give a survey of scheduling methods for data-intensive applications
in cloud computing environments. However, they do not focus on big data systems. Several
surveys have also been proposed [GPDCI15, RL11, [YS11) [SKR15, IGPDCI15], but they
generally focus on the scheduling methods without considering the scheduling architectures,
different types of jobs or multiple objectives used in scheduling frameworks. Masdari et
al. [MVSAT6] survey scheduling methods for DAG jobs. However, they focus on task
scheduling and do not consider job scheduling. The survey does not consider different
scheduling architectures, different types of jobs either. The scheduling process is also related
to some other topics that are not addressed, such as permanent service scheduling and
network scheduling, where big amounts of data can be processed or transferred. Permanent
service scheduling represents the scheduling process for online services, such as Kubernetes
[Ren13]], Amazon Lambda [KMM™ 15| and the Azure function scheduler. The scheduling
problem in the network is how to map input ports to output ports in order to speed up
the switching networks [KKBM13| [PBL™"16]]. In this paper, we focus on the scheduling
frameworks, including the scheduling methods, in big data systems and propose a taxonomy
of the existing frameworks and compare the analysis of the features of different categories.
The main contributions of this paper are as follows:

1. We propose a taxonomy of scheduling frameworks.

2. We analyze the features of different scheduling methods.
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3. We analyze and compare different scheduling frameworks.

4. We propose metrics for benchmarks to evaluate scheduling frameworks in big data
systems.

5. Finally, we propose new research directions.

The paper is organized as follows. Section2|describes the execution process in a big data
system. Section[3|proposes a taxonomy of scheduling frameworks and analyzes the features
of each category. Section [ introduces and compares 16 existing scheduling frameworks.
Section[S]proposes workload dimensions and metrics for benchmarks to evaluate scheduling
frameworks in big data systems. Section [f] discusses the limitations of current scheduling
frameworks and proposes new directions of research on scheduling in big data systems.
Finally, Section [7]summarizes the main findings of this study.

2 Execution in a Big Data System

In this section, we present the execution process, which is composed of job execution and
task execution, in a big data system.

2.1 Job Execution

The job execution process is generally composed of four steps [JICM™16, ICDD™ 14!
FBK™12], i.e. job estimation, resource provisioning (scheduling), job execution and
monitoring and resource release.

In the job estimation step, the execution time of a job can be estimated based on
a predefined function, according to Amdahl's Law [SCI0], by analyzing the historical
statistical parameters of previous execution of jobs or using machine learning algorithms
[ICM™16]. A machine learning algorithm learns from experience F with respect to some
class of tasks 7" and performance measure P while its performance at tasks in T", as measured
by P, improves with experience F [Mit97]]. In addition, a critical path method can be used
to estimate the execution time of jobs [ADI12]. A critical path is a path composed of a set
of stages of a job with the longest average execution time, which is equal to the execution
time of a job.

With the estimated execution time and specific numbers of nodes, the system can perform
resource provisioning, which is the scheduling process at the job level, i.e. allocating nodes
to the job to perform the execution. In order to meet the deadline requirement of jobs, an
over-provisioning method is used at the beginning of the job execution. Over-provisioning
allocates more nodes to the job than required and considers the failures during the execution
of different tasks. Some jobs, such as MPI jobs, may need a gang of nodes. The execution of
such jobs can start only when all the nodes are available. Thus, the system needs to schedule
guaranteed nodes to these jobs [CDD™ 14]].

With the allocated nodes, a job can start its execution. Some scheduling frameworks
may omit the previous two steps and directly use all the available nodes to execute the
job. During execution, big data systems should monitor the execution and guarantee fault-
tolerance, i.e. rerun the failed jobs. After execution, the allocated nodes are released to be
used by other jobs.
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2.2 Task Execution

The task execution process generally contains the following steps [BEL™ 14, GAK™14]:
constructing a ready list, task sort, node sort, scheduling, task execution and failure recovery,
task completion and job completion. At the beginning of job execution, the corresponding
tasks are generated. When the input data of tasks are ready, the tasks are put into a ready
list. Then, the tasks are queued and then sorted according to parameters, such as waited
time [GAK™14]. In addition, the nodes are also sorted and can be sampled [DSKT3]|. After
sorting the tasks and nodes, the tasks are scheduled to the nodes according to different
scheduling methods. Note that a task can be scheduled to a slot of a node [VMD™ 13]]. The
execution time of a task, which is used to make smart scheduling decisions, can be estimated
by sampling the execution time of previously executed tasks. Then, the task is executed in
the scheduled node. During execution, some tasks may be killed [IPC™09] in order to make
room for the tasks of other jobs to achieve job fairness. In addition, the execution of some
tasks may fail. The failed or killed tasks will generally be put into the ready list or the queue
to be re-executed in order to achieve fault-tolerance. Finally, after the execution of all the
tasks, the corresponding jobs finish their execution.

3 Taxonomy of Scheduling Frameworks

In big data systems, the problem of scheduling the workload in a cluster remains a well-
known NP-hard problem. In this section, we first present scheduling methods. Then,
we propose a taxonomy of scheduling frameworks and analyze the features of different
categories.

3.1 Scheduling Methods

Different scheduling methods can be implemented in scheduling frameworks. In this section,
we present eight important scheduling methods.

The most basic scheduling method used in big data systems is Data Location Based
(DLB). In this method, the jobs are scheduled in FIFO [ZBST10] order, i.e. the later
submitted jobs have to wait until the end of the execution of earlier jobs. When a node is
free, the tasks of the early submitted jobs are scheduled to the nodes where the input data
of the tasks are stored.

In order to schedule tasks to where their input data is stored, a matchmaking algorithm
[HLSTI] or a delay algorithm [ZBS™10] can be used. The matchmaking algorithm gives
every node a fair chance to grab the local tasks before other tasks are scheduled to them.
The input data of a local task is stored at the corresponding node. The delay algorithm
schedules tasks to a node, where its input data is located. If not successful, the scheduling
method delays the job execution and searches for a task from succeeding jobs. However,
if a job has waited for a long time, then it is executed no matter whether the input data is
located at the nodes or not in order to avoid starvation.

The DLB method can reduce the time to transfer data and tries to achieve fairness by
data locality, but if the data is not evenly distributed in the nodes, the load of each node
may not be balanced and the execution time may be long. However, both the matchmaking
and delay algorithms may suffer from hot data spots, i.e. some nodes are filled with tasks
because of the stored data in the nodes while others remain idle. If most data is stored at
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some nodes, the tasks are scheduled to these nodes. Thus, the data generated by the tasks
are always stored in the few nodes. As a result, more and more tasks are scheduled at these
nodes and more data is stored in the same nodes, which become hot, while the other nodes
remain idle. In this situation, the throughput is low and the execution time of a job is long.

The Fair Scheduling (FS) method from Facebook [GPDC15]] assigns nodes to jobs such
that all jobs have an equal share of nodes. This method can ensure that each job can get its
nodes to execute its tasks so that there is no starvation of short running jobs. However, this
method may assign small numbers of nodes to a long running job, which may take much
time to complete execution.

The Capacity Scheduling (CS) method from Yahoo! [WCZ13|] allocates a guaranteed
capacity of nodes to each user. The jobs of each user are scheduled in FIFO to the nodes
without exceeding the guaranteed capacity of each user. However, this method does not
have a global view of all the submitted jobs and cannot generate an optimal or near-optimal
scheduling plan.

DLB, FS and CS are simple to implement, but they have several limitations. First,
they are YARN-based and have poor performance on complex workloads, such as DAG-
based jobs, or workloads with high velocity, such as real-time requests and stream data
processing. Second, they do not support important user-defined objectives, such as Service
Level Agreement (SLA), deadline and stable services. Third, they have no support for very
big clusters, e.g. more than dozens of thousands of nodes [ZLT ™ 14]. Some other scheduling
methods are designed for scheduling frameworks.

The Function Based (FB) method schedules jobs to nodes based on a predefined function.
Based on the predefined function and the parameters of nodes, the jobs are scheduled to
the nodes in order to maximize their utilization or to balance the load of a cluster. The
Job Isolation (JI) method schedules jobs to different parts of the cluster or isolates the
usage of CPU, memory or network resources of the shared nodes for the execution of
different types of jobs in order to achieve different user-defined objectives, e.g. deadline.
This method can satisfy different requirements of different types of jobs. The method to
schedule jobs to available nodes (JN) chooses a job based on the job priority and waited
time. It is different from FB since it chooses jobs for nodes while FB chooses nodes for jobs.
The Task Requirement (TR) method chooses nodes for tasks based on the requirements
of tasks, e.g. CPU frequency, memory, etc. A weighted score for different requirements is
calculated for each node and the node with the highest score is chosen. The Node Quality
(NQ) method schedules a task to the node with the best quality, which is evaluated based
on data location, minimum finish time, response time, etc. The minimum finish time is the
time when the current tasks are executed. This time can be calculated based on the tasks to
execute in the queue of that node and the time to calculate the current task.

3.2 Taxonomy of Scheduling Frameworks

The scheduling frameworks can be classified based on different features. In this section,
we propose a taxonomy of scheduling frameworks and analyze the features of different
categories. The taxonomy is shown in Figure[T}

3.2.1 Granularity

During the scheduling process, the granularity can be job or task. If the granularity is job,
the jobs submitted by users will be scheduled to one or multiple nodes. If the granularity is
task, each task of a job will be scheduled to a node. Some scheduling frameworks schedule
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Figure 1: A Taxonomy of Scheduling frameworks.

both the jobs and tasks at the same time, which is called hybrid scheduling. If the submitted
jobs have special requirements of nodes, the granularity should be job or hybrid [CDD™ 14]].

In addition, the tasks of jobs can be scheduled to nodes in order to achieve load balancing
of all the nodes or to fill the chosen nodes tightly [CDD™ 14]. The load balancing based
method schedules the workload to each node so that the workload at each node is balanced.
When the jobs are of the same type, and no job needs a gang of nodes, load balancing based
methods can be used. However, this type of methods may occupy many nodes in order to
execute small jobs. The method with the objective of filling the chosen nodes can make
the utilization of selected nodes very high while the number of the occupied nodes remains
small. This way, the remaining nodes can be scheduled to other jobs. When the jobs need
a gang of nodes, the scheduling frameworks should fill the selected nodes first.

3.2.2 Execution Time

We distinguish the scheduling frameworks according to the requirements of execution time.
We classify the jobs into three categories, i.e. batch job, real-time request and stream data
processing. The execution time of batch jobs can be up to several hours or days while the
response time of real-time requests should be a few seconds or milliseconds. The difference
between batch jobs and real-time request is the time when the data is processed [Bar13]].
If the data is stored in the system and processed at some points in the future, the jobs are
batch jobs. If the data is processed at the moment when the data arrive, the jobs are real-time
requests. The response time of stream data processing can be several milliseconds or less
than one millisecond [CFO2]|. Stream data processing is also real-time but different since it
has continuous incoming data and the process generally exploits a window to capture the
data to process [OV11]. For batch jobs, the corresponding scheduling frameworks can take
much time to generate better scheduling plans so that the total execution time is reduced.
A scheduling plan defines the matching relationship between each task or job and nodes.
However, the scheduling frameworks of real-time requests or stream data processing should
generate scheduling plans within little time since the response time should be very short.
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Scheduling frameworks generally take all the nodes as candidates to schedule, but
some scheduling frameworks for real-time requests or stream data processing [OWZS13]]
randomly choose several nodes from all the nodes and schedule the tasks or jobs to one of
the chosen nodes, using sampling. The sampling method can reduce the time to generate
scheduling plans, i.e. scheduling time, which is critical to the real-time requests or stream
data processing. However, sampling methods may yield sub-optimal scheduling plans. As a
result, a trade-off between the scheduling time and the quality of the scheduling plans should
be made by the scheduling framework by analyzing statistical information of previous
executions [DSK15].

3.2.3 Scheduling Timing

According to the timing at which scheduling is done, we can distinguish between static
and dynamic scheduling. Static scheduling generates scheduling plans before the execution
of jobs and the scheduling plans are strictly abided by the execution module during the
execution. Because it is before execution, static scheduling yields little overhead at runtime.
It is efficient if the system can accurately predict the workload of tasks or jobs, and
when the execution environment varies little during the execution, and the system has
enough information about the computing and storage capabilities of the corresponding
nodes. However, when the execution environment experiences dynamical changes, it is very
difficult to achieve load balancing among available nodes with static scheduling.

Dynamic scheduling generates scheduling plans during the execution with the real-time
information on the execution environment. This kind of scheduling framework is appropriate
for environments where the workload is difficult to estimate, or the capabilities of the
nodes vary much during execution. Dynamic scheduling can achieve good load balancing
but may increase execution time because of the overhead of doing scheduling. In order to
dynamically generate scheduling plans, the frameworks have knowledge of the workload
before execution, i.e. the execution time limit of jobs [FBK™12], or they may dynamically
get the knowledge about the execution environment, e.g. the status of nodes [RKK™16]] and
data location [ZBST10].

During dynamic scheduling, the scheduling framework needs to provision nodes to
jobs. Most frameworks believe in the users' requests and schedule the required number of
nodes to the submitted jobs, which is called static provisioning. However, the users may
not have enough knowledge of the execution environments or the execution status of the
submitted jobs. They may ask for more or less nodes than the real needs of the submitted
jobs. Thus, the static provisioning method may incur SLA failures or low efficiency of the
scheduled nodes. Some scheduling frameworks estimate the workload of submitted jobs
and dynamically provision a proper number of nodes using heuristics or by analyzing the
historical execution performance [JCM™ 16], which is called dynamic provisioning.

Finally, the nodes may be heterogeneous, i.e. with differences in CPU, memory or hard
disk [RTG"12]. Some scheduling frameworks [IPCT09, [(OWZS13] treat all the nodes as
though they have the same capacity while some other scheduling frameworks [HKZ 11!
LCG™15, [ZLT™14] take different capacities of each node into consideration to generate
better scheduling plans. The scheduling frameworks generally exploit state information to
know if nodes have free resources, e.g. CPU, memory, or not [VMD™13].
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3.2.4 Architecture

The architecture of scheduling frameworks can be centralized, centralized two-level,
distributed two-level or shared-state (see Figure [Z). In the centralized architecture, a
scheduler, the module that generates scheduling plans, schedules tasks or jobs to nodes. The
centralized scheduler has a global view of the whole system and can generate optimal or
near-optimal scheduling plans. However, the centralized architecture has poor throughput
and scalability since the scheduler may become a single point of congestion in the system. In
the two-level architecture, a coordinator module allocates nodes to distributed schedulers.
Each scheduler can schedule the tasks of each job to its allocated nodes [DSK15]. Since the
coordinator module and the distributed schedulers do not have a global view of the whole
system, the generated scheduling plans are suboptimal [SKAEMW13]. In the two-level
architecture, the coordinator module can be centralized (centralized two-level) or distributed
(distributed two-level). The centralized two-level architecture has one coordinator while
the distributed two-level architecture has a centralized coordinator and multiple distributed
coordinators to accelerate the process of allocating nodes to distributed schedulers. In
the distributed two-level architecture, the centralized coordinator assigns a coordinator to
allocate nodes to a job. After allocating nodes to a job by the coordinator, a scheduler
is created to schedule the tasks of the jobs to the allocated nodes. In the shared-state
architecture, there are distributed schedulers to schedule the tasks of different jobs to nodes.
Each scheduler has full access to all nodes and can get all the status of the nodes. There is no
coordinator but a master copy of the status of the nodes is maintained. When one scheduler
updates the master copy for one node, the other schedulers cannot update the status of the
node until the node is released by the occupied task. Since all the schedulers have a global
view of the nodes, they can generate optimal scheduling plans for its tasks. But since each
scheduler does not consider the tasks scheduled by other schedulers, the final scheduling
plans are not optimal in terms of all tasks.

Although only the centralized architecture can generate an optimal or near-optimal
scheduling plan, it takes time to schedule all the tasks of different jobs to all the nodes,
i.e. the latency to generate scheduling plans is high and scalability is poor. In addition,
when the jobs are executed within different frameworks, it is complicated and requires
expensive refactoring to use a centralized architecture [HKZ™ 1 1]. Therefore, the centralized
architecture is a good option only if: the jobs need the same big data system to execute,
the average execution time of tasks is not short and the number of nodes is small. If the
jobs need different big data systems to execute, two-level scheduling can be used. YARN
is a scheduling framework with a two-level architecture and the frameworks designed
based on YARN also exploit the two-level architecture. However, the two-level scheduling
architecture has limited parallelism and restricted visibility of nodes [SKAEMW13]].
In order to achieve not only high scalability and high throughput of tasks but also
optimal scheduling plans, the shared-state architecture should be exploited. The centralized
scheduling architecture is the simplest, since it just requires a centralized scheduler for
all the tasks or jobs. Two-level scheduling is somehow more complex to implement, since
there should be communication between the centralized coordinator (centralized two-level)
or coordinators (distributed two-level) and the distributed schedulers besides the normal
scheduling process. Shared-state has the most complex implementation, since it needs to
maintain a master copy of the status of all the nodes and each scheduler has to compete to
get nodes.
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3.2.5 Objectives

There are two kinds of objectives, i.e. the user’s perspective and the service provider’s
perspective. From the user’s perspective, the SLA should be achieved to fulfill the users’
requirements, e.g. reducing execution time [GKR™16]], executing jobs within the deadline
limit [CDD™14], maintaining the stable service and achieving fairness among different
jobs. Stable service means that the execution time should be stable so that the users can
easily predict the execution time of a job. From the service provider’s perspective, the
objective can be to reduce computation cost and improve the throughput of jobs [[PCT09]
or the utilization of nodes [LCG™15,|(GKR™16]. The computing cost can be data transfer
[IPCT09], which uses the network resources, or power consumption.

The scheduling frameworks should achieve fairness among different jobs in order
to solve the starvation problem, which yields bad user experience. Some scheduling
frameworks may have potential starvation problems [FBK™ 12]] while others achieve fairness
at the job and task levels. At the job level, the system can block long running jobs and
schedule the released nodes to the jobs that have waited for a long time. Blocking the jobs
can lead to bigger memory or storage occupation to store the running status of the jobs.
The system can also reduce allocated nodes for long-running jobs [OWZS13, IGKR™"16].
In addition, it can allocate user quotas, i.e. a number of nodes for each user. At the task
level, the system can attribute high priority to the tasks that have waited for a long time
[RKK™ 16| or kill the long running tasks [LCG™ 15, IPCT09, KRC™15, [HKZ"11]]. The
tasks with high priority will be executed first. Killing the running tasks may lead to a
waste of completed computations, which may reduce throughput. Since some scheduling
frameworks [GAK™14] are designed and used for the jobs or tasks of limited workload,
they may not have starvation problems.

The scheduling frameworks may have multiple objectives [CDD™14], e.g. reducing
computing cost, maximizing node utilization, achieving job fairness, reducing execution
time, etc. Most of the existing frameworks share the objectives of reducing execution
time by maximizing the utilization of nodes and achieving load balancing among nodes
while maximizing parallelism. However, the high utilization of nodes may lead to hardware
failures, which may increase the total execution time. Thus, some objectives cannot be
all achieved at the same time. For instance, if the objective of reducing execution time of
a job is achieved, some other jobs may need to wait much time to get nodes to perform
execution, which reduces job fairness. In addition, in some situations, the service provider
tries to reduce both execution time and energy consumption. However, in order to reduce
execution time, more nodes are used to achieve high parallelism, which may lead to higher
energy consumption. Furthermore, some users want to achieve short execution time and
stable service. Since the workloads among nodes vary a lot, it is easy to ensure the stable
services with longer execution time while it is difficult to offer stable services with very short
execution time. For the scheduling problems with conflicting objectives, we can use two
methods. The first method [LPV ' 16] is to use a weighted function to calculate the overall
cost with consideration of all objectives. Then, the tasks can be scheduled to nodes, so that
there is the highest reduction of the weighted function. The second method is to generate a
Pareto front, which is composed of a set of Pareto optimal scheduling plans [ZLT ™ 14]. Each
Pareto optimal scheduling plan is better than the other solutions with respect to at least one
objective while it is no worse than other scheduling plans in terms of remaining objectives.
The Pareto optimal solutions can be achieved by tuning the scheduling plans in order to
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improve the performance of some objectives while maintaining the good performance of
other objectives.

4 Analysis of Scheduling Frameworks

In this section, we classify and compare sixteen popular scheduling frameworks based on
our taxonomy. We end the section with some lessons learnt.

4.1 Classification

The means features of the sixteen popular scheduling frameworks are shown in Tables [T]
and

Table 1 Main Features of Scheduling Frameworks. “Hybrid” in granularity means that both jobs
and tasks are scheduled while it represents that both static and dynamic methods are used in adapta-
tion. “Kill” represents that long running tasks or jobs are killed in order to achieve fairness.

| Framework | Granularity | Adaptation | Fairness | Architecture |
YARN Hybrid Dynamic Kill Centralized two
Tetris Task Dynamic No starvation Centralized two
Corral Hybrid Hybrid No starvation Centralized two
Omega Task Dynamic Kill Shared-state
Heracles Task Dynamic Kill Centralized
Jockey Job Dynamic | Potential starvation Centralized
Apollo Task Dynamic | Potential starvation Shared-state
Quincy Hybrid Dynamic Kill Centralized
DAGPS Task Dynamic Reduce nodes Distributed two
Mercury Hybrid Dynamic Kill Distributed two
Rayon Job Hybrid User quota Centralized two
Sparrow Task Dynamic Reduce nodes Shared-state
Mesos Task Dynamic Kill Centralized two
Tarcil Task Dynamic Task priority Shared-state
Fuxi Job Dynamic User quota Centralized two
. . Centralized two
Yaq Task Dynamic Task priority Distributed two

Table|I| shows four main features, i.e. granularity, adaptation, fairness and architecture,
of the sixteen scheduling frameworks. The granularity of most scheduling frameworks is task
while some scheduling frameworks (Quincy [IPC™09], Jockey, Rayon [CDD™ 14| and Fuxi
[ZLT™14]) schedule jobs only. Three scheduling frameworks (YARN, Corral [JBM™15]]
and Mercury [KRC™135]) schedule both jobs and tasks. Almost all scheduling frameworks
use dynamic scheduling while two scheduling frameworks (Corral and Rayon) exploit a
hybrid method, i.e. the combination of static and dynamic scheduling. The scheduling
frameworks take advantage of different methods to achieve fairness among different jobs.
Most scheduling frameworks use the centralized two-level architecture. Heracles, Jockey
and Quincy exploit the centralized architecture. Yaq [RKK™16] has two implementations,
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i.e. Yaq-c with the centralized two-level architecture and Yaq-d with the distributed two-
level architecture. Mercury also exploits the distributed two-level architecture. Omega,
Apollo [BEL™14], DAGPS [GKR™16], Sparrow [OWZST3|| and Tarcil [DSK13] exploit
the shared-state architecture.

Table 2 Main Features of Scheduling Frameworks (cont.). The heterogeneous column indicate-
s whether the scheduling method supports or not the different capacities of different nodes. “-” indic-
ates that different scheduling methods can be implemented in the scheduling framework. “* ” indica-
tes the default scheduling method (other scheduling methods can also be implemented in the schedu-
ling framework).

‘ Framework ‘ Objectives ‘ Heterogeneous ‘ Scheduling method ‘
YARN Throughput Support DLB*
Tetris Exec. time Support TR
Omega Resource utilization Support -
Heracles | Resource utilization Support I
Jockey Deadline Support FB
Mercury Throughput Support NQ
Sparrow Exec. time Not NQ
Mesos Exec. time Support FS
Tarcil Throughput Not NQ
Yaq Exec. time Support NQ
Exec. time
Corral data transfer Support JI
Throughput
Apollo Resource utilization Support NQ
. Throughput
Quincy Data transfer Not DLB or FS or CS
Exec. time
DAGPS Resource utilization Support R
SLA & deadline
Rayon Resource utilization Support FB and C5
. Throughput
Fuxi Resource utilization Support IN'and CS

Table |Z| shows the other main features, i.e. objectives, heterogeneous and scheduling
method, of the sixteen scheduling frameworks. Different scheduling frameworks have
different objectives while all scheduling frameworks share the objective of reducing
execution time. Almost all the scheduling frameworks consider different capacities of nodes
except Quincy, Sparrow and Tarcil. Most frameworks implement one scheduling method
while different scheduling methods can be implemented in YARN and Omega. There are
three scheduling methods that can be selected in Quincy while Rayon and Fuxi combine two
scheduling methods to schedule jobs. When there are multiple scheduling methods for the
scheduling process, machine learning algorithms can be used [MSJ14] to choose a proper
one.
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4.2 Comparisons

All the scheduling frameworks are designed to be used in big data systems, but why are there
so many scheduling frameworks? The first reason is that different scheduling frameworks
are used for different requirements of execution time. For instance, full scheduling is more
appropriate for batch jobs while sampling scheduling is exploited for real-time requests
or stream data processing, e.g. Sparrow and Tarcil. The second reason is the scheduling
layer. For instance, some scheduling frameworks (Omega, Heracles, Mesos [HKZ*11]]
and Fuxi) are resource managers, i.e. they schedule all the jobs of different applications,
e.g. MPI jobs and MapReduce jobs, while directly interacting with nodes. This kind of
scheduling frameworks is the base of all the other execution systems, e.g. file system
or MapReduce system. Some scheduling frameworks are based on existing scheduling
frameworks or big data systems, e.g. YARN, such as Tetris [GAK™ 14|, Corral, Quincy (for
Dryad [IBY"07]), Apollo and Jockey (for Cosmos [CJL."08]), DAGPS, Mercury, Rayon,
Yaq and Sparrow (implemented with Spark). Dryad and Cosmos have been developed by
Microsoft. The third reason is that different companies or organizations propose their own
scheduling frameworks, which are adapted to their own big data systems. For instance,
Omega and Heracles have been designed by Google; Sparrow, Mesos and Tarcil by
universities; Fuxi has been designed for the cloud infrastructure of Alibaba [ZLT™14] and
others within Microsoft. Most of the scheduling frameworks are adapted to YARN jobs
but Jockey and Apollo are adapted to Cosmos jobs and Quincy is adapted to DAG-based
jobs. Finally, different scheduling frameworks have optimizations for different objectives.
For instance, each of the YARN-based frameworks (Rayon, Tetris, Corral, Mercury, Yaq,
DAGPS) has its own objectives. We discuss the scheduling frameworks according to four
types: resource managers, Spark schedulers, Microsoft Cosmos schedulers, YARN-Based
schedulers. Resource managers can schedule the jobs or tasks of different types. Spark
schedulers and Microsoft Cosmos schedulers are designed for their own systems, i.e. Spark
or Cosmos. In addition, the YARN-Based schedulers are designed on top of YARN and
they are only compatible with the systems that can exploit YARN to schedule jobs or tasks.

Resource managers include four scheduling frameworks. Mesos was designed for
Hadoop and MPI jobs in 2011 and Spark can run on top of Mesos. Fuxi was designed for
Apsara Cloud Platform, which is a distributed computing system, in 2014. The scale of
Mesos is fifty thousand emulated nodes, while Fuxi is used in a production environment
with up to hundreds of thousands of nodes. Designed by Google, Omega was proposed
in 2013 and Heracles was proposed in 2015. Mesos, Fuxi and Omega can achieve good
performance to execute heterogeneous jobs while they cannot guarantee the SLA. Heracles
can achieve SLA with high utilization of nodes by proposing hardware isolation.

There are two scheduling frameworks for Spark, i.e. Sparrow and Tarcil. These two
scheduling frameworks can be used for real-time requests or stream data processing.
Sparrow was proposed in 2013. It can reduce the scheduling time by sampling the nodes.
However, it may produce low quality scheduling plans since it ignores other non-sampled
nodes and the interference of different tasks. Tarcil was proposed in 2015. Tarcil also exploits
sampling to accelerate the scheduling process, taking advantage of statistical information
and adjusting the dynamic sampling size to achieve better scheduling quality.

At Microsoft, Cosmos used to exploit Dryad to perform job execution before using
Hadoop [LJZ17]. There are three frameworks designed for Cosmos-based jobs, e.g. Quincy
(2009), Jockey (2012) and Apollo (2014). The three frameworks are designed for different
scales of clusters. Quincy has been evaluated with a few hundred nodes by the designers,
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Figure 3: YARN-Based Frameworks.

Jockey with several thousands of nodes and Apollo with tens of thousands of nodes.
Compared with Quincy and Apollo, Jockey can achieve SLA of jobs by estimating the
execution time of jobs and dynamic provisioning for jobs.

Microsoft has also developed several scheduling frameworks based on YARN, e.g.
Rayon (2014), Tetris (2014), Corral (2015), Mercury (2015), Yaq (2016) and DAGPS
(2016), as shown in Figure [3] The objectives of Rayon, Tetris and Corral are different.
Rayon focuses on SLA and best-effort jobs based on a reservation-based method while Tetris
reduces the execution time of jobs by matching tasks to nodes based on the requirements of
the tasks. The reservation-based method schedules the nodes according to the reservation
made by users. Corral addresses the problem of largely transferred data during execution by
jointly scheduling data and tasks. It schedules the tasks of the same jobs in the same parts
of nodes, which reduces the execution time of jobs and the amounts of data transferred in
the network. Mercury is an extension of YARN, which exploits the distributed two-level
architecture, to achieve scalable scheduling with high throughput. Yaq reduces the execution
time of jobs by managing tasks queues. Yaq has a centralized implementation (Yaq-c)
based on YARN and a distributed implementation (Yaq-d) based on Mercury. DAGPS is an
optimized version of Tetris for DAG-based jobs, which considers the data dependencies of
tasks.

4.3 Lessons learnt

1. The number of nodes is increasing. The number of nodes in a data center can range
from several hundreds to hundreds of thousands. Different scheduling frameworks are
proposed for different numbers of nodes. In the future, the number of nodes will be
continuously increasing and new frameworks will be needed to address high numbers
of nodes. Thus, a distributed architecture and sampling methods should be used in
order to address such scales.

2. SLA and some other user-defined objectives should be supported. In order to offer
stable services and good user experience, SLA or user-defined objectives should be
supported by the scheduling frameworks. In addition, dynamic scheduling and the
isolation of the execution of jobs should be exploited to address the jobs with different
deadline requirements of different types of jobs.
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3. As the scale of clusters gets higher, the data transferred in the network should not be
ignored. The combination of data placement and task scheduling should be exploited
in big data systems. In addition, the network topology should be considered during
execution so that the time to transfer data is reduced in very big clusters.

5 Benchmarks for Scheduling Methods

Standard benchmarks can be used to evaluate scheduling frameworks in big data systems,
e.g. TPC-H [TPCb] for the evaluation of Tarcil [DSKI15]]. A large-scale data analysis
benchmark is also proposed in [PPRT09]]. However, diverse workloads should be used and
different metrics should be measured to evaluate scheduling frameworks in big data systems.
In this section, we present the different dimensions for workloads and propose metrics for
benchmarks.

5.1 Workload Dimensions in Benchmark

Public data sets are available as described in the TPC-H benchmark [TPCbl], TPC-
DS benchmark [TPCal| , BigBench benchmark [BDBI|, Quantcast workloads [ORR™13]],
Hadoop GridMix workloads [Gril]. Furthermore, traces of Google workload and Facebook
workload are presented in [RTGT 12| and [GAK™ 14]. In addition, the workload can also
be generated from general applications, such as join operation, PageRank, WordCount, etc.
[TPCTQ9]. In this section, we present the workload dimensions that can be used to evaluate
scheduling frameworks in big data systems.

* Heterogeneity. The workload of the benchmark should contain different types of jobs,
e.g. MapReduce jobs [GAK™ 14]], DAG-based jobs [JBM™15], etc. The execution time
of jobs can range from several minutes to several days [CGGKTT,IGAK™14,[RTG™12]].
In addition, the execution time of each task should also range from several milliseconds
to several hours [GAK™ 14].

Task constraints [RTG™12]]. Some jobs may contain tasks with special constraints on
the nodes, i.e. hardware and software. The constraints on the hardware can be the
number of CPUs, CPU frequency, GPU, memory size, etc. The constraints on software
can be the type of Operating System (OS), the version of OS, programs, etc. The
scheduling frameworks should consider these constraints and allocate proper nodes to
the tasks.

Priority. The workload processed in big data systems may consist of latency-sensitive
jobs or jobs that do not require short execution time. Thus, the jobs can be associated
with different priorities [RTG"12] to be executed. During execution, the scheduling
frameworks should enable that the jobs with high priorities are executed first.

Workload velocity. The jobs or tasks can be generated or submitted at different speeds.
The velocity of the workload in big data systems varies a lot. For instance, during peak
hours, the scheduling framework needs to schedule hundreds of tasks per second while
it may just need to address several tasks per second during quieter times [RTG™12].
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Metrics for Benchmarks

Although some benchmarks exist, they have a few metrics, e.g. the throughput of SQL-
based workloads [PPR™(09], execution time [AMP], financial cost and energy consumption
[TPCb]. Big data systems also have some other important metrics to measure. In this section,
we propose the following metrics to make a comprehensive comparison of scheduling
frameworks in big data systems.

Execution time and throughput. The most important metric is the execution time
and the throughput of the jobs or tasks. A good scheduling framework should be able
to yield good execution time and high throughput of tasks and jobs. In addition, the
standard deviation of the execution time of submitted jobs should also be measured,
which indicates the predictability of the execution time. This is critical to the users
who need to predict the execution time of submitted jobs.

Scheduling time. It is important to measure the scheduling time, which indicates
how fast a scheduling framework can generate a scheduling plan. This may not be
very important for batch jobs but it is critical for real-time requests and stream data
processing. Good scheduling frameworks need short scheduling time.

Scalability. The scalability in terms of nodes is a very important metric for the
scheduling frameworks in big data systems. The scheduling framework should be
evaluated for different scales of clusters. For instance, the scale can range from several
hundred nodes to dozens of thousands or several hundred thousand nodes because of
many different jobs (and users) in a big data system. We can measure at which cluster
scale the performance of scheduling starts getting worse, i.e. the execution time of jobs
increases or the throughput of jobs or tasks decreases.

Fairness and job priority. The fairness of job execution should be addressed in terms
of user experience. We assume that there are multiple tenants, i.e. multiple users. The
jobs of each user should have the corresponding numbers of nodes to perform execution
according to the quota of each user and the priority of jobs. This can ensure that the
big data system can be shared among different users. Some jobs are submitted with
their own priorities and the users prefer that the jobs with high priorities are executed
before the jobs with low priorities. In this situation, priority inversion, i.e. the jobs with
low priorities are executed before the jobs with high priorities, should be avoided and
the ratio of priority inversion should also be measured.

Execution cost. The job execution cost should also be measured. The cost includes
the financial cost to buy machines or rent Virtual Machines (VMs) in cloud computing
environments, the energy and network resources [PAB™15]). All these costs are critical
for organizations or companies, which are maintaining the big data systems.

Network transfer. The amount of data transferred over the network should also be
measured. This metric can indicate the amount of data transferred in order to execute
tasks scheduled to the nodes where the input data of tasks need to be transferred from
other nodes. Smart scheduling frameworks should lead to low data transfer during
execution. This metric also indicates how much the quality of the network can affect
the performance of scheduling.
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* Node utilization. If the utilization of nodes stays low, most of the nodes remain idle
during a long time while they are busy running workloads during a short time. This
may lead to long execution time of jobs or low throughput of jobs or tasks. Thus, the
utilization of nodes can also be measured to know if the nodes are fully used. If they
are, and the system cannot process the jobs or tasks within the required time, more
nodes should be added and the scalability of the scheduling frameworks should be
improved. However, if the utilization of nodes is very low and the system needs to
reduce execution time, it is better to improve the utilization of nodes than to add new
nodes.

Fault tolerance. In big data systems, the execution of a job or a task may fail and the
failed jobs or tasks must be re-executed. Thus, the possibility of failures of jobs or tasks
should be measured. Some scheduling frameworks may yield high utilization of nodes,
but they may produce many failures of task execution because of hardware failures
incurred by the workloads within each node. In this situation, the execution time may
be long and the throughput of jobs or tasks may be low. Scheduling frameworks should
make a trade-off between the high utilization of nodes and the failures of tasks or jobs.

Execution efficiency. Some systems may duplicate the execution of tasks [AKG™10]
to reduce execution time. However, this duplication may reduce the efficiency of
execution since some nodes are wasted on calculating some useless results. Thus, if
there are duplicated tasks, the ratio of duplicated tasks should also be measured.

SLA violation. Some jobs have user predictability expectation defined by SLAs.
The SLA may consist of two elements: a deadline on the execution of the submitted
jobs, and a cost, expressed in terms of resources (number of nodes and occupied
time) provisioned for the job [JICM™16]]. Smart scheduling frameworks should meet
the SLA of the submitted jobs [IMNY15]. Thus, the ratio of the SLA violation
should be measured to indicate how well the scheduling frameworks can support
users' expectation.

These metrics should be measured when the system can produce correct results.
Throughput, scalability, node utilization, fault-tolerance are much related to scheduling
frameworks while the others are related to both scheduling frameworks and scheduling
methods implemented in scheduling frameworks. When one of the metrics is changed,
the other metrics can be measured again. Through these metrics, we can perform a
comprehensive comparison of scheduling frameworks in big data systems.

6 Research Directions

Although much work has been done on scheduling in big data systems, there remain
some limitations, e.g. dynamic provisioning in cloud environments, stream data processing,
heterogeneous network environments and predictability of job execution time. This section
discusses the limitations of the existing frameworks and proposes new research directions.

6.1 Dynamic Adaptation to Execution Environments

The existing approaches provide the methods to schedule jobs or tasks in a static environment
or a homogeneous network environment as discussed in Section [3.2.3] However, the
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dynamic adaptation to dynamic provisioning during execution and heterogeneous networks
in multiple data centers could be further studied.

6.1.1 Dynamic Provisioning in the Cloud

The existing frameworks focus on the provisioning with existing nodes for execution,
by scheduling part of or all the nodes to the submitted jobs. However, these scheduling
frameworks do not consider dynamic provisioning by adding some additional nodes from
the cloud environment during execution. For instance, after estimating the workload of jobs,
the scheduling framework can dynamically create some VMs in the cloud in order to reduce
the execution time of the jobs of big workloads when the existing nodes are not enough.
In addition, the nodes that are not scheduled and remain idle can be shut down to reduce
energy consumption [LRD™16].

6.1.2 Scheduling in Heterogeneous Network Environments

The existing scheduling frameworks consider a homogeneous network environment, where
the bandwidth is high and the same for each node. However, as the scale becomes very
big, the nodes need to be placed in different clusters or even different data centers. In
this environment, the bandwidths among different nodes may have much difference. For
instance, the bandwidth between two nodes located in the same cluster is very high while
the bandwidth between two nodes located in different data centers can be much lower
[LPVMI16]. Thus, the time to transfer data among different nodes should be carefully
considered when scheduling jobs or tasks in heterogeneous network environments.

6.2 Scheduling in Stream Data Processing

As continuous data is being generated by sensors, social networks and other areas, stream
data processing becomes important [IZE11]]. Some batch jobs can also be converted to
data stream processing [FY1I]]. However, the existing frameworks focus on batch jobs
and real-time requests [DSK15|(OWZST3] as explained in Section[3.2.2] Some scheduling
methods have been proposed for stream data processing, but they focus on a shared memory
architecture [FY1I,[FKBT 14| or even a single node [CcRT03]|. The methods designed for
batch jobs or real-time requests can be used in big streaming data systems, e.g. Twitter Heron
[KBET15]], Apache Samza [Saml] and Spark Streaming [[Spa)]. Sparrow and Tarcil only focus
on the sampled nodes for scheduling. However, there are several specific dimensions of the
streaming data. First, big data velocity can lead to big workloads. Second, the tasks may
be replicated onto independently failing nodes to guarantee fault-tolerance of the execution
[BHSQ9] and the data is also replicated because of the replicated tasks. Third, stream data
processing requires very short response time. To the best of the authors’ knowledge, there is
no existing scheduling framework that schedules tasks with consideration of data replication
and dynamic provisioning to execute big workloads incurred by big data velocity within a
short time.

6.3 Predictability of Job Execution Time

Most scheduling frameworks strive to reduce execution time as explained in Section [3.2.5]
However, users may also want to predict the execution time of submitted jobs. When there
are many workloads in the system, the execution time of submitted jobs may be very long
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and when there are a few workloads in the system, the execution time of submitted jobs
may be very short. If the scheduling frameworks focus only on reducing execution time,
the difference of the longest execution time and the shortest execution time of the same
submitted jobs will be very high, thus making it very difficult to predict the execution time
for the users. In order to enable users to predict the execution time of submitted jobs, the
predictability of jobs should also be ensured by smart scheduling frameworks. For instance,
the scheduling frameworks can accelerate the execution of jobs by adding nodes when there
are many workloads and remove some nodes when there are few workloads so that the
execution time of the same submitted jobs stays stable.

7 Conclusion

In this paper, we surveyed the scheduling frameworks used in big data systems. First,
we described the execution process of jobs and tasks, existing scheduling methods to
be implemented in scheduling frameworks and proposed a taxonomy of scheduling
frameworks. The scheduling frameworks can be classified by granularity, execution time,
adaptation to execution environments, architecture and objectives. There are four kinds of
architectures, i.e. centralized, centralized two-level, distributed two-level and shared-state.
Shared-state can generate optimal scheduling plans while distributed two-level is suitable
for large number of nodes and high arrival rate of workloads. Second, we studied sixteen
popular scheduling frameworks. They are designed for different requirements of execution
time, scheduling layers and big data systems of web companies or software foundations. By
analyzing these frameworks, we found that the scheduling frameworks should be adapted
to the increasing number of nodes, user-defined objectives and optimized for reducing the
transferred data in the network. Third, we proposed the workload dimensions and metrics for
benchmarks to evaluate scheduling frameworks. The workload dimensions should include
heterogeneity, diverse task constraints, different priorities and velocities of the workload.
Some metrics, such as throughput, scalability, node utilization and fault tolerance are much
related to scheduling frameworks while others are related to both scheduling frameworks
and scheduling methods implemented in scheduling frameworks.

The scheduling techniques for big data systems have focused on batch jobs in cluster
environments. Thus, there is much room for research in this area and we proposed several
directions. First, scheduling frameworks can be adapted to the dynamic provisioning of VMs
in cloud. Second, they should be optimized for streaming data processing with consideration
of data replication and dynamic provisioning to efficiently process big workloads. Third,
they should also be adapted to environments where high numbers of nodes are distributed
in different data centers and the network is heterogeneous. Fourth, they should be designed
to maintain stable execution time for the same job so that it is easy for users to predict the
job execution time.
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