K. Vaswani, A. Desai, and K. Rajan, Critical path based performance models for distributed queries, pp.2012-121, 2012.

S. G. Ananthanarayanan, A. G. Kandula, I. Greenberg, Y. Stoica, B. Lu et al., Reining in the outliers in map-reduce clusters using mantri, USENIX Symp. on Operating Systems Design and Implementation (OSDI), pp.265-278, 2010.

M. Barlow, Real-Time Big Data Analytics: Emerging Architecture. O'Reilly Media, 2013.

J. E. Boutin, W. Ekanayake, B. Lin, J. Shi, Z. Zhou et al., Apollo: Scalable and coordinated scheduling for cloudscale computing, USENIX Symp. on Operating Systems Design and Implementation (OSDI), pp.285-300, 2014.

M. Balazinska, J. Hwang, and M. A. Shah, Fault Tolerance and High Availability in Data Stream Management Systems, Encyclopedia of Database Systems, pp.1109-1115, 2009.
DOI : 10.1145/224056.224070

D. Carney, U. Çetintemel, A. Rasin, S. Zdonik, M. Cherniack et al., Operator Scheduling in a Data Stream Manager, Int. Conf. on Very Large Data Bases (VLDB), pp.838-849, 2003.
DOI : 10.1016/B978-012722442-8/50079-3

. Cdd-+-14-]-c, D. E. Curino, C. Difallah, S. Douglas, R. Krishnan et al., Reservation-based scheduling: If you're late don't blame us, In ACM Symp. on Cloud Computing (SOCC), vol.2, pp.1-2, 2014.

S. Chandrasekaran and M. J. Franklin, Streaming Queries over Streaming Data, Int. Conf. on Very Large Data Bases (VLDB), pp.203-214, 2002.
DOI : 10.1016/B978-155860869-6/50026-3

URL : http://www.cs.berkeley.edu/~franklin/Papers/psoupVLDB02.pdf

A. [. Chen, R. Ganapathi, R. H. Griffith, and . Katz, The Case for Evaluating MapReduce Performance Using Workload Suites, 2011 IEEE 19th Annual International Symposium on Modelling, Analysis, and Simulation of Computer and Telecommunication Systems, pp.390-399, 2011.
DOI : 10.1109/MASCOTS.2011.12

. Cjl-+-08-]-r, B. Chaiken, P. Jenkins, B. Larson, D. Ramsey et al., Scope: Easy and efficient parallel processing of massive data sets, Proceedings of the VLDB Endowment (PVLDB), pp.1265-1276, 2008.

J. Dean and S. Ghemawat, MapReduce, Communications of the ACM, vol.51, issue.1, pp.107-113, 2008.
DOI : 10.14293/S2199-1006.1.SOR-UNCAT.AUNHT8.v1.RBZFIB

C. Delimitrou, D. Sanchez, and C. Kozyrakis, Tarcil, Proceedings of the Sixth ACM Symposium on Cloud Computing, SoCC '15, pp.97-110, 2015.
DOI : 10.1145/2485922.2485974

URL : http://dspace.mit.edu/bitstream/1721.1/111979/1/Sanchez.tarcil.pdf

. D. Fbk-+-12-]-a, P. Ferguson, S. Bodik, E. Kandula, R. Boutin et al., Jockey: Guaranteed job latency in data parallel clusters, ACM European Conf. on Computer Systems (EuroSys), pp.99-112, 2012.

D. Krulis, J. Bednárek, F. Yaghob, and . Zavoral, Locality aware task scheduling in parallel data stream processing, Int. Symp. on Intelligent Distributed Computing (IDC), pp.331-342, 2014.

T. [. Freund, D. A. Kidd, L. Hensgen, and . Moore, SmartNet: a scheduling framework for heterogeneous computing, Proceedings Second International Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN'96), pp.514-521, 1996.
DOI : 10.1109/ISPAN.1996.509034

URL : https://calhoun.nps.edu/bitstream/10945/35380/1/SmartNet_Kidd_Moore.pdf

D. G. Feitelson and L. Rudolph, Metrics and benchmarking for parallel job scheduling, Job Scheduling Strategies for Parallel Processing, pp.1-24, 1998.
DOI : 10.1007/BFb0053978

URL : http://blog.esac.cnic.cn/uploadfiles/2007-9/910794483.pdf

J. [. Falt and . Yaghob, Task scheduling in data stream processing, Dateso: Annual Int. Workshop on Databases, pp.85-96, 2011.

. Gak-+-14-]-r, G. Grandl, S. Ananthanarayanan, S. Kandula, A. Rao et al., Multiresource packing for cluster schedulers, ACM Conf. on Special Interest Group on Data Communication (SIGCOMM), pp.455-466, 2014.

S. Ghemawat, H. Gobioff, and S. Leung, The google file system, ACM Symp. on Operating Systems Principles (SOSP), pp.29-43, 2003.
DOI : 10.1145/945445.945450

. Gkr-+-16-]-r, S. Grandl, S. Kandula, A. Rao, J. Akella et al., Do the hard stuff first: Scheduling dependent computations in data-analytics clusters, 2016.

J. V. Gautam, H. B. Prajapati, V. K. Dabhi, and S. Chaudhary, A survey on job scheduling algorithms in Big data processing, 2015 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), pp.1-11, 2015.
DOI : 10.1109/ICECCT.2015.7226035

]. B. Hkz-+-11, A. Hindman, M. Konwinski, A. Zaharia, A. D. Ghodsi et al., Mesos: A platform for fine-grained resource sharing in the data center, USENIX Conf. on Networked Systems Design and Implementation (NSDI), pp.295-308, 2011.

Y. [. He, D. Lu, and . Swanson, Matchmaking: A New MapReduce Scheduling Technique, 2011 IEEE Third International Conference on Cloud Computing Technology and Science, pp.40-47, 2011.
DOI : 10.1109/CloudCom.2011.16

Y. Budiu, A. Yu, D. Birrell, and . Fetterly, Dryad: distributed data-parallel programs from sequential building blocks, ACM European Conf. on Computer Systems (EuroSys), pp.59-72, 2007.

M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar et al., Quincy, Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles, SOSP '09, pp.261-276, 2009.
DOI : 10.1145/1629575.1629601

I. , P. Zikopoulos, and C. Eaton, Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data, 2011.

P. V. Jalaparti, I. Bodik, S. Menache, K. Rao, M. Makarychev et al., Network-aware scheduling for data-parallel jobs: Plan when you can, ACM Conf. on Special Interest Group on Data Communication (SIGCOMM), pp.407-420, 2015.
DOI : 10.1145/2785956.2787488

. A. Jcm-+-16-]-s, C. Jyothi, I. Curino, S. M. Menache, A. Narayanamurthy et al., Morpheus: Towards automated SLOs for enterprise clusters, USENIX Symp. on Operating Systems Design and Implementation (OSDI), pp.117-134, 2016.

I. [. Jain, J. Menache, J. Naor, and . Yaniv, Near-optimal scheduling mechanisms for deadline-sensitive jobs in large computing clusters, ACM Transactions on Parallel Computing (TOPC), vol.2, issue.1, p.3, 2015.
DOI : 10.1145/2312005.2312051

]. S. Kbf-+-15, N. Kulkarni, M. Bhagat, V. Fu, C. Kedigehalli et al., Twitter heron: Stream processing at scale, ACM SIGMOD Int. Conf. on Management of Data (SIGMOD), pp.239-250, 2015.

G. Kumar, S. Kandula, P. Bodík, and I. Menache, Virtualizing traffic shapers for practical resource allocation, USENIX Workshop on Hot Topics in Cloud Computing (HotCloud), 2013.

. Kmm-+-15-]-m, P. Kiran, I. Murphy, J. Monga, S. S. Dugan et al., Lambda architecture for cost-effective batch and speed big data processing, IEEE Int. Conf. on Big Data (Big Data), pp.2785-2792, 2015.

. Krc-+-15-]-k, S. Karanasos, C. Rao, C. Curino, K. Douglas et al., Mercury: Hybrid centralized and distributed scheduling in large shared clusters, USENIX Annual Technical Conf. (USENIX ATC 15), pp.485-497, 2015.

]. D. Lcg-+-15, L. Lo, R. Cheng, P. Govindaraju, C. Ranganathan et al., Heracles: Improving resource efficiency at scale, Annual Int. Symp. on Computer Architecture (ISCA), pp.450-462, 2015.

]. J. Lpv-+-16, E. Liu, P. Pacitti, D. Valduriez, M. De-oliveira et al., Multiobjective scheduling of scientific workflows in multisite clouds, Future Generation Computer System, vol.63, pp.76-95, 2016.

J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso, A Survey of Data-Intensive Scientific Workflow Management, Journal of Grid Computing, vol.1, issue.Webserver-Issue, pp.457-493, 2015.
DOI : 10.1109/SERVICES-1.2008.79

URL : https://hal.archives-ouvertes.fr/lirmm-01144760

E. [. Liu, P. Pacitti, M. Valduriez, and . Mattoso, Scientific Workflow Scheduling with Provenance Support in Multisite Cloud, Int. Meeting on High-Performance Computing for Computational Science (VECPAR), p.8, 2016.
DOI : 10.1145/1084805.1084816

URL : https://hal.archives-ouvertes.fr/lirmm-01342190

]. W. Lrd-+-16, K. Lang, D. J. Ramachandra, S. Dewitt, Q. Xu et al., Not for the timid: On the impact of aggressive over-booking in the cloud, Int. Conf. on Very Large Data Bases (VLDB), pp.1-12, 2016.

]. T. Mit97 and . Mitchell, Machine Learning, 1997.

I. Menache, O. Shamir, and N. Jain, On-demand, spot, or both: Dynamic resource allocation for executing batch jobs in the cloud, Int. Conf. on Autonomic Computing (ICAC), pp.177-187, 2014.

M. Masdari, S. Valikardan, Z. Shahi, and S. Azar, Towards workflow scheduling in cloud computing: A comprehensive analysis, Journal of Network and Computer Applications, vol.66, pp.64-82, 2016.
DOI : 10.1016/j.jnca.2016.01.018

. Orr-+-13-]-m, S. Ovsiannikov, D. Rus, P. Reeves, S. Sutter et al., The quantcast file system, Proceedings of the VLDB Endowment (PVLDB), pp.1092-1101, 2013.

M. T. Özsu and P. Valduriez, Principles of Distributed Database Systems, 2011.

P. [. Ousterhout, M. Wendell, I. Zaharia, and . Stoica, Sparrow, Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP '13, pp.69-84, 2013.
DOI : 10.1145/2517349.2522716

. Pab-+-15-]-q, G. Pu, P. Ananthanarayanan, S. Bodík, A. Kandula et al., Low latency geo-distributed data analytics, ACM Conf. on Special Interest Group on Data Communication (SIGCOMM), pp.421-434, 2015.

. D. Pbl-+-16-]-g, N. Plotkin, N. P. Bjørner, A. Lopes, G. Rybalchenko et al., Scaling network verification using symmetry and surgery, Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL), pp.69-83, 2016.

]. A. Ppr-+-09, E. Pavlo, A. Paulson, D. J. Rasin, D. J. Abadi et al., A comparison of approaches to large-scale data analysis, ACM SIGMOD Int. Conf. on Management of Data (SIGMOD), pp.165-178, 2009.

]. D. Ren15 and . Rensin, Kubernetes -scheduling the future at cloud scale, In O'Reilly Open Source CONvention, p.2015

K. J. Rasley, S. Karanasos, R. Kandula, M. Fonseca, S. Vojnovic et al., Efficient queue management for cluster scheduling, Proceedings of the Eleventh European Conference on Computer Systems, EuroSys '16, pp.1-15, 2016.
DOI : 10.1145/2741948.2741964

URL : http://dl.acm.org/ft_gateway.cfm?id=2901354&type=pdf

B. , T. Rao, and D. L. Reddy, Article: Survey on improved scheduling in hadoop mapreduce in cloud environments, Int. Journal of Computer Applications, vol.34, issue.9, pp.29-33, 2011.

A. C. Reiss, G. R. Tumanov, R. H. Ganger, M. A. Katz, and . Kozuch, Heterogeneity and dynamicity of clouds at scale, Proceedings of the Third ACM Symposium on Cloud Computing, SoCC '12, pp.1-7, 2012.
DOI : 10.1145/2391229.2391236

X. Sun and Y. Chen, Reevaluating Amdahl???s law in the multicore era, Journal of Parallel and Distributed Computing, vol.70, issue.2, pp.183-188, 2010.
DOI : 10.1016/j.jpdc.2009.05.002

A. [. Schwarzkopf, M. Konwinski, J. Abd-el-malek, and . Wilkes, Omega, Proceedings of the 8th ACM European Conference on Computer Systems, EuroSys '13, pp.351-364, 2013.
DOI : 10.1145/2465351.2465386

C. Sreedhar, N. Kasiviswanath, and P. Reddy, Article: A survey on big data management and job scheduling, Int. Journal of Computer Applications, vol.130, issue.13, pp.41-49, 2015.

A. [. Sakr, D. M. Liu, M. Batista, and . Alomari, A Survey of Large Scale Data Management Approaches in Cloud Environments, IEEE Communications Surveys & Tutorials, vol.13, issue.3, pp.311-336, 2011.
DOI : 10.1109/SURV.2011.032211.00087

URL : https://hal.archives-ouvertes.fr/inria-00623093

]. P. Val09 and . Valduriez, Shared-nothing architecture, Encyclopedia of Database Systems, pp.2638-2639, 2009.

. K. Vmd-+-13-]-v, A. C. Vavilapalli, C. Murthy, S. Douglas, M. Agarwal et al., Apache hadoop yarn: Yet another resource negotiator, Annual Symp. on Cloud Computing (SOCC), pp.1-516, 2013.

D. Wang, J. Chen, and W. Zhao, A Task Scheduling Algorithm for Hadoop Platform, Journal of Computers, vol.8, issue.4, pp.929-936, 2013.
DOI : 10.4304/jcp.8.4.929-936

D. Yoo and K. M. Sim, A comparative review of job scheduling for MapReduce, 2011 IEEE International Conference on Cloud Computing and Intelligence Systems, pp.353-358, 2011.
DOI : 10.1109/CCIS.2011.6045089

. Zbs-+-10-]-m, D. Zaharia, J. S. Borthakur, K. Sarma, S. Elmeleegy et al., Delay scheduling: A simple technique for achieving locality and fairness in cluster scheduling, ACM European Conf. on Computer Systems (EuroSys), pp.265-278, 2010.

M. J. Chowdhury, S. Franklin, I. Shenker, and . Stoica, Spark: Cluster computing with working sets, USENIX Conf. on Hot Topics in Cloud Computing (HotCloud), pp.10-10, 2010.

]. Z. Zlt-+-14, C. Zhang, Y. Li, R. Tao, H. Yang et al., Fuxi: a faulttolerant resource management and job scheduling system at internet scale, Proceedings of the VLDB Endowment (PVLDB), pp.1393-1404, 2014.