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Abstract This paper presents a constructive design of

a continuous finite time controller for a class of mechan-

ical systems known as underactuated systems that sat-

isfy the symmetry properties . An adaptive radial basis
function neural networks (RBFNN) finite time control

scheme is proposed to stabilize the underactuated sys-

tem at a given equilibrium, regardless of the various un-

certainties and disturbances that the system contains.

First, a coordinate transformation is introduced to de-
couple the control input so that an n-th order underac-

tuated system can be represented into a special cascade

form. Next an adaptive robust finite-time controller is

derived from the adding a power integrator (API) tech-
nique and the RBFNN to approximate the nonlinear

unknown dynamics in the new space, whose bounds

are supposedly unknown. The stability and finite-time

convergence of the closed-loop system are established

by using Lyapunov theory. To show the effectiveness of
the proposed method, simulations are carried out on

the rotary inverted pendulum, a typical example of an

underactuated mechanical system .
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1 Introduction

Underactuated systems [8,9,19,20,28,42] are mechani-

cal systems with less control inputs than degrees of free-

dom, consequently they have at least one unactuated
degree of freedom. The control synthesis of such me-

chanical systems represents a challenging control prob-

lem and can be considered much more difficult than

the synthesis of fully-actuated systems in [4,31,40,43].
In this context, our main focus of this paper will be on

a class of underactuated systems enjoying symmetry

properties [32], which, based on an appropriate global

transformation, will be reduced to normal form, so that

it can easily controlled using standard techniques like
reminiscent backstepping technique.

In practice, most underactuated mechanical systems
are uncertain and multi-variable in character. It is im-

portant then to investigate effective robust and adap-

tive control techniques for such kind of systems . The

authors in [5] proposed a robust controller based on a

combination of a PD controller and a twisting-like algo-
rithm to stabilize the damped cart pole system. In this

approach however, uncertain model parameters have

not been considered. To deal with model uncertainties,

a time-scale approach along with the Lyapunov design
have been proposed in [38]. The authors in [33] used

a sliding mode technique for the cart pole system to

stabilize the system in presence of disturbances. Model

uncertainties however have not been tackled in this

work. In [1,6], disturbances and model uncertainties
have been fully considered in a technique that involves

a backstepping procedure combined with sliding mode,

applied to the inverted pendulum system after the sys-

tem was converted into a normal form. Integral sliding
mode control was also applied in [29,46] to deal with

uncertainties in the two-wheeled mobile inverted pen-

dulum. The control law being designed is based on the

linearized system dynamics which resulted in a small re-

gion of attraction for the equilibrium. The problem be-
comes more challenging whenever non-parametric un-

certainties and unknown time-varying disturbances are

considered in the design of effective and robust control

law for the underactuated system.

An important research issue which has attracted the

attention of the control community is the finite-time

convergence and finite time stabilization [2,3,10–12,17],
that not only ensures faster convergence rate, but also

guarantees better disturbance rejection and greater ro-

bustness to uncertainty. Rigorous analysis for finite-

time stability has been established in [3,13,30]. Several
interesting design schemes for finite stabilization of cer-

tain class of nonlinear systems using state-feedback and

output-feedback can be found in [24,36], just to quote a
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few, and references therein. Although interesting broad

results have been obtained by using finite-time stabi-

lizing controllers in the literature, they may not be ef-

fective in dealing simultaneously with unknowns and

time-variations in the systems. In the aforementioned
works these unknowns are either constants or time-

varying only, that is, not state-dependent. Different at-

tempts using adaptive design schemes have been con-

ducted in [14,15] to resolve the problem encountered
in the presence of unknowns and time-variation in the

system. However, the adaptive scheme has been applied

to smooth nonlinear systems of the p-normal form [7],

However, to the authors’ best knowledge, there is no

result on adaptive finite time control scheme for under-
actuated system with symmetry [32] embodying time

varying uncertainties with unknown bounds. Therefore,

it is of interest to develop a concise method that is

capable of globally finite-time stabilizing the underac-
tuated mechanical system of class I (i.e., enjoying the

symmetry properties of mechanical systems) with more

involved unknowns and time-variations.

In this paper, an adaptive finite-time control strat-

egy is investigated for a class of underactuated mechan-

ical systems with tree structures by using radial ba-

sis neural networks approximation functions. The pur-
pose of this paper is two-fold: to generalise the Olfati-

Saber’s transformation [32] to n−th order underactu-

ated systems into a special upper-triangular form with

mismatched time-varying uncertainties, and to use the
adding a power integrator (API) technique in combina-

tion of the radial basis neural networks approximation

functions as a basic design tool for finite stabilization

of the underactuated mechanical system.

The main contribution of this paper is twofold:

1. A finite time controller is constructed based on the

adding a power integrator technique [27,26] and back-
stepping method. The key feature of this technique

is that it only requires knowledge of the upper bounds

of nonlinearities involved in the system dynamics,

therefore simple recursive domination design can be
obtained for an explicit construction of a smooth

state feedback controller. The explicit form of the

finite time controller appears to be more concise

compared with the finite time controller proposed

in [6,16,23,47] for underactuated mechanical sys-
tems. Furthermore, by virtue of the adding a power

integrator, finite time stabilization of the underac-

tuated system can be obtained as opposed to [6,16]

where only global uniform ultimate boundedness is
achieved. Moreover the inherent chattering problem

due to discontinuity of the sliding mode approaches

is straightforwardly circumvented.

2. The proposed scheme does not need any prior infor-

mation about the bound of mismatched uncertain-

ties. The tuning rule incorporated to estimate the

mismatched uncertainty using the RBFNNN bor-

rows much from the adaptive tracking [22] approach
including the notion of tuning functions. The pro-

posed scheme can guarantee that the state of the

closed loop system converges to the origin in finite-

time and the parameter estimations are bounded.

The reminder of this paper is organized as follows:

Section 2 discusses the control problem formulation of

a class of of mechanical underactuated systems along

with the coordinate transformation that transforms this
model into an upper-triangular form representation. Sec-

tion 3 propose a finite-time stabilization control strat-

egy for the n-th order underactuated system. In Section

4, simulation results with an application to the rotary

inverted pendulum system are presented and discussed.
Finally, Section 5 draws a conclusion for this paper.

2 Problem formulation and preliminaries

2.1 Problem formulation

Consider an underactuated mechanical system described

by [39]

M1(q)q̈u +M2(q)q̈a +N1(q, q̇) = 0 (1)

M⊤
2 (q)q̈u +M3(q)q̈a +N2(q, q̇) = B(q)u (2)

Where the first equation (1) represents the unactuated

dynamics while the second equation denotes the actu-

ated dynamics, with q = [q⊤u , q
⊤
a ]

⊤ is the generalized
coordinates such that qa ∈ R

n is the unactuated de-

grees of freedom, and qu ∈ R
m represents the actuated

degrees of freedom. The inertia matrix of the underac-

tuated system is defined by

M =

[
M1(q) M2(q)

M⊤
2 (q) M3(q)

]
(3)

which is positive symmetric and positive definite for
all q ∈ R

n+m. B(q) is an invertible matrix and u is

the generalized control forces produced by the m actu-

ators. Ni(q), i = 1, 2 are the Coriolis, centrifugal and

gravitational force vectors.

Control of underactuated system such as the sys-

tem presented in (1)-(2), most often resorts to the well-
known collocated partial feedback linearization proposed

by [44], where the objective is to transform the dynam-

ics of the underactuated system into a reduced-order
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system with cascaded nonlinear system in strict feed-

back form with zero-dynamics. However, with this ap-

proach there is an inherent requirement that the model

parameters of the mechanical system must be perfectly

known to be able to design controller for the trans-
formed normal form.

To address this observation, the control design in

this paper avoids the collocated feedback linearization

entirely. Before deriving the control scheme, the equa-
tions of motion of the underactuated system are con-

verted to a reduced form through simple manipulation

of (1)-(2) as in [44]

q̈a = J1(q)u +R1(q, q̇) (4)

q̈u = J2(q)u +R2(q, q̇) (5)

where

R1(q, q̇) = (M3 −M⊤
2 M−1

1 M2)
−1[M⊤

2 M−1
1 N1(q, q̇)

−N2(q, q̇)]

J1(q) = (M3 −M⊤
2 M−1

1 M2)
−1B(q)

R2(q, q̇) = N1 −M−1
1 M2R1(q, q̇)

J2(q) = −M−1
1 M2J1(q)

The dynamic equations (4)-(5) define the coupled dy-
namics of the underactuated system (1)-(2), where it

can be seen that the control input appears both in the

actuated subsystem and the unactuated subsystem of

the original system, which significantly increases com-
plexity of the control design for underactuated systems.

To resolve this issue, the author in [32], provided a suit-

able global change of coordinates that decouples the ac-

tuated from the unactuated dynamics with respect to

the control input and allows to transform the system
into a cascaded normal form.

Without loss of generality, an n−th order underac-

tuated system can be described with a chain structure

as follows

ẍi = φi(x1, . . . , xi+1)u+ γi(x1, . . . , xi+1, ẋ1, . . . , ẋi),

ẍn = φn(x)u+ γn(x, ẋ) i = 1, . . . , n− 1 (6)

where x = [x1, . . . , xn]
⊤ ∈ R

n are the state variables

of the underactuated system and u ∈ R is the control

input, γi(x, ẋ) 6= 0 , φi(x) are nonlinear functions for

all i = 1, . . . n. We will use the technique presented in

[32] to transform the system (6) to a system of upper-
triangular form. As such, we introduce the following

coordinate changes

zi = xi −

∫ xi+2

0

φi+1(s)

φi+3(s)
ds i = 1, 3, 5 . . . , n− 3

zi = xi −
φi+1(x)

φi+2(x)
i = 2, 4, 6, . . . , n− 2 (7)

zn−1 = xn−1

zn = xn

Remark 1 Note that the integral term in (7) has no real

physical meaning except that the mathematical expres-

sion will help to globally transform the system (6) into

normal form, where the actuated dynamics are decou-

pled from the unactuated ones. More about this trans-
formation can be found in details in [32].

Hence, the system dynamics in a new Z-space coordi-

nate can be obtained. Taking the time derivative of (7),
we have

żi = zi+1 + di(z), 1 ≤ i ≤ n− 1

żn = φn(z)u + dn(z) (8)

y = h(z)

where di(z) are defined as follows:

d1(z) =
φ2(z)

φ4(z)
z4 −

d

dt

∫ z3

0

φ3(s)

φ4(s)
ds

d2(z) = −z3 + γ3(z)−
φ3(z)

φ4(z)
γ4 −

d

dt

(φ3(z)

φ4(z)

)
z4

... (9)

dn−3 =
φn−2(z)

φn(z)
zn −

d

dt

∫ zn−1

0

φn−2(s)

φn(s)
ds

dn−2 = −zn−1 + γn−2(z)−
φn−2(z)

φn(z)
γn −

d

dt

(φn−2(z)

φn(z)

)
zn

dn−1 = 0

dn = φn(z)

To control the normal form (8), we will consider the

following assumptions :

Assumption 1 All modeling terms in (1)-(2), including
M1,M2, M3, N1 and N2 are considered unknown func-

tions of time.

Assumption 2 The uncertain control coefficient φn(z)

is bounded as φmin ≤ φn(z) ≤ φmax. Furthermore, it is
convenient to assume that φn(z) 6= 0.

Remark 2 Note that the terms di(z) ∈ R, i = 1, 2, . . . , n

in the transformed system (8) are regarded as matched

and unmatched uncertainties. Also by construction, since
di(z), i = 1, . . . n are functions of the states it will not

be practical to assume that their variation bounds are

known. In addition, it cannot be assumed to be linearly

parameterizable into a multiplication of a known regres-
sor and a vector of unknown constant parameters, this

is mainly due to their complex expressions in (9).

Remark 3 In many robotic systems such as those clas-

sified in [32] as of Class-I underactuated systems, the
sign of the control coefficient φn(.) is independent of

the change of coordinates and is usually known and is

nonzero.
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In this paper, we consider a class of underactuated

systems of the form (6), which can be transformed with-

out collocated feedback linearization and through the

global change of coordinates (8) into the cascaded form

(8). Here, denote z = [z1, z2, . . . , zn]
⊤ ∈ Υ , where Υ is

a compact set of Rn, u ∈ R is the control input and

di(z) ∈ R, i = 1, . . . , n− 1 are unmatched uncertainties

while dn is the matched uncertainty. Under Assump-

tions 2.1 and 2.2, the idea is to design the controller u
such that the system state z tracks in finite time the

desired trajectory z
∗
d = [z∗1d, z

∗
2d, . . . , z

∗
nd]

⊤ ∈ Υd where

Υd is a compact set of Υ . This means that for any finite

initial condition zi(0), i = 1, . . . n, there exists a finite

time T , called the settling time of system (8) such that

lim
t→T

ei = lim
t→T

∣∣∣zi − z∗id

∣∣∣ = 0, i = 1, . . . , n (10)

2.2 Finite time stability

In what follows, we review some basic concepts of finite-

time stability, its definition and some useful lemmas.

We denote the solution of the normal form system

(8) by z(t, z0), where z0 is the initial state.

Definition 1 [3] The equilibrium point z = 0 of (8) is

finite-time convergent if there is an open neighborhood

℘ ⊂ R
n of the origin and a function T : ℘ − {0} →

(t0,+∞), such that ∀z0 ∈ ℘, the solution z(t) of the
system (8) exists and unique for all t ∈ [0, T (z0, t0)),

such that limt→T z(t) = 0 and z(t) = 0 ∀t > T . The

instant time T is called the settling time. The equilib-

rium z = 0 of the system (8) is finite-time stable if it is

Lyapunov stable and finite convergent. In particular if
℘ = R

n, the equilibrium is said to be global finite-time

stable (GFTS).

Lemma 1 [3]: Consider the non-Lipschitz continuous

autonomous system ż = f(z), f(0) ∈ R. Assume there

are C1 function V (z) defined on a neighborhood ℑ ⊂ R

of the origin, and real numbers c > 0 and 0 < α < 1

such that

1. V (z) is positive definite on ℑ
2. V̇ (z) + cV (z)α ≤ 0, ∀z ∈ ℑ

Then the origin z is locally finite-time stable. If ℑ = R

and V (z) is radially unbounded, then the origin z = 0

is globally finite time stable. Moreover, it can be verified
that the settling time being dependent on the initial state

z(0) = z0 satisfies Tz(z0) ≤
V (z0)

1−α

c(1−α) for all z0 in some

open neighborhood of the origin.

Lemma 2 [34] For any xi ∈ R, i = 1, . . . , n and 0 <

p ≤ 1, the following inequality holds (|x1|+. . .+|xn|)
p ≤

|x1|
p + . . .+ |xn|

p ≤ n1−p(|x1|+ . . .+ |xn|)
p. when 0 <

p = p1

p2
≤ 1, where p1 and p2 are positive odd integers

then the following holds |xp − yp| ≤ 21−p|x − y|p, for

any x, y ∈ R.

Lemma 3 [34] For any x ∈ R, y ∈ R, c > 0, d > 0 and

γ(x, y) > 0 a real-valued function, the following holds:
|x|c|y|d ≤

(cγ(x, y)/(c+ d))|x|c+d + (dγ(x, y)−c/d/(c+ d))|y|c+d.

2.3 RBF Neural Network Approximation

Consider a function f(z) : Rm → R. Suppose that f(z)

is unknown smooth nonlinear function and it can be

approximated over a compact set Ω ⊆ R
m with the

following RBFNN:

f(z) = W ∗⊤

̟(z) + δf (z), ∀z ∈ Ω (11)

where the node number of the NN is l. More nodes mean

more accurate approximation. W ∗ ∈ R
l represents the

optimal weight vector, which is defined by

W ∗ = argmin
Ŵ

{
sup
z∈Ω

∣∣∣∣f(z)− Ŵ⊤̟(z)

∣∣∣∣
}

(12)

where Ŵ represents the estimate ofW ∗,̟(z) = [̟1(‖z−

θ1‖), ̟2(‖z − θ2‖), . . . , ̟l(‖z − θl‖)]
⊤ : Ω → R

l rep-
resents the regressor vector, with ̟i(.) being an RBF

and θi(i = 1, . . . , l) are distinct points in the state space

(also called centers). The elements of the regressor vec-

tor are chosen to be as the Gaussian function:

̟i(‖z−θi‖) = exp

[
−(z − θi)

⊤(z − θi)

σ2

]
, i = 1, . . . , l

(13)

where θ = [θ1, θ2, . . . , θl]
⊤ is the center vector of the

Gaussian basis function, and σ is the spread of the

Gaussian basis function. δf (z) is the approximation er-

ror that is bounded over Ω, such that |δf (z)| ≤ δ̄f ,

where δ̄f is an unknown constant.

Remark 4 Note that in RBF neural network approxi-

mation, the center parameters θi and the spread σ are
generally chosen according to the scope of the input

value. If the parameter values are badly chosen, the

Gaussian function will not be effectively mapped and

the RBF network will be invalid. In this paper, In order
to reduce computational burden, we deliberately set θi
and σ in the range of the input of the RBF and there-

fore we select the center θi and the spread σ values as

constants.
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3 Main results

The purpose of this section is to devise a control law
that stabilizes the system (8) in finite time. Given the

fact that the Z-system (8) contains unmatched uncer-

tainty, traditional adaptive techniques like the back-

stepping technique [21] and the multiple-surface sliding

[37] cannot be used, because the variation bounds of
di, i = 1, . . . , n are not assumed to be known. To solve

the problem of finite-time stabilization with unmatched

uncertainties, we propose a novel robust finite-time con-

trol scheme whereby a continuous recursive finite-time
stabilizing control law is derived from the adding power

integrator (API) technique [34] and the RBFNN tech-

nique.

In the following, to construct the finite-time con-

troller we first define a set of virtual controllers z∗1d, . . . , z
∗
nd

and new variables e1, . . . , en as follows

z∗1d = 0, e1 = z
1
q1

1 − z
∗ 1

q1

1d

z∗2d = −β1e
q2
1 , e2 = z

1
q2

2 − z
∗ 1

q2

2d

... (14)

z∗(n)d = −βn−1e
qn
n , en = z

1
qn
n − z

∗ 1
qn

nd

and choose the following controller and the adaptive

law:

u = −sign(φn(.))ξ(z̄)e
qn+1

˙̂
Θ = Ξ(z, en) (15)

where the parameters 1 = q1 > q2 > . . . > qm :=
4n+3−2m

4n+1 with m = 2, . . . , n, the gain parameters βi are

positive constant to be determined during the control
design. z̄ = [z⊤, Θ̂⊤]⊤, Θ̂ is the parameter estimation

that will be defined later, ξ(z̄) and Ξ(zn, en) are smooth

nonnegative functions to be also determined later.

The design procedure consists of n steps, through-

out the n− 1 steps, the virtual controllers z∗(m−1)d will

be designed. Upon the completion of step n, the fast
control term ξ(z̄) as well as the update law in (15) will

be determined.

Step 1: From (8) and the change of variables in

(14), one has ė1 = z2 + d1(z). For the first step of the

induction, we choose a Lyapunov function as

V1(z) =
1

1 + S
e1+S
1 (16)

where S = (4n − 1)/(4n + 1). The time derivative of

(16) gives

V̇1(z) = eS1 ė1

= eS1 z
∗
2 + eS1 (z2 − z∗2d) + eS1 d1(z)

By introducing the virtual control z∗2d = −β1e
S
1 , where

β1 is a design parameter, V̇1(z) rewrites:

V̇1(z) = −β1e
2S
1 + eS1 (z2 − z∗2d) + eS1 d1(z) (17)

In order to proceed with the second step of the design

procedure, one needs to reveal the error variable e2 into
(17). This can be done by upper-bounding the second

term of the righthand side of (17) by an expression that

involves the error variable e2. Using Lemma 2 and 3, the

second term of (17) can be upper-bounded as follows

eS1 (z2−z∗2d) ≤ 21−S |e2|
S |e1|

S ≤
1

2
|e1|

2S+C2|e2|
2S (18)

where C2 is a positive constant. In light of (18), the

time derivative of V1(z), can be written as follows:

V̇1(z) ≤ −β1e
2S
1 +

1

2
|e1|

2S + C2|e2|
2S + eS1 d1(z) (19)

Step 2: By examining the dynamics of e2, one has

ė2 = 1
q2
(z3 + d2(z))z

1
q2

−1

2 + S
q2
β1ė1e

S−1
1 z

1
q2

−1

2d . Clearly

from this dynamic equation, it becomes hard to design
a virtual controller z∗3d to stabilize e2 using standard

backstepping technique (i.e, by constructing quadratic

Lyapunov function). According to [18] and [35] , a C1,

positive definite and proper Lyapunov candidate func-

tion is constructed as

V2(z) = V1(z) +W2(z1, z2) (20)

with

W2(z1, z2) =

∫ z2

z∗

2d

(χ
1
q2 − z

∗ 1
q2

2d )1+S−q2dχ (21)

being differential, positive definite and proper function,
then similar to the proof in [26,45], it is easy to show

that the Lyapunov function candidate V2(z) is positive

definite, proper and satisfies V2(z) ≤ max{ 1
1+S , 2}(e

1+S
1 +

e1+S
2 ).

Note also from [26], that the function W2(z1, z2) has

the following property

∂W2(.)

∂z2
= e1+S−q2

2

∂W2(.)

∂z1
= −(1 + S − q2)

∂z
∗ 1

q2

2d

∂z1

∫ z2

z∗

2d

(χ
1
q2 − z

∗ 1
q2

2d )S−q2dχ

= −
∂z

∗ 1
q2

2d

∂z1
(z2 − z∗2d)

Hence, the derivative of W2(.) can be computed as fol-

lows

Ẇ2(.) = e2ż2 − ((z2 − z∗2d)
∂z

∗ 1
q2

2d

∂z1
ż1)

= e2(z3 − z∗3d)− (z2 − z∗2d)
∂z

∗ 1
q2

2d

∂z1
ż1 + e2z

∗
3

+e2d2(z) (22)
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In order to proceed further, the second and third terms

on the right side of (22) should be estimated. Using the

fact that

∣∣∣(z2 − z∗2d)
∂z

∗ 1
q2

2d

∂z1
ż1

∣∣∣ ≤ 21−q2eq22

∣∣∣∂z
∗ 1

q2

2d

∂z1
z2

∣∣∣

+21−q2eq22

∣∣∣∂z
∗ 1

q2

2d

∂z1
d1(z)

∣∣∣

Let the first lumped unmatched uncertainty be τ1 =

e2d2(z) + 21−q2β
1
q2

1 eq22 d1(z), it is then straightforward

to obtain

Ẇ2 ≤ e2(z3 − z∗3d) + e2z
∗
3d + 21−q2β

1
q2 eq22 |z2|+ τ1 (23)

According to Lemma 2, the third term of the right hand

side of (23) can be bounded such that

|z2| ≤ |e2 + z
∗ 1

q2

2d |q2 ≤ |e2|
q2 + β1|e1|

q2

which implies that

|e|q22 21−q2β
1
q2 |z2| ≤ 21−q2β

1
q2 |e2|

2q2 + 21−q2β1+ 1
q2 |e2|

q2

×|e1|
q2

≤ 22(1−q2)−1β2(1+ 1
q2

)|e2|
2q2 +

1

2
|e1|

2q2

+21−q2β
1
q2 |e2|

2q2

=
1

2
|e1|

2q2 + C̄2|e2|
2q2 (24)

where C̄2 = 22(1−q2)β2(1+ 1
q2

) + 21−q2β
1
q2 .

Combining (19), (23) and (24) yields the following

V̇2(.) ≤ −(β1 − 1)|e1|
2S + (C1 + C̄2)|e2|

2S

+e2z
∗
3d + e2(z3 − z∗3d) + τ1 (25)

At this stage, it is worth to note that q3 = q2 −
2

4n+1 ,
which implies that q3 = 1 + 2q2 = 1 + 2S. Therefore

by selecting β1 > n − 1 − κ, where κ > 0 is a design

parameter, and the virtual control z∗3d = −β2e
q3
2 with

β2 ≥ n− 2 + κ+ C2 + C̄2, we obtain

V̇2 ≤ −(n−2+κ)|e1|
2S−(n−2+κ)|e2|

2S+e2(z3−z∗3d)+τ1

(26)

From (26), it is clear that in the k-th step the time

derivative of Vk should also be upper bounded by two

negative terms, a crossing product and the lumped un-

certainties. This observation will be shown by inductive
steps as follows.

Step k (k := 3 . . . n−1): We proceed to the deriva-

tion of the virtual control by using an inductive argu-

ment. Suppose at step k−1, there exists a C1 Lyapunov
candidate function Vk−1(z1, . . . , zk−1), which is positive

definite, proper that verifies

Vk−1(.) ≤ max{
1

1 + S
, 2}

k−1∑

m=1

e1+S
m (27)

and a set of virtual controllers and coordinate transfor-

mations defined by

z∗1d = 0, e1 = z
1
q1

1 − z
∗ 1

q1

1d

z∗2d = −β1e
q2
1 , e2 = z

1
q2

2 − z
∗ 1

q2

2d

... (28)

z∗(k)d = −βk−1e
qk
k , ek = z

1
qk

k − z
∗ 1

qk

kd

where β1 > 0, . . . , βk−1 > 0 are positive design param-

eters such that,

V̇k−1(.) ≤ −(n− k + 1 + κ)

k−1∑

m=1

e2Sm + e
1+S−qk−1

k−1

×(zk − z∗kd) +

k−2∑

m=1

τm (29)

Now let us claim that (27) and (29) are true at step k.

To prove this claim, consider the following Lyapunov

candidate function

Vk(z1, . . . , zk) = Vk−1(.) +Wk(z1, . . . , zk) (30)

with

Wk(.) =

∫ zk

z∗

dk

(χ
1
qk − z

∗ 1
qk

dk )1+S−qkdχ (31)

From the previous step and according to [26,45] , it can

be observed that Wk(.) has the following properties:

∂Wk(.)

∂zk
= e1+S−qk (32)

∂Wk(.)

∂zm
= −(1 + S − qk)

∂z
∗ 1

qk

dk

∂zm

∫ zk

z∗

dk

(χ
1
qk − z

1
qk

dk )
S−qkdχ

(33)

also, it is easy to show that Vk(.) is C1, proper and

positive definite, which verifies

Vk(.) =≤ max{
1

1 + S
, 2}

k∑

m=1

e1+S
m
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The time derivative of Vk(.) satisifies

V̇k(.) ≤ −(n− k + 1 + κ)

k−1∑

m=1

e2Sm + e
1+S−qk−1

k−1 (zk − z∗dk)

+e1+S−qk
k zk+1 + e1+S−qk

k dk(z) +
k−1∑

m=2

∂Wk(.)

∂zm
żm

+
k−1∑

m=1

τm

≤ −(n− k + 1 + κ)

k−1∑

m=1

e2Sm + e
1+S−qk−1

k−1 (zk − z∗dk)

+e1+S−qk
k zk+1 +

k−1∑

m=2

∂Wk(.)

∂zm
zm+1 (34)

+
[
e1+S−qk
k dk(z) +

k−1∑

m=2

∂Wk(.)

∂zm
dm(z)

]
+

k−1∑

m=1

τm

If the k-th lumped unmatched uncertainty is defined

as τk = e1+S−qk
k dk(z) +

∑k−1
m=2

∂Wk(.)
∂zm

dm(z), then (35)
rewrites:

V̇k(.) ≤ −(n− k + 1 + κ)

k−1∑

m=1

e2Sm + e
1+S−qk−1

k−1 (zk − z∗dk)

+e1+S−qk
k zk+1 +

k−1∑

m=2

∂Wk(.)

∂zm
zm+1 +

k∑

m=1

τm(35)

Next we bound the second and the fourth term of the

right hand side of (35). First according to Lemma 3, it

holds that

|e
1+S−qk−1

k−1 (zk − z∗dk)| ≤ 21+S−qk−1 |ek−1|
1+S−qk−1 |ek|

qk

≤
|ek−1|

2S

2
+ Ck|e

2S
k | (36)

with Ck a positive constant. As for the fourth term, it

is easy to obtain the following:

∣∣∣∣
k−1∑

m=2

∂Wk(.)

∂zm
zm+1

∣∣∣∣ ≤ (1 + S − qk)2
1−qk |ek|

S

×

∣∣∣∣
k−1∑

m=2

∂z∗dk
∂zm

zm+1

∣∣∣∣

(37)

To further bound the fourth term in (35), we need to

conduct the analysis by inductive argument and assume

that at step k − 1, the following holds

∣∣∣∣
k−2∑

m=2

∂z∗dk
∂zm

zm+1

∣∣∣∣ ≤
k−1∑

m=1

γ(k−1)meSm (38)

where γ(k−1)m ≥ 0, then show the inequality also holds

for k. Therefore, we have
∣∣∣∣
k−1∑

m=2

∂z∗dk
∂zm

zm+1

∣∣∣∣ ≤
∣∣∣∣− β

1
qk

k−1

k−1∑

m=2

∂ek−1

∂zm
zm+1

∣∣∣∣ (39)

≤ β
1
qk

k−1

∣∣∣∣
z

1
qk

−1

k−1

qk−1
zk +

k−2∑

m=2

∂z
∗ 1

qk−1

k−1

∂zm
zm+1

∣∣∣∣

In light of the definition of the tracking error, it is worth

recalling that em = z
1

qm
m −z

∗ 1
qm

md and z∗m = −βm−1e
qm
m−1,

it can then be inferred that z
∗ 1

qm
m = −β

1
qm

m−1em−1 and

therefore the following inequality holds

|zm| ≤ |em + z
∗ 1

qm
m |qm ≤ |em|qm + βm−1|em−1|

qm (40)

Applying (40) to the inequality (40) and using the as-

sumption of the inequality (38) yields:
∣∣∣∣
k−1∑

m=2

∂z∗dk
∂zm

zm+1

∣∣∣∣ ≤ β
1
qk

k−1

[
1

qk−1

(
|ek−1|

1−qk−1 + β
1

qk−1
−1

k−2

×e
1−qk−1

k−2

)(
|ek|

qk + βk−1|ek−1|
qk
)

+

k−2∑

m=2

∂z∗dk
∂zm

zm+1

]

≤

k∑

m=1

γkm|em|S (41)

with γkm being a positive constant. Therefore,
∣∣∣∣
k−1∑

m=2

∂Wk(.)

∂zm
zm+1

∣∣∣∣ ≤ (1 + S − qk)2
1−qk |ek|

S

×

( k∑

m=1

γkm|em|S
)

≤
1

2

k−1∑

m=1

e2Sm + C̄k|ek|
2S (42)

with C̄k ≥ 0 being a positive constant.

Substituting (36) and (42) into (35) leads to

V̇k(.) ≤ −(n− k + 1 + κ)

k−1∑

m=1

e2Sm + (Ck + C̄k)|ek|
2S

+
1

2

k−1∑

m=1

e2Sm +
|ek−1|

2
+ e1+S−qk

k z∗k+1

+
k∑

m=1

τk + e1+S−qk
k (zk+1 − zd(k+1))

∗)

≤ −(n− k + κ)
k−1∑

m=1

e2Sm + (Ck + C̄k)|ek|
2S

+e1+S−qk
k (zk+1 − z∗d(k+1)) + e1+S−qk

k z∗k+1

+

k∑

m=1

τk (43)
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By introducing the virtual control z∗(k+1)d = −βke
qk+1

k

with βk selected such that βk ≥ n−k+κ+Ck+C̄k > 0,

we get

V̇k(.) ≤ −(n− k + κ)

k∑

m=1

e2Sm + e1+S−qk
k (zk+1 − z∗(k+1)d)

+
k∑

m=1

τk (44)

This completes the inductive proof.

step n: This is the final stage of the design where

the real control input appears in the dynamics. For this

step, according to the inductive previous steps, the n-th

part of the Lyapunov candidate function can be con-
structed accordingly

Vn(z1, . . . , zn) = Vn−1(.) +Wn(z1, . . . , zn) (45)

where

Wn(.) =

∫ zn

z∗

nd

(χ
1
qn − z

1
qn
n )1+S−qndχ (46)

Then it is obvious to conclude that Vn(.) is C
1, positive

definite and satisfies

Vn(.) ≤ max{
1

1 + S
, 2}

n∑

m=1

e1+S
m

From the above inductive argument, one can conclude

that

V̇n ≤ −κ
n−1∑

m=1

e2Sm + e1+S−qn
n żn + (Cn + C̄n)e

2S
n +

n−1∑

m=1

τm

≤ −κ
n−1∑

m=1

e2Sm + e1+S−qn
n (φnu+ dn(z))

+(Cn + C̄n)e
2S
n +

n−1∑

m=1

τm

≤ −κ

n−1∑

m=1

e2Sm + φne
1+S−qn
n u+ (Cn + C̄n)e

2S
n

+eqn+1

n

(
e1+S−qn−qn+1

n dn(z) + e−qn+1

n

n−1∑

m=1

τm

)
(47)

where Cn > 0 and C̄n > 0 are positive constants. De-

note by G the total lumped matched and unmatched
uncertainty defined as

G = e1+S−qn−qn+1

n dn(z) + e−qn+1

n

n−1∑

m=1

τm

Since G is unknown continuous function, it cannot be

directly compensated by the design of the control input

u. Based on the RBFNN approximation, the function

G can be modeled by RBFNN on the compact set Υ as

G = W
⊤

̟(z) + δG(z), ∀z ∈ Υ (48)

where W ∈ R
M is the weight vector, M > 1 is the NN

node number and δG(z) ∈ R is the approximation error
satisfying |δG(z)| ≤ δ̄G. Substituting (48) into (47), we

get

V̇n ≤ −κ

n−1∑

m=1

e2Sm + φne
1+S−qn
n u+ (Cn + C̄n)e

2S
n

+eqn+1

n (W
⊤

̟(z) + δG(z))

≤ −κ

n−1∑

m=1

e2Sm + φne
1+S−qn
n u+ (Cn + C̄n)e

2S
n

+[W⊤, δ̄G]

[
̟(z)

1

]
eqn+1

n (49)

By denoting Θ = [W⊤, δ̄G]
⊤ ∈ R

M+1 and ̟(z) =

[̟(z), 1]⊤ ∈ R
M+1, we have

V̇n ≤ −κ

n−1∑

m=1

e2Sm + φne
1+S−qn
n u+ (Cn + C̄n)e

2S
n

+Θ⊤
̟(z)eqn+1

n

≤ −κ
n−1∑

m=1

e2Sm + sign(φn)φmine
1+S−qn
n u

+(Cn + C̄n)e
2S
n +Θ⊤

̟(z)eqn+1

n (50)

Obviously, Θ is an unknown parameter and ̟(z) is
a known vector function. The actual control law can

therefore be designed as follows

u = −
sign(φn)

φmin
eqn+1(n̺+ Θ̂⊤

̟(z))

= −sign(φn)ξ(z̄)e
qn+1 (51)

where ξ(z̄) = φ−1
min(n̺+ Θ̂⊤

̟(z)), ̺ > 0 is a designed

parameter such that ξ(z̄) > 0 and Θ̂ is the estimation of

the unknown parameter Θ. Substituting (51) into (50),

it gives

V̇n ≤ −κ
n−1∑

m=1

e2Sm + (Cn + C̄n)e
2S
n − n̺e2Sn

+eqn+1

n Θ̃⊤
̟(z) (52)

where Θ̃ = Θ − Θ̂ is the estimate error of the matched

and unmatched uncertainty. It is easy to see that
˙̃
Θ =

−
˙̂
Θ. Then, to be able to design the parameter update

law for Θ̂, we will consider the Lyapunov function can-
didate

VT = Vn(.) +
1

2
Θ̃⊤Γ−1Θ̃ (53)
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where Γ is a positive definite diagonal matrix. Taking

the time derivative of (53) along the solutions of (52),

results in

V̇T ≤ −κ
n−1∑

m=1

e2Sm + (Cn + C̄n)e
2S
n − n̺e2Sn

+eqn+1

n Θ̃⊤
̟(z)− Θ̃⊤Γ−1 ˙̂Θ

≤ −κ

n−1∑

m=1

e2Sm + (Cn + C̄n)e
2S
n − n̺e2Sn

−Θ̃⊤(Γ−1 ˙̂Θ − eqn+1

n ̟(z)) (54)

From (54), one can choose the adaptive law as follows:

˙̂
Θ = Γ̟(z)eqn+1

n := Ξ(z, en) (55)

which results in

V̇T ≤ −κ

n−1∑

m=1

e2Sm − (n̺− Cn − C̄n)e
2S
n (56)

We are now ready to announce the main result of this

paper.

Theorem 1 Consider the n-th order underactuated sys-

tem in the X-space represented by (6), through the co-

ordinate transformation (8), with Assumptions 2.1-2.2

and under the finite time controller (51) and the adap-

tive law (55), the closed-loop of the underactuated sys-
tem is finite time stable in the sense of Definition 2.1

and the parameter estimation Θ̂ is bounded.

Proof The proof is conducted similarly to the analysis
presented in [14]. First to ensure (56) is negative defi-

nite, one can select ̺ such that such that n̺−Cn−C̄n >

κ, then (56) rewrites

V̇T ≤ −κ

n∑

m=1

e2Sm (57)

Obviously, from (57) it can be inferred that ei, i =

1, . . . , n and Θ̃ are bounded, so does Θ̂ because Θ is

a constant vector. Moreover, it can be seen from (55)

that Θ̂ does not change its sign because
˙̂
Θ is nonneg-

ative. Therefore, without loss of generality, we assume

‖Θ̂‖1 ∈ [0, C], where C is a constant depending on ini-

tial values of ei(0) and Θ̂(0).

Take the Lyapunov function

Ṽ (e, Θ̂) = VT −
1

2
Θ̃⊤Γ−1Θ̃ := Vn(.)

which is positive definite for all e1, e2, . . . , en and for

any fixed Θ̂.

Noting that Vn(.) ≤ max{ 1
1+S , 2}

∑n
m=1 e

1+S
m and

using Lemma 2.2, we have

Ṽ
2S

1+S ≤ max{
1

1 + S
, 2}

n∑

m=1

e2Sm (58)

Define ζ0(en, z) = eS+qn−1
n ‖̟(z)‖1 which is continuous

with ζ(0, Θ̂) = 0.

By (57) and (58)

˙̃V ≤ V̇T + Θ̂⊤Γ−1 ˙̂Θ

≤ −κ

n∑

m=1

e2Sm + eqn+1Θ̂⊤
̟(z)

≤ −
κ

2

n∑

m=1

e2Sm −
κ

2
e2Sn + e2S‖Θ‖1ζ0 (59)

≤ −
κ

2

n∑

m=1

e2Sm −
κ

2
e2Sn

(
1−

2(C + Θ̄)

κ
ζ0

)

≤ −
κ

2max{ 1
1+S , 2}

Ṽ
2S

1+S −
κ

2
e2Sn

(
1−

2(C + Θ̄)

κ
ζ0

)

where ‖Θ‖1 ≤ Θ̄, with Θ̄ is an unknown bound. De-

fine a continuous function V̄ (en, z) =
2(C+Θ̄)

κ ζ0 which

satisfies V̄ (0, z) = 0. It is easy to show then that for a

given ‖Θ̂‖1 ∈ [0, C], there exists a constant ǫ > 0 such

that for any e ∈ Υ =
{
(e, Θ̂) : Ṽ (e, Θ̂) ≤ ǫ

}
, V̄ < 1

and therefore e2Sn (1 − V̄ ) > 0 because e2Sn is positive.

Therefore once (e, Θ̂) ∈ Υ , it will never escape.

From the above analysis two cases for finite time

convergence are considered.

If the initial conditions are (e(0), Θ̂(0)) ∈ Υ , it is

straightforward to show that ˙̃V ≤ − κ
2max{ 1

1+S
,2}

Ṽ
2S

1+S ,

since α := 2S
1+S < 1 then Ṽ is finite time convergent

according Lemma 2.1. Therefore e = [e1, e2, . . . , en]
⊤

becomes 0 within time T such that

T ≤ 2max{
1

1 + S
, 2}

Ṽ (e(0), Θ̂(0))1−α

κ(1 − α)

If in the seconde case, the initial conditions (e(0), Θ̂(0)) /∈

Υ , then the first thing to do is to estimate the maxi-

mum reaching time of (e(t), Θ̂(t)) to Υ . Before the state
enters Υ , we have Ṽ (e, Θ̂) > ǫ, therefore

VT (e(0), Θ̂(0)) ≥ VT (e(0), Θ̂(0))− VT (e(T2), Θ̂2(T2))

≥

∫ T2

0

κ

n∑

m=1

e2Sm ds

≥

∫ T2

0

κ

2max{ 1
1+S , 2}

Ṽ
2S

1+S ds

≥
κ

2max{ 1
1+S , 2}

ǫ
2S

1+S T2
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mg
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Fig. 1 Schematic view of the rotary inverted pendulum [32]
.

Therefore, (e, Θ̂) will enter Υ within T2:

T2 ≤
2max{ 1

1+S , 2}VT (e(0), Θ̂(0)) + Θ̂(0)⊤ΓΘ̂(0)

κ ∗ ǫ
2S

1+S

after the reaching time T2, the state will be in Υ . It will
however take

T1 ≤ 2max{
1

1 + S
, 2}

ǫ1−α

κ(1− α)

to attain the origin, thus e = [e1, . . . , en]
⊤ = 0 within

T ≤ T1 + T2, therefore the closed-loop of the underac-

tuated system is finite time convergent. This completes

the proof.

4 Simulation results

In this section, the effectiveness and the robustness of

the proposed adaptive finite time controller augmented

by the RBFNN is evaluated through two simulation

cases on a rotary inverted pendulum (see Fig. 1), whose
system dynamics are described by the following state

space representation

ẋ1 = x2

ẋ2 = f2(x) + b2(x)u

ẋ3 = x4 (60)

ẋ4 = f4(x) + b4(x)u

where, we designated by [θ, θ̇, φ, φ̇]⊤ = x⊤ = [x1, x2, x3, x4]
⊤

with θ is the angular displacement of the arm and φ is
the angular displacement of the pendulum and f2, f4, b2
and b4 are defined in (61):

with ∆ = (J + ml2)(I + ml2 sin(x3)
2) + mJL2 +

m2l2L2 sin(x3)
2, m and J are respectively the mass

and the moment of inertia of the pendulum, l is the

distance of the center of mass of the pendulum to its

end point, I is the moment of inertia of the arm and

Fd is the external disturbance acting on the pendu-

lum. For convenience, the numerical values of the main

physical parameters of the rotary inverted pendulum

are provided in Table 1. Interested readers can refer
to the literature [16] for more details. The initial con-

ditions are chosen as x = [−π
4 , 0,

π
3 , 0]

⊤, the desired

state is xd = [0, 0, 0, 0]⊤. The control gains are cho-

sen to be κ = 10, β1 = 13, β2 = 12, β3 = 11, β4 = 20
and Γii = 500. Different simulation scenarios have been

considered. The first simulation scenario is the control

of uncertain cart-pole system without external distur-

bances. The second one considers the case of an un-

certain cart-pole system with the presence of external
disturbances.

1. Scenario 1: Uncertain rotary inverted pendulum

system without external disturbances

In this scenario, we assume that the system dynam-
ics is completely unknown. The obtained simulation

results are shown in Figures 2 to 3. It is clear in

Figure 2 how the arm and the pendulum angles con-

verge in finite time to zero despite the uncertainties

present in the system dynamics. The control effort
being deployed is shown in Figure 3(a). Figure 3(b)

shows the convergence to zero of the state variables

in the Z-space. Clearly the algorithm performs well

in the presence of model parameters’ uncertainties.
2. Scenario 2: Uncertain rotary inverted pendulum

system with external disturbances

In this simulation scenario, on top of the uncertain-

ties that the system dynamics contains, a periodic

perturbation d(t) = sin(2t) is added as an exter-
nal excitation to the rotary inverted pendulum in

order to test the robustness of the proposed con-

trol approach. The obtained simulation results are

depicted in Figure 4 and Figure 5. From Figure 4,
it can be noticed that despite the existing uncer-

tainties and the considered external disturbance, the

controller is able to restore the system to its desired

values. The control effort after the application of the

disturbances is shown Figure 5(e). Clearly the con-
trol input remains with reasonable amplitude even

with the external perturbation. The convergence of

the state variables in Z-space are shown in Figure

5(a)-(d). From these figures it can be seen that our
control design is robust to tolerate significant varia-

tion of the system parameters as well as the external

disturbances.
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f2(x) =
(J +ml2)mlx4[Lx4 sin(x3)− lx2 sin(2x3)]

∆
−

m2l2L cos(x3)[g sin(x3) + 0.5lx2
2 sin(2x3)]

∆
−

mlL cos(x3)

∆
Fd

b2(x) =
J +ml2

∆

f4(x) =
ml sin(x3)[(I +mL2l sin(x3)

2)g −mlL2x2
3 cos(x3)]

∆
−

ml2x2 sin(2x3)x2[mlLx4 cos(x3) + 0.5x2(I +mL2 + l2 sin(x3)
2)]

∆

+
(I +mL2 +ml2 sin(x3)

2)

∆
Fd

b4(x) = −
mlL cos(x3)

∆
(61)

Table 1 Physical parameters of the rotary inverted pendulum

Parameter Nominal Value (unit) Added Uncertainty
g 9.8ms−2 0
m 5.38 × 10−2kg 0.0263 + 0.01 sin 40t
I 1.75 × 10−2kg.m2 0.01
J 1.98 × 10−4kg.m2 0.01
l 0.113m 0.07 + 0.01 sin 2t
L 0.215m 0.07 + 0.01 sin 2t
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Fig. 2 System response arm and pendulum angle versus
time.
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5 Conclusion

In this paper, the problem of finite time stabilization

was addressed for the control of a class of uncertain un-
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time.
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deractuated mechanical systems. By integrating a frac-

tional power feedback control method with an adaptive

RBFNNs scheme, the uncertainties in the system can
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be effectively handled and finite time stabilization is

achieved. Future work is to extend the current design

technique to tracking control problem of underactuated

systems operating under modelling uncertainties and

stochastic perturbations with fault-tolerant control. Ef-
fective strategies that could handle all these challenges

can be found in [25] and [41]. However, the solutions

presented so far in these works, can only ensure asymp-

totic stability. Our endeavor will be to introduce finite-
time convergence to stochastic system model.
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