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MultiStream: A Multiresolution Streamgraph
Approach to Explore Hierarchical Time Series

Erick Cuenca, Arnaud Sallaberry, Florence Y. Wang, and Pascal Poncelet

Abstract —Multiple time series are a set of multiple quantitative variables occurring at the same interval. They are present in many
domains such as medicine, nance, and manufacturing for analytical purposes. In recent years, streamgraph visualization (evolved
from ThemeRiver) has been widely used for representing temporal evolution patterns in multiple time series. However, streamgraph as
well as ThemeRiver suffer from scalability problems when dealing with several time series. To solve this problem, multiple time series
can be organized into a hierarchical structure where individual time series are grouped hierarchically according to their proximity. In this
paper, we present a new streamgraph-based approach to convey the hierarchical structure of multiple time series to facilitate the
exploration and comparisons of temporal evolution. Based on a focus+context technique, our method allows time series exploration at
different granularities (e. g., from overview to details). To illustrate our approach, two usage examples are presented.

Index Terms —Streamgraph, Stacked Graph, Time Series, Aggregation, Multiresolution Visualization, Overview+detail, Focus+context,
Fisheye

F

1 INTRODUCTION

A time series is a sequence of quantitative values takentask, there are many well-known interaction techniques that can
successive points in time. Sometimes, the evolution of these valbesadapted to stacked graph based visualization such as: over-
over time contains patterns that are useful for data analysis.view+detail [5], focus+context [5], sheye [6], zooming [7], etc.
common way to plot it is over a 2D Cartesian coordinates system, In this paper, we propose the design of a new streamgraph-
where the horizontal axis encodes the temporal dimension whilased approach to convey the hierarchical structure of time series.
the vertical axis encodes the quantitative dimension. Usually, liore precisely, our approach combines various interaction techni-
charts, scatterplots, and area charts are well adapted to plotqales to expand the advantages of a streamgraph representation
individual time series (interested readers may refer to Hagiesand thus, facilitate the exploration and comparisons of time series.
al. [1]). Multiple time series are de ned by a set of quantitativeds a result, the end-user is provided with a dynamic tool to
variables occurring at the same interval (set of time series). @aplore different levels of abstraction in the hierarchical structure
deal with multiple time series, different visual representations havétime series. Fig. 1 illustrates our approach. A demo is available
been de ned, such as stacked graphs [1], ThemeRiver [2], [3], aathttp://advanse.lirmm.fr/multistream/. The main contributions in
streamgraphs [4]. our work are:

A hierarchical structure in multiple time series can be expres-
sed as an ordered set of time series, where individual time series
are grouped hierarchically according to their proximity. Many
datasets can be organized in a hierarchical structure. For example,
in music evolution, genres can be the result of Hugregation
of several sub-genres (e.g., metal genre is the aggregation of
black metal, doom metal, alternative metal, and so forth) or the
disaggregatiorin different sub-genres (e. g., jazz genre can lead to
different sub-genres such as classic jazz, soul jazz, contemporary
jazz, and so on). Current visual representations such as stacRed RELATED WORK

graphs [1] or streamgraphs [4] model individual time series bdfeyeral visualization techniques were proposed to display multiple
they suffer from scalability problems when the number of timgme series and their evolution over time. The interested readers
series increases. To overcome this problem, multiple time seriggy refer to Aigneret al. [8] which discuss several visualiza-
can be aggregated into a hierarchical structure to depict gy techniques for time-oriented data. For instance, Interactive
information at different levels of abstraction. Horizon Graphs [9] and Qualizon Graphs [10] use a split-space
When time series data grow, a technical challenge arises: h@hnique, where horizontal space is divided in order to show each
to interact and extract valuable information. To help users in thigne series in a reduced area. In this paper, we focus on stacked
graphs-based visualization and interaction techniques, as well as a
Erick Cuenca and Pascal Poncelet are with LIRMM and the University (ﬂieramhical structure incorporated in the visual representation.

Montpellier, France. E-mail: rstname.lastname@lirmm.fr.

Arnaud Sallaberry is with LIRMM and the Paul ¥y University of . o
Montpellier, France. E-mail: arnaud.sallaberry@lirmm.fr. 2.1 Stacked Graphs and Streamgraphs Visualization

Florence Y. Wang. is with CSIRO, Australia. E-mail: o- A widely followed approach to represent temporal variation in
rence.wang@csiro.au. multiple time series is using stacked graphs [1]. They feature a

A new streamgraph-based approacho convey the hier-
archical structure of multiple time series, in order to ease
the exploration and comparisons of temporal evolution
patterns.

A multiresolution view to depict the hierarchical organi-
zation of time series at different levels of abstraction (i. e.,
aggregation/disaggregation of time series).
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Fig. 1. (a) An overview depicts the time series at a high level of abstraction. (b) Multiresolution view depicts the time series at different levels of
abstraction. (c) Controller links the overview and the multiresolution view. (d) Hierarchy manager allows navigating through the hierarchical structure
in the time series.

straight baseline (commonly horizontal axis) to stack time serigs2 Hierarchical Structure in Time Series

on top of each other. Each time series is visualized as a coloigghther technique to address the scalability issue in stacked
layer!, and thickness represents the value at the given time StgPaphs-based visualization is organizing the time series in a
Finally, the direction of the layers from left to right indicatesyierarchical structure, where individual time series are grouped
the evolution over time, and the thickness of the aggregatggcording to their proximity. Hence, the aggregated levels should
layers re ect the sum of the individual time series. For instancgeg equal to the sum of the corresponding elements of the group
TIARA [11] adopts a stacked graphs representation to visualig€jy. 2). The grouping of time series depends on their nature. Hier-
thematic content. NameVoyager [12] uses stacked graphs in gfthical organization of time series is used in various domains. For
dition to interaction techniques to explore trends in a historicg{stance, Binx [19] analyzes the behavior of currency exchange by
dataset of baby names. grouping them over time. In BookVoyager [20], a stacked graphs
Several baseline algorithms are supported in a stacked graphews the history of book sales organized into a hierarchy of cate-
representation. For example, ThemeRiver [2], [3] is computefbries and subcategories. ManyEyes [21] proposes a “stack graph
in a central baseline parallel to the temporal axis where layefts categories” to show the categorization of the US historical
are stacked in a smooth curved transition simulating the ow dé&deral budget into different departments, such as overall defense,
a river. OpinionFlow [13] adopts ThemeRiver to detect opinioatomic weapons, and so forth. In TouchWave [22], a streamgraph
propagation patterns. EvoRiver [14] and TextFlow [15] mergshows a listening history of music organized in a hierarchy by
ThemeRiver with interaction techniques in the document topgenres, artists, and songs. These approaches use the layer ordering
analysis eld. On the other hand, streamgraphs [4] is computedaind colors to relate individual time series in a group.
a similar central baseline to ThemeRiver, however, it useggle More recently, the hierarchical organization has been used in
offset that attempts to minimize the weighted change in slope wiitipic-based domains. For instance, LensRiver on NewslLab [23]
relation to layer thickness. This difference makes streamgraplores the relationships among the keywords of topics organized
more readable and natural than ThemeRiver ows. Streamgraphsa hierarchical structure. HierarchicalTopics [24] develop a
are used in some domains such as body movement [16] or deitualization based on ThemeRiver to depict the temporal patterns
stream visualization [17]. of topics organized in categories. RoseRiver [25] extends the
Like other visualizations, stacked graphs-based representatidgstFlow [15] approach to analyze the relationships among topics
present scalability issues. Stacking many time series one on topfbfin evolutionary hierarchical structure. In order to navigate and
another increases visual clutter, which makes it harder to comp&plore the hierarchy, interaction techniques are proposed.
and interact with the layers. In order to solve this problem,
STAC [18] proposes to use multiple coordinated views to analyze3 |nteraction Techniques
individual time series and their aggregation. Some approac
overcome the scalability problem by organizing time series i
hierarchical structure.

r]ﬁ?eraction techniques are used to enhance the effectiveness of
N visualization. There are many, such aserview+detail [5],

focus+contex{26], graphical zoomind7], semantic zoomings

in [27], brushing&linking [28], etc. Each of these techniques

1. In this paper, we use the teriayer to refer a time series in a stackediNteracts with the data in different ways. For instance, graphical
graphs-based visualization. zooming is a technique that consists in showing a speci ¢ area
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analysis of the hierarchical structure of time series and depict the
different levels of abstraction.

t | TABLE 1
meta Comparison of various stacked graphs-based approaches and
interaction techniques to display hierarchical time series.

W Approach Hierarchical Overview Zoom Fisheye
pp time series +detail view

TIARA [11] X X
NameVoyager [12] X
EvoRiver [14] X
@ 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 TextFIOW 15] X
STAC [18 X
W BookVoyager [20] X X
[ sltemative mela T’ fovermal— | [Wenyees 21 x X
w HierarchicalTopics [24] X X
/\m TouchWave [22] X X X
NewsLab [23] X X X
black metal Our approach X X X X

m

Fig. 2. (a) A streamgraph shows a high level of abstraction in a hierarchy.
(b) A streamgraph shows full-details in the hierarchical structure.

3 REQUIREMENT ANALYSIS

Time series data is common in many domains such as medi-
cine [32], nance [19], etc. By analyzing time series, interesting
guestions can be proposed to extract relevant information from
in detail. Nevertheless, one of the drawbacks of zoom is théile data. For example, in a marketing company, tracking affective
by focusing in, the overview is lost, and when zooming outnformation embedded in social media could help monitor people's
the details are no longer available. The focus+context approaelsponses for a campaign. In that case, time series of affective
overcomes the zooming issue by allowing the user to see batformation (i. e., emotion states) can be classi ed according to an
details and overview in one view. Distortion techniques have beaffective model (e. g., Russell's circumplex model, used in [33]).
proposed to show details in a magnifying area, and the contextAs a result, a hierarchical structure of affective information is for-
a gradually smaller area (e.g., PerspectiveWall [29], sheye [6fned. In this classi cation, th@leasant-activatiorgroup consists
elastic presentation space [30]). Sometimes, this distortion causéhappy, elated, excited, and aleeimotions. Theunpleasant-
confusion in users. The overview+detail technique overcomes thisactivationgroup consists ofad, depressed, bored, and lethargic
confusion by displaying two separate views; one for the overviesmotions. A basic question is how to represent this hierarchical
and one for the details. Thus, the user can focus on the detaitganization to enhance the perception of the affective information
without losing the sense of the overall context. over time. The user may also be interested in comparing the
Stacked Graphs-based approaches combine interaction techffective information evolution through the month during which
ques to enhance their interfaces and deal with multiple time serigge campaign was launched (e. g., during summer sales). Finally,
Table 1 shows a comparison of different interaction techniquehe user could be interested in displaying the hierarchical structure
Some of these techniques allow exploration in a hierarchical this affective information during the campaign period.
structure. For example, BookVoyager [20], ManyEyes [21], and In order to effectively answer such questions, we identify the
HierarchicalTopics [24] integrate a separate view (e.g., trefllowing list of requirements:
control) to allow the user to navigate the hierarchical structure [R1] Visualize temporal patterns over the entire time
of time series. Tree-control represents the hierarchy so as to lweries: This requirement refers to display the evolution of time
time series and show them in a stacked graphs. NewsLab [23] useses over time in order to reveal patterns, trends, peaks, etc. In
a structure-based bushing approach [31] to navigate a set of togfes previous example, the user can view the distribution of the
in a hierarchical organization. HierarchicalTopics [24] uses a treaffective information at a high level of abstraction. Thus, the user
control to explore and merge topics in the hierarchical structure.iable to detect where time series conveys temporal patterns.
contrast, TouchWave [22] proposes a touchable stacked graphs to  [R2] Select a time segment of interest: This requirement
interact with the hierarchy and help users with a task (e. g., layefers to enabling the selection of a time segment for further
ordering, layer ltering, and layout changing). analysis. In the previous example, the user can focus in on the
As shown in Table 1, zooming techniques are widely usedonth of May (beginning of the summer sales) to compare the
to explore details in stacked graphs-based approaches. In a hiéstribution of affective information structure (e. g., happy, elated,
archical structure, zooming allows the user to depict the levels efcited, alert, etc.).
abstraction. However, when using this technique, only one level of [R3] Handling selected time segments at different levels of
the hierarchy is displayed [20], [21], [22], [24]. TIARA [11] usesabstraction: This requirement refers to displaying the hierarchical
a sheye to display details in a selected topic. In TouchWave [22}ructure of time series at different levels of detail. In the previous
a sheye view is used to focus in on a time segment, but algxample, the user selects the month of May to depict the distribu-
to show the same level in the hierarchy in both regions (i. dipn of the affective information in a full-detail level (e. g., happy,
detail and context). LensRiver on NewsLab [23] allows to changgated, excited, alert, etc.). In order to maintain the cognitive map,
the levels of detail by layer by using a set of interactions. Oureceding and subsequent periods are displayed at a high level of
work aims at combining different interaction techniques (e. gapstraction (e. g., pleasant-activation and unpleasant-deactivation
overview+detail, zooming, and focus+context) to enhance thevels).
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The above list of requirements attempts to meet the commuapresents the interval of time to display the lowest level of the
and specialized tasks in the visual analysis of time series dataskisrarchy. In this case, the sub-genres of the metal and jazz cate-
Since these datasets are present in many domains, the intergtaies (e. g., black metal, doom metal, classic jazz, contemporary
users are vast. Our intention is to allow the use of our approachjbyz, and so forth). In the detailed-area, the time series related to

the general public, as well as specialized users. a group are colored with the same category family hue but with a
different level of saturation. Finally, thieansition-area(Fig. 4b)
4 VISUAL MAPPINGS AND FUNCTIONALITY represents the time segment dedicated to the transition between

hi ion d i isualizati di . hni these two levels of abstraction. In this area, a color interpolation
This section describes our visualization and interaction tec NIQUES,pplied to preserve the context of this transition.

Our exploration process follows the principle of thisual infor-
mation seeking mantraroposed by Shneiderman: “overview rst
zoom and lter, then details on demand” [34].

The time intervals in the multiresolution view are distorted to
'depict different levels of details over time (see horizontal axis in
Fig. 4). This distortion is related to the focus+context approach
where details are shown in a magnifying area and the context in a
4.1 Design Rationale Summary smaller area. Thus, the length of the time steps in the detailed-area
Based on the requirement analysis, we propose a new vis(fa. 4c) are larger than the length of the time steps in the context-
approach to facilitate the analysis of hierarchical time series. Itagea (Fig. 4a) and the transition-area (Fig. 4b). As our visualiza-
based on four interactive components: overview, multiresolutidion uses a 2D Cartesian coordinates system, the transition-areas
view, controller, and hierarchy manager. Theerview(Fig. 1a) (Fig. 4b) implement a Cartesian distortion function to provide a
shows time series in a high level of abstraction in order to facilitaggnoothing effect for aggregation/disaggregation from the context-
recognizing occurrences and evolution of patterns over fiRdg. areas to the detailed-area, and vice versa (the distortion function
The multiresolution view(Fig. 1b) conveys time series at differentis described in Sec. 5)
levels of detail[R3]. The controller (Fig. 1c) allows to select an  Vertical scaling in the multiresolution view (see vertical axis in
interesting time segment (e.g., when a peak occurs) and updaig 4) depicts the hierarchical structure, where categorical colors
the multiresolution vieWR2][R3]. Finally, thehierarchy manager are used to discretize time series in the hierarchical organization.
(Fig. 1d) allows to explore and navigate through the differefty giving each layer a separate hue, we convey a distinction
levels of the hierarchy over a tree layd&3]. These four visual between them and decrease ambiguity. Various approaches use the

elements are described in detail below. order of layers in a streamgraph to enhance the effectiveness of the
visualization. For example, in NameVoyager [12] the ordering of
4.2 Overview the layers is alphabetical because they emphasize the visualization

As described in related work, stacked graphs representation is V\Pé/”name. In our approach, the order of layers provides a way of

adapted o depit tme series and reveal patems overfmtp (S S BN B T I
We adopt a streamgraph approach to show more readable t 9 P 9 9 P gory.

. . . . ; LFP% vertical axis is not distorted in order to avoid loosing the con-
series using a river ow metaphor (Fig. 3). We represent multiple R . .

. . : . . text of the overall distribution, which would make the comparison
time series as colored layers in a 2D Cartesian coordinates syst m

. . 2 ) . If Cult.
where the time dimension is encoded in a discrete scale along the

. . o . L Contextual information is always necessary to enhance the
horizontal axis and quantitative dimension is encoded along the . . - . -
vertical axis. expressiveness of a visualization. Sometimes, the legibility pro-

Fig. 3 shows a streamgraph of the entire multiple time seriglsem linked to the number of layers in a streamgraph makes it

; . ; mpossible to set a name for all of the layers. Thus, our approach
at a high level of abstraction. The highest level represents t X ; ’
g 9 P uses a brute-force labeling layers algorithm [4] to nd the best

top at the hierarchy and the thickness of a layer at this lev . )
conveys the sum of time series in the group at each given ti eIﬂce to plot the label and avoid overlap. The font size of the

step. The overview conveys temporal patterns and distinguis@%nflzi;2C?::Sbg[gse(:attk?eq\lj;rl;tgyv\;ﬁpgeesit&dét?muZ’ ;T:pb'gl_gi;:he

their evolution over imgR1]. In order to explore and display thelabeling is available in the detailed-area to convey at a glance
different levels of the hierarchjR3], we design a multiresolution which layer has the highest value in this interval of time (Fig. 4c).

view. The distribution of areas in the multiresolution view allows the
user to display the different levels of granularity in a hierarchy.
As a result, the user observes the highest and lowest levels of
The multiresolution view is based orfacus+contexapproach to the hierarchy in a single view. In order to handle the intervals of
show a part of the data in detail. This view depicts time series @ifme of the detailed-area, context-areas, and transition-areas, we
different levels of granularitfR3]. Our goal is to show the top designed aontroller that allows customizing them according to
(Fig. 2a) and the lowest level (Fig. 2b) of the hierarchy in ongser requirements.
view. For this purpose, we propose a view formed by areas where
the granularity of time series varies.

Fig. 4 shows the multiresolution view representing the exarfl:4 ~Controller
ple of the evolution of musical genres presented in the introductd®ince multiple time series datasets are often large, ltering out
section. In the multiresolution view, we de ne three types of areasrelevant data helps users to focus on interesting data. Based on
context-area, detailed-area, and transition-area.cbméext-area the brushing&linking technique [28], we designedantroller to
(Fig. 4a) is the interval of time where time series are displayediateract with the overview along the horizontal axis (i.e., time
a high level of abstraction. In this case, metal and jazz categor@imension) and focusing on interesting data according to users re-
are plotted using two different hues. THetailed-area(Fig. 4c) quirementg§R2]. This movable tool is designed over the overview

4.3 Multiresolution View
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Fig. 3. An overview depicting the top level of the hierarchy to conveys temporal patterns over time.

levels of abstractiofR2][R3]. Fig. 7 shows the projection of areas
selected by the controller over the multiresolution view. Dragging
any area of the controller updates the multiresolution view. This

jazz j animation helps the user to conserve a mental map of the views
(i. e., overview and multiresolution view).
doom metal
b b
Fig. 4. Multiresolution view. (a) context-areas depict the top level of the @
hierarchy, (c) detailed-area depicts the lowest level of the hierarchy, and

(b) transition-areas depict the transition between the context-area to '™ b
detailed-area, and vice versa.

w
to handle the intervals of time used by areas in the multlresoluu@ q : m R
b

view (i.e, detailed-area, context-areas, and transition-areas).
Fig. 5 shows the design of the controller. Vertical interactive

lines control the position and extension of the areas. Context-
areas are handled by the blue lines (Fig. 5a). Transition-areas@%%m
handled by the red lines (Fig. 5b). Finally, the grey lines handle a ‘

the detailed-area (Fig. 5c). All of the lines in the controller can be a

expanded and collapsed interactively at regular intervals of tm% 6. Using the controller. (a) Detailed-area is dragged to the left.

(constraints are described in Sec. 5). (b) Detailed-area is expanded to the right. (c) Right transition-area is
expanded to the right. (d) The position of the context-areas are locked
by clicking the padlock icon.

Fig. 5. Controller design. (a) context-areas, (b) transition-areas, and (c)
detailed-ar ea are handled by colored lines that can be expanded and
collapsed interactively. Detailed-area remains colored in grey reminding
the viewer the focus point.

As the lines guide the position of the areas, we manage thg’;‘,’;‘;ﬁ'n";: A oIl

interactivity between them. When dragging the mouse over t
detailed-area, all other areas dynamically update, keeping their
length. For instance, Fig. 6a shows the detailed-area draggeditb 7. At the bottom, the controller shows the areas displayed in the
the left, and the other areas updated in their new position afrglljltlresolutlon view. At the top, the multiresolution view, result of the

. . ! . controller projection. Colored projection guidelines help the viewer to
moving left. In Fig. 6b the detailed-area is expanded to the rigiiow these projections.
by dragging the right grey vertical line. It updates the length of the
adjacent areas (transition and context areas) in the same directionOur approach allows changing the layout baseline. The layout
When a transition-area or a context-area is expanded or collapdgddefault is a streamgraph with a central baseline but a user can
only the length of that area is updated. Fig. 6¢ shows a transitidransition smoothly to a stacked graphs layout to compare layers
area expanded to the right. Note that all other areas remain stafiég. 17a).
The position of context-areas can be locked by clicking on the pad- In a streamgraph, it is often dif cult to see layers with smaller
lock icon below the context lines. Fig. 6d shows the two contextalues among layers with much larger values. We implemented
areas locked, and the detailed-area dragged to the right. Notceertical ruler to overcome this problem and to visualize the
that when the detailed-area is dragged, the length of transiti@xact value encoded for a given time series at a given time step
areas is updated, but not the length of the context-areas. WiHig. 8). While the mouse hovers over a layer, the saturation
the controller, the user can view the time segments at differasttanges and the vertical ruler appears, producirigodip box
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with the temporal and quantitative information at that time step. blue ~ :blues
. . . . . . . — azz
Clicking on this tooltip box will bring up a panel, showing more S ot v
detailed information about the raw data. music i Ormb
r'n'b-() @ soul
industrial " @) industrial metal
gothic Qindustrial
B 6b|ack metal
heavy —~ metal () © death metal
music © heavy metal
punk
—~ @ new wave
rock punkfwave () psychobilly
frusie classic ~ Mp&lﬁ“c‘g@? e
music rock psyehedelic
Fig. 8. Tooltip-box shows the value at every time step in the streamgraph. genres rock
rock — @ indie rock
indie “\“\\\“@ alternative
. pop P3P
4.5 Hierarchy Manager music @ @ indie pop
Two levels of the hierarchical structure are displayed on the folk and coumry
Multiresolution view: thecontext-areasshow a high level of country ©folk
abstractionj.e. streams from a high level of the hierarchy, while o @ s Levels of
the focus-areashows detailsi.e. streams from a low level of the jamaican @ © reggae abstractions:
hierarchy. When the depth of the hierarchy is 2, then the two levels @"”‘b _ z
are displayed. However, most hierarchical structures contains more PO : g';'hOP £ high level
than 2 levels. To deal with deeper hierarchies, and thus better | _ -
t [R3], we propose ierarchy manager slectronc® @ dance O % house 1 8 el
Fig. 9 shows the musical genres classi cation represented in 'ﬁ“j‘fmfn 00 5

the hierarchy manager. In this view, we adopt a rooted tree layout
as such rep.resentatlonl allows grOE‘p'”g t'me Se.”es and f‘"’.lcmtalli?gs. 9. Hierarchy manager. A time series hierarchy is represented with a
the exploration of the hierarchy. This tree is horizontally orientegee layout, where vertical dotted lines convey the levels of abstractions
where the rst node on the left represents the root of the hierarctsiown on the multiresolution view. Precisely, a blue vertical dotted line
Every leaf node denotes a time series and the non-leaf no&%&sses.the layers depicted in the context-areas (i.e., high level of
. . . . L abstraction), a green vertical dotted line crosses the layers depicted in
express the aggregation of time series. Label information is plaqﬁ(j detailed-area (i. e., low level of abstraction).
to the right of the leaf nodes and to the left for the other nodes.
The hierarchy manager is coordinated with the multiresolution
view. Therefore, the order of nodes in the tree are the same that ) . .
the layers in the multiresolution view. In addition, nodes are lledight arrow button is shown to perform a disaggregation and a left
by the same color coding than the layers in the multiresolutiG§row button to perform an aggregation. For example, Fig. 10a
view (see Fig. 1). shows the disaggregation of 'Fhe h_eavy music genre. Th|s genre is
The hierarchy manager acts as a controller in the navigatiGFPSsed by the dotted blue line (i.e. layer is plotted in context-
through different levels of the hierarchy in the multiresolutioq€@S)- After the disaggregation, the dotted blue line now crosses
view. Vertical dotted lines are implemented to depict the curreffte three children: industrial gothic, metal, and punk/wave. The
levels of the context-areas and detailed-area. In Fig. 9, a blue Ve@ntext-areas of the multiresolution view are also updated to show
tical dotted line crosses the nodes that are depicted in the contdRgse three genres. Fig. 10b shows the aggregation interaction. In
areas (i. e., high level of abstraction). Similarly, a green vertic§liS €xample, genres such as black metal, death metal, and heavy
dotted line crosses the nodes that are shown in the detailed-dR&ja! are aggregated into the metal genre. After the aggregation,
(i.e., low level of abstraction). Following this con guration, theth® dotted green line crosses the new aggregated genre. The
vertical green line will always be at least one level lower thafietailed-area of the multiresolution view is also updated showing
the vertical blue line in the hierarchy. Fig. 9 shows a hierarct{}€ metal genre.
structure with many levels. In order to provide an optimal initial Highlighting nodes. The hierarchy manager provides some
view of the hierarchy organization, our approach initially showsseful interactions that enhance navigation tasks. Users can high-
the rst level nodes of the hierarchy in the context-areas, and thight a node by moving the mouse over it. If the highlighted
lowest levels nodes of the hierarchy in the detailed-area. node is crossed by the dotted green line (i.e., layers are plotted
Aggregation and disaggregation in the hierarchical struc- in the detailed-area) then only this layer is highlighted in the
ture. For detailed analysis, the hierarchy manager aims to alldvultiresolution view, as shown in Fig. 11a. If the highlighted
users a exible navigation through the hierarchy (e.g. aggregaede is crossed by the dotted blue line (i.e., layers are plotted
tion/disaggregation). Disaggregation can be performed in nodasthe context-areas) then all the children that are crossed by
that have children and aggregation can be achieved in nodes thatdotted green line are also highlighted, as shown in Fig. 11b.
have a parent. A tooltip is implemented to provide these twkthese animations are intended to assist users in the navigation task
features. This tooltip is shown when the user moves the mouse coordinately highlighting the hierarchical relationships in the
over a node that is crossed by one of the vertical dotted lines.ierarchy manager and the multiresolution view.
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Fig. 10. Supported interactions to explore different levels of abstraction
in the hierarchy. (a) Disaggregation: split the selected node into children
nodes. (b) Aggregation: group children nodes in their parent node.
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Fig. 11. Highlighting nodes. (a) As the selected reggae node is depicted
in the detailed-area (i. e. crossed by the dotted green line), then only this
node is highlighted. (b) As the selected electronica node is shown in the
context-areas (i. e., crossed by the dotted blue line), thus all the children
that are shown in the detailed-area are highlighted too.

Filtering nodes. To help users in the exploration task, the

7

node that is represented in the context-areas (i. e., crossed by the
dotted blue line). In this case, as this node has children depicted
in the detailed-area (i. e., crossed by the dotted green line), all the
children are also Itered. All these interactions smoothly update
the Multiresolution view.

In summary, the hierarchy manager presents the hierarchical
structure in a visual tree representation and combines it to user
interactions to enhance the exploration and navigation task.

5 TECHNICAL REQUIREMENTS FOR THE MULTIRE-
SOLUTION VIEW

In this section, we explain the projection of the controller over the
multiresolution view, as well as the constraints that the application
must handle in this projection. We also discuss color transitions.

5.1 Time step lengths

The controller and the multiresolution view are based on an
overview+detail technique. The areas selected by the controller
are projected over the multiresolution view, creating a cognitive
link between them. Fig. 13 shows the variables involved in this
design, where the time steps are colored according to the area that
they represent: blue for the context-areas, red for the transition-
areas, and grey for the detailed-area.

With the controller (at the bottom of Fig. 13), the number
of time steps is de ned byc; for context-aread; for transition-
areas, andl for detailed-area; where2 f 1;2g. Since these areas
are projected over the multiresolution view, we must know the
total number of the time steps. We write this sumNasvhere

N= C1+t1+ d+t2+ Co:

The next step is to manage the projection of the controller
areas over the multiresolution view (at the top of Fig. 13). The
horizontal space available on the screen is represent&l Blyis
view is based on a focus+context technique. In order to obtain
time steps in the detailed-area larger than the time steps in the
other areas, we ugwojection factorgFig. 13). The detailed-area
is managed by tha factor, transition-areas are managedtay
and context-areas are manageddyywherefa;b;gg 2 N. The
constrainta > b > g is imposed over these factors to preserve
the relation between the time steps of these areas. Without this
restriction, the length of time steps in context-areas could be larger
than the length of time steps in the detailed-area, losing the sense
of the focus+context technique.

In order to calculate the relative horizontal length for each area
in the multiresolution view, we divide the number of time steps of
an area by the total number of the time stdg@sgnd multiply it by
the corresponding projection factor. TherefdR&G= g % is the

relative length for the context-areadBST= b tN' is the relative

length for the transition-areas, aiSD= a % is the relative
length for the detailed-area; where f 1;2g. The total sum of

these relative lengths is representedR& where

RS= RSG + RST + RSD+ RSH+ RSG:

hierarchy manager allows to lter time series. This feature is
performed by clicking on a node that is crossed by one of the The horizontal length of each area in the multiresolution view
dotted vertical lines. Fig. 12a shows the Iter of the electroniés obtained using the relative horizontal length and the horizontal

genre node that is depicted in the detailed-area (i.e., crossg@é@ce available§). Thus, the context-areas lengtl8§ = S

RSG
RS

by the dotted green line). After node Itering, layers in thehe transition-areas length 8F = S RR—SST, and the detailed-area
multiresolution view are updated. Fig. 12b shows the lItering of &ngth isSD= S %3.



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

@ ®

hip-hop
rap

rap music ()
P 1% rap music ()

@@
5=
=l

electronica

house

house .
akdance () “5 trance electronica e O
i wee O
G ) trance
g g%v?/ir:few 0 @wlectroni
" (£) downtempo

rap music () -
rap music ()

@@
=
=l

electronica

breakdance ()

house electronica
i trance
Q@ Blectronic

) downtempo

Fig. 12. Filtering nodes. (a) As electronic genre node is depicted in the detailed-area (i.e., crossed by dotted green line) then only this layer is
Itered. (b) As electronica genre layer is depicted in the context-areas (i. e., crossed by dotted blue line) then all their children are also lItered.

S = screen display size SC1 ST1 SD ST2 SCz2
SC1 ST1 SD ST2 SC2
IC1iIC1 IC2{IC2
fo fo fy Fa
L g B s D ID
Projection z\\\‘\\\\\\\f\ e T . . B . . . . .
factors | ‘ Hm H ” ‘ ‘H ‘ H Fig. 14. Horizontal distribution of time steps in the Multiresolution view.
¢t d tz e function (i.e., f(x+ 1) > f(x)). In order for the distortion time
N = number of time steps steps be continuous and logical, this function must satisfy two

requirements:

[r1] f(1) must be greater thaf;.
[r2] f(t) must be smaller thatD.

Fig. 13. Design of the projection of the controller areas (at the bottom)
over the multiresolution view (at the top).

Assuminga = IC; and b > 1 to accomplishrl], we must

The length of the time steps is obtained by using thesgy the hase b) satisfying[r2] to achieve the desired exponential
horizontal area lengths. Fig. 14 shows the time step distribution gy, th.

area pf the multiregolution vigw. Each time step is represgnted Y We use a real polynomial function of degrige

a region on the horizontal axis. However, the length of a time step

depend§ on the length of the area and the number of time steps ST=a bl+a b?+::+a b )

to plot in that area. Thus, context-are&®G]) and the detailed-

area 6D) have uniform time step lengths. Time step lengths in WhereST is the length of a detailed-area.

a context-area aréCi = 53 and ID = SP in the detailed-area.  In our visualization while the areas are dragged in the control
The length of time steps in transition-ares&&T) are distorted tool (at the bottom of Fig. 13), the bas) n Eq. 2 is calculated
because they represent the transition between two different levi@lsevery transition-area. We use the RPOLY algorithm [35], then
of granularity (e. g., context-area to detailed-area). Therefore, th#¢ apply the following rules to update the multiresolution view:
are not uniform, and an exponential function is used to depict this

: If b<= 1 ([r1] not respected) we show an alert
behavior.

message and do not update.

Else If f(tj)) >= ID ([r2] not respected) we show
an alert message and do not update.

Else we update areas in multiresolution view with
values.

The length of each time step2 T in that area is given by the
function

f(x)= a b ) o N
This interaction gives the user the autonomy to expand and
where, a is a constant representing the minimum possibleollapse the controller while respectifrdg] and[r2]. For example,
value of the function, and the base of the function. Thease Fig. 15 shows three multiresolution views. In the rst image,

must always be higher than 1 to ensure a strictly increasitige transition areas (b) respelel] and [r2]. As a result, we
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obtain a view where the relation between the time steps of all Fig. 16 shows the multiresolution view. The left transition-
the areas is correct. However, the middle image of Fig. 15 tlheea (see b in the left of Fig. 16) depicts the passage between
transition-areas (b) do not respeeR]. As a result, the time context-area (a) to detailed-area (c) in increasing time intervals.
steps in transition-areas (b) are larger than the time steps in thewever, the sudden color shifts between these two areas makes
detailed-area (c). In this example, the multiresolution view nio dif cult to follow the transition. To overcome this problem,
longer shows great resolution of the detailed-area. The third image use an interpolation of colors along the transition area. The
of Fig. 15 shows the importance of using the transition-areasright transition-area (see b in the right of Fig. 16) shows an
our approach. Notice how the absence of a transition-area on thi@rpolation of color between the detailed-area (c) to the context-
left of the detailed-area (c) results in a sudden change betweendhea (a). Distinguishing the transition between different levels of
time steps of the context-area (a) and the detailed-area (c). Thianularity (i. e., categories and subcategories) helps the user.
absence might hamper the user's perception of changes betweerColor coding choice is an issue when dealing with deep
different levels of granularity. On the other hand, the right of thieierarchies and multiple time series. To handle this scalability
detailed-area (c) shows a transition-area (b) where the lengthpodblem, our approach adopts a set of the 20 categorical colors
the time steps decrease from these two areas, thus improvingakilable in the D3.55 library. Each layer of a high level of
user's perception of the changes between levels of granularity. abstraction uses a specic hue (see a in Fig. 16), where hues

In order to control the projection factors (i.@, b, andg) between neighboring layers must be different to avoid ambiguities.
a menu is implemented at the bottom of the user interface. Thike layers of the children of a low level of abstraction (see ¢
menu shows an alert messageik b orb < g. in Fig. 16) maintain the hue of their parent while varying the
saturation.

Fig. 16 illustrates also three additional features. The rst
option addresses the problem of readability when the number
of layers increases in the detailed-area (c) so it becomes hard to
distinguish the layers with less saturated colors. To overcome this
issue, the contour of layers are painted black, thus reinforcing the
link between the parent layer with their children. This feature is
enabled by clicking the “outline-layers” checkbox. The second
option allows to show the borders of the projected areas in
the multiresolution view. It is activated by clicking the “border
areas” checkbox. This option improves the perceptual relationship
between the overview, controller, and the multiresolution view.
The third option is enabled by clicking the “highlight detailed-
area” checkbox. This option enhances the transition between the
areas highlighting the colors of layers in the detailed-area more
than the layers in the context-areas.

b [ b

a b c b a

I
\
/

im

/
IR

Borders of I I I
projected areas:

Fig. 16. The importance of an interpolation of colors in transition-areas
(b) on the Multiresolution view.

6 DISCUSSION

Fig. 15. In the rst image, a multiresolution view correctly depicts the
transition between a context-area (b) to detailed-area (c) and vice versa.  |n this section, we discuss the exibility of our approach and

In the middle image, transition-areas (b) where the constraint is over- L . . . .
looked. The third image shows the importance of using transition-area compare it with alternative techniques that support a hierarchical

where the transition-area to the left of the detailed-area (c) is not shown, ~ Organization.

6.1 A exible approach

5.2 Colors o
The controller manages the navigation in our approach. The

Transition-areas represent the interval of time between two IeVgls, can accomplish various interaction techniques, such as over-

of abstraction (e.g., context-area to detailed-area). Thus, fOQ;a,,..qetail or sheye. These interaction techniques overcome the
smooth transition between these two levels, a color interpolation

iS necessary. 2. https://d3js.org/ [last access December 01, 2017]
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legibility and comparison issues of a streamgraph. For instancepiser interactiongR3]. In this manner, our work enhances the
Fig. 17b, a simple overview+detail is performed by expanding tltrawbacks of TouchWave and NewsLab where only the current
detailed-area (grey) and collapsing the other areas (i. e., contartalyzed level in the hierarchy is shown. In addition, our hierarchy
and transition areas). As a result, a selected area on the overvisanager allows modifying the granularity of displayed time series,
is projected in full-detail over the multiresolution vigR2]. with aggregation/disaggregation, highlight, and [ItfR2][R3].
The controller allows the user to handle the length of thEhese interactions aim at enhancing the navigation and exploration
detailed-area, which can be an interval of time or the entitasks in the hierarchy.
dataset[R1]. Fig. 17c shows a sheye distortion, where the Depicted levels of the hierarchyln previous approaches such
position of the context-areas (blue lines) is locked at the edges. TouchWave [22] and NewsLab [23], the user can only visualize
As a result, context-areas are compressed and the detailed-arglevel of abstraction of time series at the same time. Our work
(grey) is enlarged; giving the effect of a classic sheye. Whediffers from these approaches since tingitiresolution vievallows
dragging the controller, the position of the detailed and transitidwo different levels of the hierarchy to be visualized at the same
areas shifts, while the boundaries of the context areas remtine: context (e.g., high level of the hierarchy) and focus (e.g.,
locked[R2][R3]. low level of the hierarchy)R3]. Using the hierarchy manager and
Fig. 17d shows a combination between overview+details atlte controller, users can explore/navigate through the hierarchy at
sheye, where the intervals in the context-area are more extendegeriod of time for a depth analy§R1][R2][R3]. Thus, it shows
than the detailed-area. Using the controller the user can custontigev parents and children evolve over time in the same view.
the time intervals shown at the highest and the lowest levels of
granularity in the multiresolution vieyR3]. 7 EXAMPLES

This section presents two examples of applications of our appro-
6.2 Comparison with alternatives techniques ach. The rst one shows the evolution of sentiments expressed in

We compare our approach with the streamgraph approaches fhgets on the US 2016 presidential election day. The second one

support a hierarchical organization, as described in the relafii}Ps the evolution of music genres from 1960 to 2016.

work section. Mainly, we focus on the task of the visualization
of large time series, navigation through the hierarchical structurel 2016 US presidential election day
and depicted levels of the hierarchical organization. Our rst example is based on tweets collected on the 2016
Large time series visualization. Visualizing large datasets US presidential election day (8-9 November, 2016 UTC). This
is a challenge due to the limitation of display screen size. Sordataset contains the sentiments analyzed from 371584 tweets with
previous approaches suffer from legibility problems when dealinge hashtag #Hillary or #Trump. The sentiments are classied
with large time series. For instance, HierarchicalTopics [24] esccording to the Russell's affective model [36] as described
plores the hierarchy of a topic in different view panels, leadinign [33]. This model forms a hierarchical structure of sentiments. In
to a visual clutter when the number of sub-topics increases. this organization, the pleasant-activation group consists of happy,
other approaches, such as BookVoyager [20], ManyEyes [21], agldted, excited, and alert emotions. The activation-unpleasant
NewsLab [23] the length of time series is xed to the size ofjroup consist of tense, nervous, stressed, and upset emotions. The
the display screen (see Fig. 18). As a result, in large datasefspleasant-deactivation group consists of sad, depressed, bored,
it is dif cult to compare time series or nd recurrent patternsand lethargic emotions, and the deactivation-pleasant consists of
over time[R1]. To overcome this issues, TouchWave [22] allowsalm, relaxed, serene, and contented emotions.
performing a focus+context technique (e.g., sheye distortion) to Fig. 19 shows our approach, where each layer in the stream-
show details in a large area, and the context in a smaller argeaph represents a sentiment. Color coding is used to distinguish
However, TouchWave also xed the ends of the streamgraph tae 4 main sentiment categories. The pleasant-activation group is
the screen display borders. Our work offers more exibility thanlepicted by blue, the activation-unpleasant group is depicted in
TouchWave and previous techniques, using ¢batroller, users orange, the unpleasant-deactivation group is depicted in green,
can select the ends of the context areas and also limit the focused the deactivation-pleasant group is depicted in red. In Fig. 19,
area which is re ected in the multiresolution vigR2][R3]. This the overview (at the bottom) shows the evolution of sentiments at
behavior allows to easily reach several interaction techniques swchigh level of abstraction, displaying the main sentiments. The
as zoom, focus+context, and sheye distortion. This feature faultiresolution view (on the right) and the hierarchy manager (on
useful when a user focuses on a precise time segment, while left) are linked to depict the sentiments at different levels of
maintaining a exible context of historical data. details (main and disaggregated categories). In this example, the
Hierarchical structure. To navigate through the hierarchicalhierarchy contains 2 levels, where the nodes crossed by the dotted
structure, previous approaches propose various solutions. Néle line are depicted in the context-areas and the nodes crossed
sLab [23] and TouchWave [22] use interaction techniques suclbythe dotted green line are shown in the detailed-area.
drill-down and roll-up actions that allow to depth in details in a The overview in Fig. 19 shows some interesting peaks at the
selected leaf of the hierarchy. Nevertheless, with such a navigatemd of the election day. The multiresolution view depicts details
it is dif cult to compare the relationships between layers on thigom 23:00 to 06:00. We observe that until 23:00, all layers evolve
streamgraph since the current levels of the hierarchy are not iemogeneously. Then, the rst results are broadcast, making the
picted. Therefore, the user can get lost during exploration tasksdlated sentiment layer grows (Fig. 19a). Between midnight and
order to overcome this issue, BookVoyager [20], ManyEyes [2102:00, when most of the polls were closed, the volume of elated
and HierarchicalTopics [24] use a visual tree representation gentiment remains constant. Note how in this period, the label
navigate into the hierarchical structure. Our approach extends theight of the elated sentiment is bigger than the others. This
tree representation to th@erarchy manageby adding a set of conveys at a glance, the dominance of this sentiment. The peak
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®

Fig. 17. Interaction techniques for hierarchical time series over a streamgraph. (a) Changing the baseline in a streamgraph (stacked graphs or
streamgraph). (b) Overview+detail technique. (c) Fisheye distortion technique. (d) Combination between an overview+detail and a sheye distortion.

r'n' b, soul, funk, industrial metal, industrial, black metal, death
metal, heavy metal, punk, new wave, psychobilly, hardcore punk,
hard rock, psychedelic, rock, indie rock, alternative, pop, indie
pop, country, folk, ska, reggae, dub, hip-hop, rap, house, trance,
electronic, and downtempo). This taxonomy aims at helping the
viewer to navigate the history of music with different levels of
granularity (i. e., genre and sub-genres).

Fig. 20 illustrates the proposed visualization. Each layer in the
streamgraph represents a genre, and their horizontal length depicts
their longevity over time. At the bottom, an overview shows

Fig. 18. A streamgraph of large time series limited by the screen display ~ the entire dataset at a high level of abstraction. The hierarchy
size. manager (on the left) and the multiresolution view (on the right)
are coordinated to depict the genre's layers at different levels

in Fig. 19b shows the moment when the results of the state @f details. Categorical color coding is used to convey the main
Florida were broadcast. Another peak at 04:30 shows the mom@RfIre's categories. Thus, thythm musicgenre is shown in
when the results of the California were broadcast (Fig. 19c). ~ dreen,rock musicgenre is shown in orang@op musids shown
The multiresolution view allows the user to focus on an ard Purple, folk and countrygenre is shown in yellonjamaican
while keeping a customizable context. For example, while w#enre is shown in blue, anelectronicgenre is shown in red. In
focus on the peaks between midnight and 05:00, we can see thig example, the depth of the hierarchy varies according to the

the highest peak of the entire dataset is at 09:00, when Donkgyel of details in each musical genre. The thickness of a genre's
Trump was declared the winner of the election. layer depicts the number of bands created per year. For example

on the multiresolution view, the vertical ruler shows that 167 new
7.2 Music genre evolution bands of rock music genre were created in the year 2000.

. . o . The overview in Fig. 20 depicts an interesting peak of the rock
This example is based on music information extracted from the, | (orange hue) from the mid-1970s to the mid-1980s. In order
MusicBrainZ web site. The dataset contains the metadata inf ’

> o0 explore the details of the genre composition in this period, we
_matmn c_)f about 1(.)642 bands from 1960 to 2016. We used th Ze the controller to focus on this period of time and the hierarchy
information to design our own genre taxonomy. This taxono

can be organized in a hierarchical structure. Thus, the rst level anager to navigate through the levels of the hierarchy. As result,
g ' ' {Re multiresolution view shows the projection of the controller

czm;:]?sg((j: Ofi)l?; r;sénc%atﬁ?ronzsm(::c%ﬁ rgﬁtgr;;ﬁﬁfcr?ka? du? g ned areas. We depict the 1970s and 1990s period in full detail
POp MUSIC, 1¢ untry. J ican, . icay), . (I.e., genres crossed by the green vertical line). In order to not lose
lowest level is composed by 32 subcategories (e.g., blues, j

context of this period, we have taken into account periods of
3. MusicBrainz is an open music encyclopedia that collects music metaddiiie before and after. We observe that the peak in the genre of rock
https://musicbrainz.org/ [last access December 01, 2017] is due to a peak in the heavy music genre in the 70s. We use the
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Fig. 19. Evolution of sentiments expressed in tweets on the US 2016 presidential election day: results.

hierarchy manager to display more details on this genre. Fig. #&hture covers a wide range of possibilities, from overview + detalil

explores the rock music sub-genres. We observe that the peakoirclassical sheye.

the heavy music genre is due to a peak in the punk/wave genre inOne of the challenge during the conception phase of our

the 70s. However, in the early 80s, the punk/wave genre was lapproach was the interaction between the different views. We

in popularity, making the heavy and rock genre unpopular equalfgund that a set of interactions allow us to reach our goals.

After 1985 other sub-genres such as black metal, death mefus, these techniques help to select a time segment and also

heavy metal, and indie rock gain ground, making the rock musiavigate through the hierarchy on this time segment. As result,

genre regain the level of popularity of the 70's. Notice as in Fig. 2he multiresolution view depicts the hierarchy at different levels

the hierarchy manager shows the depth in each genre and safbdetails in a selected time period. Also, all the interaction are

genres (i.e., blue and green vertical lines). In this example, itirtegrated and they can be achieved at any point of the exploration

particularly important having a large context around our focus aredthout losing the context.

to clearly distinguish the trends of all main genres. For instance, Two examples show that our approach can be applied in many

we observe in detail a speci c time period as well as the growttiomains such as social data, music industry data. Its exibility

of the rock genre (orange hue) over time. allows to navigate and explore hierarchies helping users to convey
The overview in the Fig. 20 shows that rock (orange hue) seasonal peaks and patterns over time. For future work, we plan

the most dominant genre. This causes problems in the analysisoétudy the possibility of extending our visualization for dealing

other genres. Using the hierarchy manager, we Itered out the roglith time series available in real time, i.e. data stream.

genre, it allows us to improve the comparison between genres.

Fig. 22 shows the Itered streamgraph. It is interesting to detect
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