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Abstract: The algorithm MLS (Maximal Label Search) is a graph search algorithm that generalizes
the algorithms Maximum Cardinality Search (MCS), Lexicographic Breadth-First Search (LexBFS),
Lexicographic Depth-First Search (LexDFS) and Maximal Neighborhood Search (MNS). On a
chordal graph, MLS computes a PEO (perfect elimination ordering) of the graph. We show how
the algorithm MLS can be modified to compute a PMO (perfect moplex ordering), as well as a clique
tree and the minimal separators of a chordal graph. We give a necessary and sufficient condition on
the labeling structure of MLS for the beginning of a new clique in the clique tree to be detected by
a condition on labels. MLS is also used to compute a clique tree of the complement graph, and new
cliques in the complement graph can be detected by a condition on labels for any labeling structure.
We provide a linear time algorithm computing a PMO and the corresponding generators of the
maximal cliques and minimal separators of the complement graph. On a non-chordal graph, the
algorithm MLSM, a graph search algorithm computing an MEO and a minimal triangulation of the
graph, is used to compute an atom tree of the clique minimal separator decomposition of any graph.

Keywords: chordal graph; clique tree; perfect elimination ordering; perfect moplex ordering;
Maximal Label Search; LexBFS; MCS

1. Introduction

Chordal graphs form an important and well-studied graph class, have many characterizations
and properties and are used in many applications. From an algorithmic point of view, connected
chordal graphs are endowed with a compact representation as a clique tree, which organizes both the
maximal cliques (which are the nodes of the tree) and the minimal separators (which label the edges):
in a chordal graph, a minimal separator is the intersection of two maximal cliques, so each minimal
separator is a clique (a characterization of chordal graphs [1]). Since a connected chordal graph has
at most n maximal cliques, a clique tree has at most n nodes and less than n edges, a very efficient
representation of the underlying chordal graph.

A PEO (perfect elimination ordering) of a graph is an ordering of its vertices obtained
by successively removing a simplicial vertex of the current graph (a vertex is simplicial if its
neighborhood is a clique). A clique tree of a chordal graph can be computed efficiently using the
characterization of a chordal graph as a graph, which has a PEO [2]. Gavril [3] showed how to
compute a clique tree from an arbitrary PEO of the input chordal graph. Blair and Peyton [4] proposed
an algorithm based on the search algorithm MCS (Maximum Cardinality Search) from [5], using
the properties of both the PEO and the labels computed by MCS to build a clique tree in a simple
and elegant way. The algorithm MCS numbers the vertices using labels that count the number of
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processed neighbors. MCS, as well as its famous cousin LexBFS (Lexicographic Breadth-First Search)
from [6] were originally tailored to compute a PEO of the input graph if it is chordal, thus leading to
an efficient algorithm recognizing chordal graphs.

Recent work by Kumar and Madhaven [7] showed how MCS defines the minimal separators of a
chordal graph. LexBFS was also shown to scan both the maximal cliques and the minimal separators
of a chordal graph [8].

This family of search algorithms has been recently extended by Corneil and Krueger [9],
who introduced LexDFS (Lexicographic Depth-First Search) and MNS (Maximal Neighborhood
Search). All of these algorithms function on the same basic principle: they use a labeling process
to compute an ordering of the vertices of the input graph. All vertex labels are initialized with the
same initial label. At each iteration of the algorithm, a yet unnumbered vertex with a maximal label
is chosen, and the labels of its yet unnumbered neighbors are increased.

Berry, Krueger and Simonet [10] introduced the algorithm MLS (Maximal Label Search) as a
generalization of these algorithms. MLS takes as input a graph G and a labeling structure L and
computes an ordering of the vertices of G, which is a PEO of G if G is chordal. A condition on the
definition of a labeling structure from [10] ensures that MLS computes a PEO of a chordal graph.
A still more general labeling search algorithm called GLS (General Label Search) was defined in [11]
from a more general definition of a labeling structure, which captures classical categories of graph
searches (general search, breadth-first and depth-first searches) in addition to the graph searches
derived from MLS.

The question we address in this paper is to determine in which cases MLS can be used to build
a clique tree. Our goal is not to improve the time complexity of computing a clique tree, since
this complexity is already known to be linear, but to further investigate the algorithm MLS and the
properties of the labeling structures involved, in order to determine how MLS can be used to compute
a clique tree.

To accomplish this, we first focus on the algorithm from [4], extended-MCS, which computes
a clique tree of a chordal graph by computing the maximal cliques of H one after another. The
beginning of a new clique is detected by a condition on the labels: as long as the label of the vertex
that has just been chosen is strictly greater than the label of the previous vertex, the current clique
is increased ; otherwise, a new clique is started. This leads to the two following questions: (1) does
MLS compute the maximal cliques one after another? (2) does MLS detect new cliques by a condition
on labels?

We first consider Question (1). We know that a clique tree of a chordal graph H can be computed
from any PEO of H [3], but not necessarily by processing one clique after another. We will show
that the maximal cliques are computed one clique after another if the PEO is a PMO (perfect moplex
ordering) of the input chordal graph. A moplex is a clique module whose neighborhood is a minimal
separator (thus, in a chordal graph, the closed neighborhood of a moplex is a maximal clique), and
a PMO of a graph is an ordering of its vertices obtained by successively removing each vertex of a
simplicial moplex of the current graph until it is a clique (a moplex of a chordal graph is necessarily
simplicial). Berry and Bordat [8] showed that LexBFS ends on a moplex of the input graph whether it
is chordal or not, which implies that LexBFS computes a PMO of the input graph if it is chordal. Berry,
Blair, Bordat and Simonet [12] proved the more general result that any instance of the algorithm MLS
with totally ordered labels computes a PMO of a chordal graph. Berry and Pogorelcnik [13] showed
that MCS and LexBFS can be modified to compute the minimal separators and the maximal cliques
of a chordal graph, using the fact that the computed ordering is a PMO of this graph, thus extending
the result for MCS from [4]. Xu, Li and Liang [14] showed that LexDFS ends on a moplex of the
input graph whether it is chordal or not, thus extending the result for LexBFS from [8]. We show in
this paper that a slight variant of MLS computes a PMO of the input chordal graph for each labeling
structure. As this variant is equivalent to MLS if the order on the labels is total, this generalizes
the result from [12] that MLS used with totally ordered labels computes a PMO of a chordal graph.



Algorithms 2017, 10, 20 3 of 23

Concerning Question (2), we give a necessary and sufficient condition on a labeling structure
for MLS to detect new cliques by a condition on labels. Because this condition is not satisfied by the
labeling structure associated with the algorithm LexDFS, the LexDFS labels do not detect new cliques,
contrary to what is claimed in [14].

We then go on to examine what happens when the graph is not chordal.
When a graph is chordal, the minimal separators are cliques. When the graph fails to be

chordal, it still may have clique minimal separators. The related graph decomposition (called
clique minimal separator decomposition) has given rise to recent interest; see for example [15–19].
This decomposition results in a set of overlapping subgraphs called atoms, characterized as the
maximal connected subgraphs containing no clique separator.

Recent work by Berry, Pogorelcnik and Simonet [20] has shown that the atoms of a connected
graph can be organized into a tree similar to a clique tree, called an atom tree: the nodes are the atoms,
and the edges represent the clique minimal separators of the graph. As is the case for a clique tree, an
atom tree has at most n nodes and less than n edges.

The work in [20] showed how an atom tree can be computed from a clique tree of a minimal
triangulation (which is a minimal embedding of a graph into a chordal graph), providing an
algorithm based on MCS-M [21], the triangulating counterpart of MCS, to build an atom tree.

In this paper, we further address the question of using MLSM, the triangulating counterpart of
MLS defined in [10] which is a generalization of MCS-M, to build this atom tree.

The main contributions of this paper are the following. We provide a characterization of
PMOs (Characterization 3), which is helpful in proofs concerning PMOs. We show how a clique
tree of a chordal graph H can be computed from a PMO of H by building the maximal cliques
one after another (Corollary 1) and how the general algorithm MLS can be modified in order
to compute a PMO (the algorithm moplex-MLS), and a PMO, a clique tree and the minimal
separators (the algorithm MLS-CliqueTree) of any chordal graph for any labeling structure. We
also give a necessary and sufficient condition on a labeling structure (DCL) for new cliques
to be detected by a condition on labels (Theorem 4). We further modify MLS to compute
a PMO and a clique tree of the complement graph, and we show that new cliques in the
complement graph can be detected by a condition on labels for each labeling structure (the algorithm
complement-DCL-MLS-CliqueTree). We also provide a linear time algorithm computing a PMO and
the generators of the maximal cliques and minimal separators w.r.t. this PMO of the complement
graph (the algorithm complement-DCL-MLS-generators). We finally extend the results from MLS to
MLSM to compute an atom tree of any graph (the algorithm DCL-MLSM-AtomTree).

The paper is organized as follows. Section 2 gives the preliminaries of the paper. Section 3
explains how MLS can be modified into an algorithm computing a PMO and a clique tree of a chordal
graph. In Section 4, MLS is used to compute a clique tree of the complement graph. Section 5 gives
some extensions: the use of MLSM to compute an atom tree of a graph and some counterexamples
when running MLS on a non-chordal graph. The final section concludes the paper.

2. Preliminaries

All graphs in this work are connected, undirected and finite. A graph is denoted by G = (V, E),
with |V| = n and |E| = m. E(G) is the set of edges of G. G denotes the complement of G.
The neighborhood of a vertex x in a graph G is NG(x), or N(x) if the context is clear; the
closed neighborhood of x is N[x] = N(x) ∪ {x}. The neighborhood of a subset X of V is
N(X) = (∪x∈X N(x)) \ X, and its closed neighborhood is N[X] = N(X) ∪ X. A clique is a set of
pairwise adjacent vertices; we say that we saturate a set X of vertices when we add all of the edges
necessary to turn X into a clique. A vertex (or a subset of V) is simplicial if its neighborhood is a
clique. A module is a subset X of V, such that ∀x ∈ X, N(x) \X = N(X). G(X) denotes the subgraph
of G induced by the subset X of V, but we will sometimes just denote this by X. The reader is referred
to [22,23] for classical graph definitions and results.
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2.1. Separators

A set S of vertices of a connected graph G is a separator if G(V \ S) is not connected. A separator
S is an xy-separator if x and y lie in two different connected components of G(V \ S). S is a minimal
xy-separator if S is an xy-separator and no proper subset of S is also an xy-separator. A separator S is
said to be minimal if there are two vertices x and y such that S is a minimal xy-separator. Equivalently,
S is a minimal separator if and only if G(V \ S) has at least two connected components C1 and C2,
such that NG(C1) = NG(C2) = S. A moplex is a clique module X whose neighborhood N(X) is
a minimal separator.

2.2. Chordal Graphs and Clique Trees

A graph is chordal (or triangulated) if it contains no chordless-induced cycle of length four or
more. A graph is chordal if and only if all of its minimal separators are cliques [1]. It follows that for
each moplex X of a chordal graph H, X is simplicial and N[X] is a maximal clique of H.

A chordal graph is often represented by a clique tree:

Definition 1. Let H = (V, E) be a connected chordal graph. A clique tree of H is a tree T = (VT , ET) such
that VT is the set of maximal cliques of H and for any vertex x of H, the set of nodes of T containing x induces
a subtree of T.

Characterization 1. [4] Let H be a connected chordal graph; let T be a clique tree of H; and let S be a set
of vertices of H; then, S is a minimal separator of H if and only if there is an edge K1K2 of T such that
S = K1 ∩ K2.

Every chordal graph has at least one clique tree, which can be computed in linear time with the
nodes labeled by the maximal cliques and the edges labeled by the minimal separators [4].

2.3. Orderings, PEOs and PMOs

An ordering of G is a one-to-one mapping from {1, . . . , n} to V. An ordering α can be
defined by the sequence (α(1), . . . , α(n)). A perfect elimination ordering (PEO) of G is an ordering
α = (x1, . . . , xn) of G such that for each i ∈ [1, n], xi is a simplicial vertex of G({xi, . . . , xn}).
G is chordal if and only if it has a PEO. An ordering α of G is compatible with an ordered partition
(X1, . . . , Xk) of V if for each i in [1, k − 1], for each u in Xi and each v in Xi+1, α−1(u) < α−1(v).
A simple (resp. perfect) moplex partition of G is an ordered partition (X1, . . . , Xk) of V such that
for each i ∈ [1, k − 1], Xi is a moplex (resp. simplicial moplex) of G(∪i≤j≤nXj) and Xk is a clique
of G. Thus, a simple moplex partition of a chordal graph H is a perfect moplex partition of H.
A perfect moplex ordering (PMO) of G is an ordering of G compatible with a perfect moplex partition
of G. A PMO of G is a PEO of G, and G is chordal if and only if it has a PMO [24].

2.4. Minimal Triangulations, MEOs and MMOs

A triangulation of a graph G = (V, E) is a chordal graph in the form H = (V, E + F). F is the set
of fill edges in H. The triangulation is minimal if for any proper subset F′ of F, the graph (V, E + F′)
fails to be chordal. Given an ordering α = (x1, . . . , xn) of G, the graph G+

α is defined as follows:
initialize the current graph G′ with G and the set Fα with the empty set; then, for each i from one to
n, let Fi be the set of edges necessary to saturate the neighborhood of xi in G′; add the edges of Fi to
G′ and to Fα; and remove xi from G′. G+

α = (V, E + Fα) is a triangulation of G, with α as a PEO. α is
called a minimal elimination ordering (MEO) of G if there is no ordering β of G such that Fβ ⊂ Fα.
α is an MEO of G if and only if G+

α is a minimal triangulation of G. A minimal triangulation of G
is obtained by replacing vertex xi by a moplex Xi of G′ in the preceding process, which is formally
defined as follows. A minimal moplex partition of G is an ordered partition (X1, . . . , Xk) of V such
that for each i ∈ [1, k− 1], Xi is a moplex of Gi and Xk is a clique of Gk, where the graphs Gi are defined
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by induction: G1 = G and for each i ∈ [1, k− 1]; Gi+1 is obtained from Gi by saturating NGi (Xi) and
removing Xi. Thus, a minimal moplex partition of a chordal graph H is a perfect moplex partition of
H. A minimal moplex ordering (MMO) of G is an ordering of G compatible with a minimal moplex
partition of G. An MMO of G is an MEO of G [24].

2.5. Clique Minimal Separators and Atom Trees

The atoms of a graph G are the subsets of V obtained by clique minimal separator decomposition.
The reader is referred to [15,18,19] for full details on the decomposition by clique separators and by
clique minimal separators. An atom of a connected graph G is a subset of V inducing a connected
subgraph having no clique separator and being inclusion-maximal for this property. The atoms of a
chordal graph are its maximal cliques. The atoms of a graph can be organized into an atom tree in the
same way as the maximal cliques of a chordal graph are organized into a clique tree [20].

Definition 2. [20] Let G = (V, E) be a connected graph. An atom tree of G is a tree T = (VT , ET) such that
VT is the set of atoms of G and for any vertex x of G; the set of nodes of T containing x induces a subtree of T.

Characterization 2. [20] Let G be a connected graph; let T be an atom tree of G; and let S be a set of vertices
of G; then S is a clique minimal separator of G if and only if there is an edge A1 A2 of T, such that S = A1 ∩ A2.

2.6. Algorithms MLS and MLSM

The algorithm MLS (Algorithm 1), where MLS stands for (Maximal Label Search, generalizes the
well-known algorithms MCS from [5], LexBFS from [6] and LexDFS and MNS from [9]. The algorithm
MLS takes a graph H and a labeling structure L as input and yields an ordering of H as output, which
is a PEO of H if H is chordal. It can be seen as a generic algorithm with parameter L whose instances
are the algorithms L-MLS for each labeling structure L, with a graph H as input and an ordering of
H as output. In the following definitions, N+ denotes the set of positive integers.

Definition 3. A labeling structure is a structure L = (L,�, l0, Inc), where:

• L is a set (the set of labels),
• � is a partial order on L (which may be total or not, with ≺ denoting the corresponding strict order),
• l0 is an element of L (the initial label),
• Inc (increase) is a mapping from L × N+ to L satisfying the following IC (Inclusion Condition):

for any subsets I and I′ of N+, if I ⊂ I′, then labL(I) ≺ labL(I′), where labL(I) =

Inc(. . . (Inc(l0, i1), . . .), ik), where I = {i1, i2, . . . , ik}, with i1 > · · · > ik.

For each X in {MCS, LexBFS, LexDFS, MNS}, the algorithm X is the instance LX-MLS of the
algorithm MLS, where LX is the labeling structure (L,�, l0, Inc) defined as follows.

LMCS: L = N+ ∪ {0}, � is ≤ (a total order), l0 = 0, Inc(l, i) = l + 1.
LLexBFS: L is the set of lists of elements of N+, � is the usual lexicographic order (a total order),

l0 is the empty list, Inc(l, i) is obtained from l by appending i to the end of the list.
LLexDFS: L is the set of lists of elements of N+, � is the lexicographic order where the order on

N+ is the reverse order of the usual one (a total order), l0 is the empty list, Inc(l, i) is obtained from l
by prepending i to the beginning of the list.

LMNS: L is the power set of N+, � is ⊆ (not a total order), l0 = ∅, Inc(l, i) = l ∪ {i}.
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Algorithm 1: MLS.

input : a connected graph H and a labeling structure L = (L,�, l0, Inc)
output: an ordering α = (x1, . . . , xn) of H, which is a PEO of H if H is chordal

V′ ← ∅; initialize all labels as l0;
for i = n down to 1 do

Choose a vertex x in V \V′ whose label is maximal;
xi ← x;
foreach y in NH(x) \V′ do

label(y)← Inc(label(y), i);
end
V′ ← V′ ∪ {x};

end

The algorithm MLSM (Algorithm 2), where the final letter M stands for MEO, generalizes
the algorithms LEX M from [6] and MCS-M from [21]. It takes a graph G and a labeling structure
L as input and yields an MEO of G and the associated minimal triangulation of G as output. It
can be seen as a generic algorithm in the same way as the algorithm MLS. The algorithms LEX M
and MCS-M are the instances LLexBFS-MLSM and LMCS-MLSM, respectively, of the algorithm MLSM.

Algorithm 2: MLSM.

input : a connected graph G and a labeling structure L = (L,�, l0, Inc)
output: an MEO α = (x1, . . . , xn) of G and the associated minimal triangulation H = G+

α

H ← G; V′ ← ∅; initialize all labels as l0;
for i = n down to 1 do

Choose a vertex x in V \V′ whose label is maximal;
Y ← ∅;
foreach y in V \ (V′ ∪ {x}) do

if there is a path µ of length ≥ 1 in G(V \V′) between x and y such that for each internal
vertex z of µ label(z) ≺ label(y) then

Y ← Y + {y}; E(H)← E(H) ∪ {xy};
end

end
foreach y in Y do

label(y)← Inc(label(y), i);
end
V′ ← V′ ∪ {x};

end

Notation 1. Let G be a graph; let α be an ordering of G; let i ∈ [1, n]; and let y ∈ V.

- Nα,i
G (y) = {z ∈ NG(y) | α−1(z) > i},

- Nα+
G (y) = Nα,α−1(y)

G (y) = {z ∈ NG(y) | α−1(z) > α−1(y)},
- Nα+

G [y] = Nα+
G (y) ∪ {y} = {z ∈ NG[y] | α−1(z) ≥ α−1(y)},

- a generator of a minimal separator S (resp. maximal clique K) of G w.r.t. α is a vertex x of G

such that S = Nα+
G (x) (resp. K = Nα+

G [x]).

If α is a PEO of a chordal graph H, then each minimal separator of H has at least one generator
w.r.t. α [25], and each maximal clique of H clearly has exactly one generator w.r.t. α, which is
the vertex x of K with minimum α−1(x).
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Lemma 1. In an execution of MLS, for each i in [1, n− 1] and each y, z in V such that α−1(y) ≤ i + 1 and
α−1(z) ≤ i + 1, at the beginning of iteration i (choosing vertex xi) of the for loop,

(i) If Nα,i
G (y) ⊂ Nα,i

G (z), then label(y) ≺ label(z),
(ii) If Nα,i

G (y) ⊆ Nα,i
G (z), then label(y) � label(z).

Proof. (i) If Nα,i
G (y) ⊂ Nα,i

G (z), then α−1(Nα,i
G (y)) ⊂ α−1(Nα,i

G (z)), and therefore, by IC,
label(y) = labL(α−1(Nα,i

G (y))) ≺ labL(α−1(Nα,i
G (z))) = label(z). The proof of (ii) is similar.

3. MLS and Clique Trees

In this section, we show how the general algorithm MLS can be used to compute a clique tree
and the minimal separators of a chordal graph, thus generalizing the results given in [4] for MCS
and in [13] for LexBFS. We will accomplish this by applying successive modifications on an algorithm
computing a clique tree from a PEO of a chordal graph.

3.1. Clique Tree from a PEO

The algorithm CliqueTree (Algorithm 3) from Spinrad ([26], p. 258) is a slight variant of an
algorithm originally given by Gavril [3] to compute a clique tree of a connected chordal graph from
an arbitrary PEO of this graph.

Algorithm 3: CliqueTree.

input : a connected chordal graph H and a PEO α = (x1, . . . , xn) of H
output: a clique tree T and the set Sep of minimal separators of H

V′ ← ∅; s← 1; K1 ← ∅; E← ∅; Sep← ∅;
for i = n down to 1 do

x ← xi; S← NH(x) ∩V′; // S = Nα+
H (x)

if i = n then
p← 1;

end
else

k← min{j, α(j) ∈ S}; // S 6= ∅ because H is connected, α is a PEO of H and i < n
p← clique(α(k));

end
if Kp = S then

clique(x)← p;
end
else

s← s + 1; Ks ← S; // start a new clique
E← E ∪ {(p, s)}; Sep← Sep ∪ {S}; // S = Kp ∩ Ks

clique(x)← s;
end
Kclique(x) ← Kclique(x) ∪ {x}; // increase clique
V′ ← V′ ∪ {x};

end
T ← ({K1, . . . , , Ks}, {KpKq, (p, q) ∈ E});

Theorem 1. [3,26] The algorithm CliqueTree computes a clique tree and the set of minimal separators of a
connected chordal graph H from a PEO of H in linear time.
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Note that the algorithms from [3,26] only compute a clique tree of the input graph.
By Characterization 1, the algorithm CliqueTree correctly computes the set of minimal separators,
and it does so in linear time using a search/insert structure for Sep , which allows checking for the
presence of a set S and inserting it in O(|S|) time. The proofs given in [3,26] implicitly use Invariant 1
below, which is explicitly stated and proven here, since it will be used later in this paper. To prove it,
we will use the following lemma.

Lemma 2. Let H be a connected chordal graph; let x be a simplicial vertex of H; let H′ = H(V \ {x}); let T′

be a clique tree of H′; let K be a node of T′ containing NH(x); let K′ = NH [x]; and let T be the tree obtained
from T′ by replacing node K by K′ (with the same neighbors in T as in T′) if K = NH(x) and by adding node
K′ and edge KK′ otherwise. Then, T is a clique tree of H.

Proof. Let us show that the nodes of T are the maximal cliques of H. As x is simplicial in H, K′ is the
unique maximal clique of H containing x. Each maximal clique of H different from K′ is a maximal
clique of H′, and each maximal clique of H′ different from NH(x) is a maximal clique of H. It follows
that the nodes of T are the maximal cliques of H. It remains to show that for each vertex y of H, the
subgraph Ty of T induced by the set of nodes of T containing y is connected. If y = x, then Ty is
reduced to node K′; otherwise, Ty is either equal to T′y or obtained from T′y by replacing node K by
node K′ or by nodes K and K′ and edge KK′. Hence, Ty is connected.

Invariant 1. The following proposition is an invariant of the for loop of the algorithm CliqueTree:

(a) ({K1, . . . , Ks}, {KpKq, (p, q) ∈ E}) is a clique tree of H(V′),
(b) Sep is the set of minimal separators of H(V′),
(c) ∀y ∈ V′, clique(y) ∈ [1, s] and Nα+

H [y] ⊆ Kclique(y).

Proof. The proposition clearly holds at the initialization step of the for loop. Let us show that it is
preserved by each iteration of this loop. It is clearly preserved by iteration n, i.e., the iteration where
i = n. Let us show that it is preserved by iteration i, with 1 ≤ i < n. Let (a1) (resp. (b1), (c1)) denote
item (a) (resp. (b), (c)) at the beginning of iteration i (which is supposed to be true), and let x, V′, S,
s, k and p be the values of these variable at the end of iteration i. As α is a PEO of H, x is a simplicial
vertex of H(V′), so S is a clique of H. It follows by definition of k that S ⊆ Nα+

H [α(k)]; hence, by (c1)
S ⊆ Kp with p ∈ [1, s]. Thus, by (a1), Kp is a maximal clique of H(V′ \ {x}) containing S. It follows
from Lemma 2 and Characterization 1 that (a) and (b) are preserved. It remains to show that (c) is
preserved. It is the case since for each y ∈ V′ \ {x}, clique(y) and Nα+

H [y] are unchanged, whereas s
and Kclique(y) can only become bigger at iteration i, and for y = x, clique(x) is either equal to p or to s
with p ∈ [1, s]; and Nα+

H [x] = S ∪ {x} = Kclique(x).

3.2. Clique Tree from a PMO

According to Invariant 1, in an execution of the algorithm CliqueTree, the cliques K1, . . . , Ks are
the maximal cliques of H(V′) and, therefore, cliques of H that are not necessarily maximal in H. Some
PEOs build the maximal cliques of H one after another: at each time in an execution of the algorithm,
each clique Kj different from Ks is a maximal clique of H, and a vertex is added to Ks at each iteration
of the for loop until Ks is a maximal clique of H; and s is incremented to start a new maximal clique
of H. If α = (x1, . . . , xn) is such a PEO, at the beginning of iteration i < n, the current clique Ks is
equal to Nα+

H [xi+1], and if Ks is not a maximal clique of H, then Ks = S = Nα+
H (xi) and xi is added to

Ks at iteration i.

Definition 4. A MCComp (Maximal Clique Completing) PEO of a connected chordal graph H is a PEO
α = (x1, . . . , xn) of H such that for each i ∈ [1, n − 1], Nα+

H [xi+1] is a maximal clique of H or equal
to Nα+

H (xi).
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Example 1. Let H be the graph shown in Figure 1, whose maximal cliques are K = {a, b, f }, K′ = {c, d, e}
and {e, f }, and let α = (a, b, c, d, e, f ). An execution of CliqueTree on H and α successively completes
the maximal cliques {e, f }, K′ and K, and we easily check that α is a MCComp PEO of H. Now, let
β = (a, c, d, b, e, f ). An execution of CliqueTree on H and β successively completes {e, f }, starts K, starts and
completes K′ and, finally, completes K. β is not a MCComp PEO of H since for i = 3, Nβ+

H [xi+1] is neither a
maximal clique of H, nor equal to Nβ+

H (xi) (Nβ+
H [xi+1] = Nβ+

H [b] = {b, f } and Nβ+
H (xi) = Nβ+

H (d) = {e}).

•a

•
b

•c

•
d

•e•
f

K K′

Figure 1. A chordal graph H.

Using a MCComp PEO instead of an arbitrary PEO, the algorithm CliqueTree can be simplified
into the algorithm MCComp-CliqueTree (Algorithm 4) containing the blocks InitCT, StartClique,
IncreaseClique and DefineCT, which will be used in further algorithms in this paper.

InitCT // Initialize the Clique Tree
V′ ← ∅; s← 1; K1 ← ∅; E← ∅; Sep← ∅;

StartClique // Start a new Clique
s← s + 1; Ks ← S;
k← min{j, α(j) ∈ S}; p← clique(α(k));
E← E ∪ {(p, s)}; Sep← Sep ∪ {S};

IncreaseClique // Increase the current Clique
Ks ← Ks ∪ {x}; clique(x)← s;

DefineCT // Define the Clique Tree
T ← ({K1, . . . , Ks}, {KpKq, (p, q) ∈ E});

Algorithm 4: MCComp-CliqueTree.

input : a connected chordal graph H and a MCComp PEO α = (x1, . . . , xn) of H
output: a clique tree T and the set Sep of minimal separators of H

InitCT;
for i = n down to 1 do

x ← xi; S← NH(x) ∩V′; // S = Nα+
H (x)

if Ks 6= S then
StartClique;

end
IncreaseClique;
V′ ← V′ ∪ {x};

end
DefineCT;
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Theorem 2. The algorithm MCComp-CliqueTree computes a clique tree and the set of minimal separators of a
connected chordal graph H from a MCComp PEO of H in linear time.

Proof. The proof of complexity is similar to that of Theorem 1, and the correctness of the algorithm
follows from Invariant 2.

Invariant 2. The following proposition is an invariant of the for loop of the algorithm MCComp-CliqueTree:

- (a) (b) (c) (as in Invariant 1)
- (d) ∀j ∈ [1, s− 1] Kj is a maximal clique of H,
- (e) Ks = Nα+

H [xi].

Proof. The proposition clearly holds at the initialization step (except for (e), which is undefined). Let
us show that it is preserved at iteration i, with 1 ≤ i ≤ n. Let (a1) (resp. (b1), . . . , (e1)) denote Item (a)
(resp. (b), . . . , (e)) at the beginning of iteration i (which is supposed to be true), and let s be the value
of this variable at the beginning of iteration i. We prove that (a), (b) and (c) are preserved as in the
proof of Invariant 1, except that we have moreover to show that if Ks 6= S, then Kp 6= S. It is evident
if p = s; otherwise, it follows from the fact that Kp is a maximal clique of H by (d1), whereas S is not,
since it is a strict subset of the clique S ∪ {x}. Hence, (a), (b) and (c) are preserved. Let us show that
(d) is preserved. We only have to check that in case s is incremented (to s + 1), Ks is a maximal clique
of H. As s is incremented at iteration i Ks 6= S, so i < n, and therefore, by (e1), Ks = Nα+

H [xi+1]. As
Ks 6= S with S = Nα+

H (xi) and α is a MCComp PEO of H, it follows that Ks is a maximal clique of H.
Thus, (d) is preserved, and (e) obviously holds at the end of iteration i.

Characterization 3. An ordering α of a connected chordal graph H is a MCComp PEO of H if and only if it
is a PMO of H.

Proof. We prove this by induction on n = |V|. The result trivially holds if n = 1. We suppose that it
holds if |V| < n. Let us show that it holds if |V| = n. Let α = (x1, . . . , xn) be an ordering of H, and let
H′ = H(V \ {x1}).

⇒: We suppose that α is a MCComp PEO of H. Let us show that it is a PMO of H. (x2, . . . , xn)

is a MCComp PEO of H′, so by the induction hypothesis, it is a PMO of H′ compatible with a perfect
moplex partition of H′, say (X1, . . . , Xk). If Nα+

H (x1) = Nα+
H [x2], then ({x1} ∪ X1, . . . , Xk) is a perfect

moplex partition of H. Otherwise, in an execution of the algorithm MCComp-CliqueTree on H and
α, Ks 6= S at Iteration 1 since S = Nα+

H (x1) and Ks = Nα+
H [x2] by Invariant 2 (e), so S is a minimal

separator of H, which makes {x1} a moplex of H and ({x1}, X1, . . . , Xk) a perfect moplex partition of
H. Hence, α is a PMO of H.

⇐: We suppose that α is a PMO of H compatible with perfect moplex partition (X1, . . . , Xk). Let
us show that it is a MCComp PEO of H. As it is a PMO of H, it is a PEO of H. (x2, . . . , xn) is a PMO
of H′ (compatible with perfect moplex partition (X2, . . . , Xk) if X1 = {x1} and (X1 \ {x1}, . . . , Xk)

otherwise), so by the induction hypothesis, it is a MCComp PEO of H′. Hence, for each i from two to
n− 1, Nα+

H [xi+1] is a maximal clique of H′ or equal to Nα+
H (xi). It is sufficient to show that for each

i from two to n− 1, if Nα+
H [xi+1] is a maximal clique of H′, then it is a maximal clique of H and that

Nα+
H [x2] is a maximal clique of H or equal to Nα+

H (x1).

First case: X1 = {x1}

As NH(x1) is a minimal separator of H, by Characterization 1, it is equal to the intersection of two
maximal cliques of H and, therefore, is not a maximal clique of H′. It follows by Lemma 2 that each
maximal clique of H′ is a maximal clique of H. Moreover, Nα+

H [x2] = NH′ [X2], which is a maximal
clique of H′ and therefore of H.
Second case: X1 6= {x1}
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In that case, Nα+
H (x1) = Nα+

H [x2]. By Lemma 2, each maximal clique of H′ different from NH(x1)

is a maximal clique of H. It follows that for each i from two to n− 1, if Nα+
H [xi+1] is a maximal clique

of H′, then it is a maximal clique of H, since it does not contain x2, whereas NH(x1) contains x2.

Corollary 1. The algorithm MCComp-CliqueTree computes a clique tree and the set of minimal separators of
a connected chordal graph H from a PMO of H in linear time.

3.3. Clique Tree Using MLS

The algorithms MCS, LexBFS, LexDFS and, more generally, the algorithm L-MLS for any
labeling structure L for which the order on labels is total compute a PMO of a connected
chordal graph [12]. Note that the definition of a labeling structure given in [12] is less
general than the definition given in this paper, but the proof of this result still holds here.
We define the algorithm moplex-MLS (Algorithm 5), which computes a PMO of a chordal
graph, whether the order on labels is total or not, by adding, in the case where the ordering
fails to be total, a tie-breaking rule for choosing a vertex with a maximal label.

Algorithm 5: moplex-MLS.

input : a connected chordal graph H and a labeling structure L = (L,�, l0, Inc)
output: a PMO α = (x1, . . . , xn) of H

V′ ← ∅; initialize all labels as l0; prev-max-label ← l0;
for i = n down to 1 do

Choose a vertex x in V \V′ whose label is maximal,
and if possible strictly greater than prev-max-label;
xi ← x;
foreach y in NH(x) \V′ do

label(y)← Inc(label(y), i);
end
V′ ← V′ ∪ {x}; prev-max-label ← label(x);

end

Theorem 3. The algorithm moplex-MLS computes a PMO of a connected chordal graph.

To prove Theorem 3, we will use the following Lemma.

Lemma 3. In an execution of moplex-MLS, for each i in [1, n − 1] and each y in V such that α−1(y) ≤ i,
at the beginning of iteration i,

(a) If Nα+
H [xi+1] ⊆ Nα,i

H (y), then prev-max-label ≺ label(y).
(b) If prev-max-label ≺ label(y), then {xi+1} ⊆ Nα,i

H (y) ⊆ Nα+
H [xi+1].

Proof. (a) If Nα+
H [xi+1] ⊆ Nα,i

H (y), then Nα,i
H (xi+1) ⊂ Nα,i

H (y), so by Lemma 1, prev-max-label =

label(xi+1) ≺ label(y).
(b) We suppose that prev-max-label ≺ label(y). As the label of xi+1 is maximal at the beginning

of iteration i + 1, label(y) has been increased during iteration i + 1, so y is a neighbor of xi+1 in H.
As α is an MLS ordering of H, it is a PEO of H, so Nα+

H (y) is a clique containing xi+1, and therefore,
Nα,i

H (y) ⊆ Nα+
H [xi+1].

Proof. (of Theorem 3) Let α = (x1, . . . , xn) be the ordering computed by an execution of moplex-MLS
on input H and L. Let us show that it is a PMO of H. By Characterization 3, it is sufficient to show
that α is a MCComp PEO of H. As α is an MLS ordering of H, it is a PEO of H. Let i ∈ [1, n − 1].
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We suppose that Nα+
H [xi+1] is not a maximal clique of H. Let us show that it is equal to Nα+

H (xi). As
Nα+

H [xi+1] is not a maximal clique of H, there is a vertex y, such that α−1(y) ≤ i and Nα+
H [xi+1] ⊆

Nα,i
H (y), and therefore, by Lemma 3 (a), prev-max-label ≺ label(y) at the beginning of iteration i in

this execution. It follows by the condition on the choice of x that prev-max-label ≺ label(xi), and
therefore, by Lemma 3 (b), Nα+

H (xi) ⊆ Nα+
H [xi+1]. It is impossible that Nα+

H (xi) ⊂ Nα+
H [xi+1] since in

that case Nα,i
H (xi) ⊂ Nα,i

H (y), so by Lemma 1 at the beginning of iteration i, label(xi) ≺ label(y) and xi
would not be a vertex with maximal label. Hence, Nα+

H (xi) = Nα+
H [xi+1].

If L is a labeling structure with a total order on labels, condition “if possible strictly greater than
prev-max-label” is useless, so the algorithm moplex-L-MLS is actually identical to L-MLS. We thus
provide an alternate proof for the result from [12] that if the order on labels is total, then each L-MLS
ordering of a chordal graph is a PMO of this graph, with a more general definition of a labeling
structure and an alternative (simpler) proof.

Combining algorithms MCComp-CliqueTree and moplex-MLS, we define the algorithm
MLS-CliqueTree (Algorithm 6) computing both a PMO and a clique tree of a chordal graph.

Algorithm 6: MLS-CliqueTree.

input : a connected chordal graph H and a labeling structure L = (L,�, l0, Inc)
output: a PMO α = (x1, . . . , xn), a clique tree T and the set Sep of minimal separators of H

InitCT;
Initialize all labels as l0; prev-max-label ← l0;
for i = n down to 1 do

Choose a vertex x in V \V′ whose label is maximal,
and if possible strictly greater than prev-max-label;
xi ← x; S← NH(x) ∩V′; // S = Nα+

H (x)
if Ks 6= S then

StartClique;
end
IncreaseClique;
foreach y in NH(x) \V′ do

label(y)← Inc(label(y), i);
end
V′ ← V′ ∪ {x}; prev-max-label ← label(x);

end
DefineCT;

The correctness of the algorithm MLS-CliqueTree immediately follows from Corollary 1 and
Theorem 3.

Example 2. Consider an execution of the algorithm MLS-CliqueTree on the graph H shown in Figure 1 and
labeling structure LX with X ∈ {MCS, LexBFS, LexDFS, MNS} choosing vertices f , then e first (and,
therefore, completing the maximal clique {e, f } first). Then, the execution successively completes K, then K′ if
X = LexBFS, K′, then K if X = LexDFS, and either K, then K′ or K′, then K otherwise. Removing condition
“if possible strictly greater than prev-max-label” has no effect if X 6= MNS, but if X = MNS, it would
allow the execution to choose alternatively a vertex of K and a vertex of K′, as the labels of the vertices of K are
incomparable to the labels of the vertices of K′.

The algorithm MLS-CliqueTree generalizes the algorithm extended-MCS from [4] and its
extension to LexBFS from [13], except that in these algorithms, the condition “Ks 6= S” is replaced
by a direct condition on labels: “label(x) � prev-max-label”. We define a necessary and sufficient
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condition on a labeling structure L for the replacement of “Ks 6= S” by “prev-max-label 6≺ label(x)”
(which becomes “label(x) � prev-max-label” if � is a total order) to be possible.

Definition 5. Let L = (L,�, l0, Inc) be a labeling structure. L is DCL (Detect new Cliques with Labels) if
for any integers i and n such that 1 ≤ i < n and any subsets I and I′ of [i + 2, n], if I ⊆ I′ and labL(I′) ≺
labL(I ∪ {i + 1}), then I = I′.

The labeling structures associated with MCS, LexBFS and MNS are clearly DCL, but LLexDFS is
not since for any subsets I and I′ of [i + 2, n], labL(I′) ≺ labL(I ∪ {i + 1}) necessarily holds.

Remark 1. For each X ∈ {MCS, LexBFS, MNS}, LX is a DCL labeling structure, but LLexDFS is not.

On a DCL labeling structure, the algorithm DCL-MLS-CliqueTree (Algorithm 7) detects new
cliques by a condition on abels.

Algorithm 7: DCL-MLS-CliqueTree.

input : a connected chordal graph H and a DCL labeling structure L = (L,�, l0, Inc)
output: a PMO α = (x1, . . . , xn), a clique tree T and the set Sep of minimal separators of H

InitCT;
Initialize all labels as l0; prev-max-label ← l0;
for i = n down to 1 do

Choose a vertex x in V \V′ whose label is maximal,
and if possible strictly greater than prev-max-label;
xi ← x; S← NH(x) ∩V′; // S = Nα+

H (x)
if prev-max-label 6≺ label(x) and i < n then

StartClique;
end
IncreaseClique;
foreach y in NH(x) \V′ do

label(y)← Inc(label(y), i);
end
V′ ← V′ ∪ {x}; prev-max-label ← label(x);

end
DefineCT;

Theorem 4. The algorithm DCL-MLS-CliqueTree is correct and would be incorrect with any non-DCL input
labeling structure. Moreover, if the input labeling structure is LX with X ∈ {MCS, LexBFS}, then the
algorithm runs in linear time.

Proof. We suppose that L is DCL. It is sufficient to show that at each iteration i in [1, n − 1],
Ks = S ⇔ prev-max-label ≺ label(x), i.e., by Invariant 2 (e), Nα+

H [xi+1] = Nα,i
H (xi) ⇔

prev-max-label ≺ label(x). The implication from left to right immediately follows from Lemma 3
(a). Let us show the reverse implication. We suppose that prev-max-label ≺ label(xi). By Lemma 3
(b), {xi+1} ⊆ Nα,i

H (xi) ⊆ Nα+
H [xi+1]. Let I = α−1(Nα,i+1

H (xi)), and let I′ = α−1(Nα+
H (xi+1)).

I ⊆ I′ ⊆ [i + 2, n] and labL(I′) = prev-max-label ≺ label(xi) = labL(I ∪ {i + 1}), so I = I′, since L is
DCL. It follows that Nα+

H [xi+1] = Nα,i
H (xi).

We suppose now that L is not DCL. Then, there are some integers i and n with 1 ≤ i < n and
some subsets I and I′ of [i + 2, n] such that I ⊂ I′ and labL(I′) ≺ labL(I ∪ {i + 1}). Let H = (V, E)
and α be defined by: V = {1, . . . , n}, α = (1, . . . , n), {i + 2, . . . , n} is a clique of H, Nα+

H (i + 1) = I′

and ∀j ∈ [1, i] Nα+
H (j) = I ∪ {i + 1}. H is connected and chordal and by IC α can be computed by
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an execution of the algorithm DCL-MLS-CliqueTree. At iteration i of such an execution, Ks 6= S, but
prev-max-label = labL(I′) ≺ labL(I ∪ {i + 1}) = label(x), so the execution increases current clique Ks

instead of starting a new one.
We suppose that the input labeling structure is LX with X ∈ {MCS, LexBFS}. As the order on

labels is total, it is sufficient to choose a vertex x with the maximal label at each iteration. As LX-MLS
runs in linear time, it is sufficient to check that condition prev-max-label 6≺ label(x) can be evaluated
in O(|NH(x)|) time. It is obviously the case if X = MCS. It is also the case if X = LexBFS since
label(x) is of a length of at most |NH(x)|.

For X = MCS (resp. LexBFS), as LX is DCL with totally ordered labels, the algorithm
DCL-LX-MLS-CliqueTree can be simplified by choosing an arbitrary vertex with the maximal label
at each iteration, yielding the algorithms from [4] (resp. [13]). As LLexDFS is not DCL, it follows
from Theorem 4 that the algorithm DCL-MLS-CliqueTree would be incorrect with LLexDFS as the
input labeling structure. Note that this contradicts Theorem 4.1 from [14] stating that in an execution
of LexDFS, label(xi) � prev-max-label is a necessary and sufficient condition for Nα+

H [xi+1] to
be a maximal clique and Nα+

H (xi) to be a minimal separator of the input graph, implying that
DCL-MLS-CliqueTree is correct with LLexDFS as the input labeling structure. The simple graph H
from Figure 1 is a counterexample as shown below.

Counterexample 1. An execution of the algorithm DCL-MLS-CliqueTree on the graph H shown in Figure 1
and the labeling structure LLexDFS computing ordering (a, b, c, d, e, f ) is shown in Figure 2. For each
vertex x, the number α−1(x) and the final label of x are indicated. At the beginning of Iteration 4,
label(a) = label(b) = pre-max-label = (6) and label(c) = label(d) = (5), with (6) ≺ (5) according
to labeling structure LLexDFS. At Iteration 4, vertex d is chosen, and as prev-max-label ≺ label(d), the
execution increases the current clique {e, f } instead of starting new clique K′.

•
a 1 (2,6)

•
b 2 (6)

•
c 3 (4,5)

•
d 4 (5)

•
e 5 (6)

•
f 6 ()

K K′

Figure 2. LexDFS labels do not detect new maximal cliques.

4. Clique Tree of the Complement Graph

The algorithm MLS can be used to compute a PEO of the complement graph [11]. We will show
that it can be used to compute a PMO, a clique tree and the minimal separators of the complement
graph, provided that this complement graph is connected and chordal.

Definition 6. Let L = (L,�, l0, Inc) be a labeling structure. L is complement-reversing if for any integers
i and n with 1 ≤ i ≤ n and any subsets I and I′ of [i, n], if labL(I) � labL(I′), then labL([i, n] \ I′) �
labL([i, n] \ I).

Remark 2. [11] For each X ∈ {MCS, LexBFS, LexDFS, MNS}, LX is complement-reversing.

Definition 7. For any labeling structure L, Rev(L) denotes the labeling structure obtained from L by
replacing the order on the labels by its dual order.
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Theorem 5. [11] Let L be a complement-reversing labeling structure. Then, an ordering of a graph G is a
L-MLS ordering of G if and only if it is a Rev(L)-MLS ordering of G.

Thus, if L is complement-reversing, then replacing “maximal” by “minimal” in the algorithm
MLS results in an algorithm that, with G and L as input, computes a Rev(L)-MLS ordering of G
and therefore a L-MLS ordering of G, which is a PEO of G if it is chordal. However, it is not
correct to replace in the algorithm moplex-MLS or MLS-CliqueTree condition “if possible strictly
greater than prev-max-label” by “if possible strictly smaller than prev-max-label” since in the case
Nα+

H [xi+1] = Nα+
H (xi). With H = G, we have Nα+

G (xi+1) = Nα+
G (xi), i.e., prev-min-label = label(x)

at iteration i (as x is adjacent to xi+1 in H, it is not adjacent to xi+1 in G, and therefore, its label is
not increased during iteration i + 1). We will show that prev-min-label 6= label(x) is a necessary and
sufficient condition for starting a new clique in H, whether the labeling structure is DCL or not.

Thus, the algorithm complement-DCL-MLS-CliqueTree (Algorithm 8) detects new cliques on the
complement of the input graph by a condition on labels whether the labeling structure is DCL or not.

Algorithm 8: complement-DCL-MLS-CliqueTree.

input : a graph G whose complement is a connected chordal graph and a
complement-reversing labeling structure L = (L,�, l0, Inc)

output: a PMO α = (x1, . . . , xn), a clique tree T and the set Sep of minimal separators of G

H ← G; InitCT;
Initialize all labels as l0; prev-min-label ← l0;
for i = n down to 1 do

Choose a vertex x in V \V′ whose label is minimal, and if possible equal to
prev-min-label;
xi ← x; S← NH(x) ∩V′; // S = Nα+

H (x)
if prev-min-label 6= label(x) and i < n then

StartClique; prev-min-label ← label(x);
end
IncreaseClique;
foreach y in NG(x) \V′ do

label(y)← Inc(label(y), i);
end
V′ ← V′ ∪ {x};

end
DefineCT;

Note that as by condition, IC labels can only increase, prev-min-label is necessarily minimal.

Theorem 6. The algorithm complement-DCL-MLS-CliqueTree is correct.

An ordering computed by the algorithm complement-DCL-MLS-CliqueTree is a Rev(L)-MLS
ordering of G, and therefore, by Theorem 5 a L-MLS ordering of H, which is a PEO of H. To prove
Theorem 6, we will use the following Lemma.

Lemma 4. In an execution of complement-DCL-MLS-CliqueTree, for each i in [1, n− 1] and each y in V such
that α−1(y) ≤ i, at the beginning of iteration i, the following propositions are equivalent:

(1) Nα+
H [xi+1] ⊆ Nα,i

H (y),
(2) prev-min-label = label(y),
(3) Nα+

H [xi+1] = Nα,i
H (y).
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Proof. (1)⇒ (2): We suppose that Nα+
H [xi+1] ⊆ Nα,i

H (y). Then, Nα,i
G (y) ⊆ Nα,i

G (xi+1), and therefore, by
Lemma 1, label(y) � label(xi+1) = prev-min-label. Moreover, label(y) 6≺ prev-min-label since label(y)
and prev-min-label are the labels of y and xi+1, respectively, at the beginning of iteration i + 1. Hence,
prev-min-label = label(y).

(2)⇒ (3): We suppose that prev-min-label = label(y). Then, the label of y is not increased during
iteration i + 1 (otherwise, it would have been strictly smaller than the label of xi+1 at the beginning of
iteration i + 1). It follows that y is not adjacent to xi+1 in G and therefore is adjacent to xi+1 in H. As
α is a PEO of H, Nα,i

H (y) ⊆ Nα+
H [xi+1]. Moreover, Nα,i

H (y) 6⊂ Nα+
H [xi+1], since otherwise, Nα,i

G (xi+1) ⊂
Nα,i

G (y), and therefore, by Lemma 1, prev-min-label ≺ label(y). Hence, Nα+
H [xi+1] = Nα,i

H (y).
(3)⇒ (1) is evident.

Proof. (of Theorem 6) Let α = (x1, . . . , xn) be the ordering computed by an execution of
complement-DCL-MLS-CliqueTree on input G and L, and let H = G. Let us show that it is a PMO
of H, i.e., a MCComp PEO of H by Characterization 3. As α is an MLS ordering of H, it is a PEO
of H. Let i ∈ [1, n − 1]. We suppose that Nα+

H [xi+1] is not a maximal clique of H. Let us show
that it is equal to Nα+

H (xi). As Nα+
H [xi+1] is not a maximal clique of H, there is a vertex y, such

that α−1(y) ≤ i and Nα+
H [xi+1] ⊆ Nα,i

H (y), and therefore, by Lemma 4, prev-min-label = label(y)
at the beginning of iteration i in this execution. It follows by the condition on the choice of x that
prev-min-label = label(xi) and, therefore, by Lemma 4 that Nα+

H [xi+1] = Nα+
H (xi).

It remains to show that condition prev-min-label 6= label(x) correctly detects new cliques. It is
evident at iteration n. For each iteration i with i < n, it immediately follows from Lemma 4, as the
condition to start a new clique is Ks 6= S, i.e., Nα+

H [xi+1] 6= Nα,i
H (x) by Invariant 2 (e).

Example 3. Let G be the complement graph of the graph H shown in Figure 1. An execution of the algorithm
complement-DCL-MLS-CliqueTree on G and labeling structure LLexDFS computing ordering (a, b, c, d, e, f )
is shown in Figure 3. For each vertex x, the number α−1(x) and the final label of x are indicated. At the
beginning of Iteration 4, label(a) = label(b) = (5) and label(c) = label(d) = (6), with (6) ≺ (5)
according to labeling structure LLexDFS and pre-min-label = (); vertex d is chosen, and new clique K′ is
started at Iteration 4 as desired. Clique K is correctly started at Iteration 2 since pre-min-label = (6) and
label(x) = label(b) = (3, 4, 5).

•
a 1 (3,4,5)

•
b 2 (3,4,5)

•
c 3 (6)

•
d 4 (6)

•e 5 ()•f 6 ()

Figure 3. Lexicographic Depth-First Search (LexDFS) labels detect new cliques on the complement.

The algorithm complement-DCL-MLS-CliqueTree does not run in O(n + m) time, since
computing S (in order to compute the maximal cliques and minimal separators of G) and k in
StartClique (in order to compute the edges of the clique tree) globally, takes O(n+m) time, where m is
the number of edges of G. However, the algorithm complement-DCL-MLS-generators (Algorithm 9)
computes a PMO α and the generators of the maximal cliques and minimal separators w.r.t. α of G in
O(n + m) time.
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Algorithm 9: complement-DCL-MLS-generators.

input : a graph G whose complement is a connected chordal graph and a
complement-reversing labeling structure L = (L,�, l0, Inc)

output: a PMO α = (x1, . . . , xn) and the sets GenCli and GenSep of generators of the
maximal cliques and minimal separators w.r.t. α of G respectively

V′ ← ∅; GenCli← ∅;GenSep← ∅;
Initialize all labels as l0; prev-min-label ← l0;
for i = n down to 1 do

Choose a vertex x in V \V′ whose label is minimal, and if possible equal to
prev-min-label;
xi ← x;
if prev-min-label 6= label(x) and i < n then

GenCli← GenCli + {xi+1}; GenSep← GenSep + {xi};
prev-min-label ← label(x);

end
foreach y in NG(x) \V′ do

label(y)← Inc(label(y), i);
end
V′ ← V′ ∪ {x};

end
GenCli← GenCli + {x1};

Theorem 7. The algorithm complement-DCL-MLS-generators is correct, and if the input labeling structure
is LX with X ∈ {MCS, LexBFS}, then it runs in linear time.

Proof. Correctness follows from the correctness of complement-DCL-MLS-CliqueTree.
We suppose that the input labeling structure is LX with X ∈ {MCS, LexBFS}. As the order on

the labels is total, it is sufficient to choose a vertex x with the minimal label at each iteration. The
linear time complexity of LX-MLS also holds for Rev(LX)-MLS. Hence, it is sufficient to check that
condition prev-min-label 6= label(x) can be evaluated in O(|NG(x)|) time. This is obviously the case
if X = MCS. This is also the case if X = LexBFS, since label(x) is of length at most |NG(x)|.

5. Extended Results

5.1. Clique Tree of a Minimal Triangulation

The algorithm MLSM computes an MEO and the associated minimal triangulation of the input
graph G. It computes an MMO of G if the order on labels is total [12]. It can be modified into
the algorithm moplex-MLSM computing an MMO of G whether the order on labels is total or not,
which can be extended to the algorithms MLSM-CliqueTree and DCL-MLSM-CliqueTree computing
an MMO, the associated minimal triangulation H of G, a clique tree and the minimal separators of H.
Below are the algorithms moplex-MLSM and DCL-MLSM-CliqueTree (Algorithms 10 and 11).
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Algorithm 10: moplex-MLSM.

input : a connected graph G and a labeling structure L = (L,�, l0, Inc)
output: an MMO α = (x1, . . . , xn) of G and the associated minimal triangulation H = G+

α

H ← G; V′ ← ∅; initialize all labels as l0; prev-max-label ← l0;
for i = n down to 1 do

Choose a vertex x in V \V′ whose label is maximal,
and if possible strictly greater than prev-max-label;
xi ← x;
Y ← ∅;
foreach y in V \V′ do

if there is a path µ of length ≥ 1 in G(V \V′) between x and y such that for each internal
vertex z of µ label(z) ≺ label(y) then

Y ← Y + {y}; E(H)← E(H) ∪ {xy};
end

end
foreach y in Y do

label(y)← Inc(label(y), i);
end
V′ ← V′ ∪ {x}; prev-max-label ← label(x);

end

Theorem 8. The algorithm moplex-MLSM computes an MMO and the associated minimal triangulation of
the input graph.

To prove Theorem 8, we will use the following lemmas.

Lemma 5. [8] A moplex of a minimal triangulation of G is a moplex of G.

Lemma 6. If α is an MEO of G and a PMO of G+
α , then it is an MMO of G.

Proof. Let H = G+
α . We prove this by induction on the size k of the perfect moplex partition

(X1, . . . , Xk) associated with α in H. If k = 1, then H is a clique, so G is a clique, as well, since H
is a minimal triangulation of G, and we are done. We assume that the property holds for a perfect
moplex partition of size k ≥ 1. Let (X1, . . . , Xk+1) be the perfect moplex partition associated with α in
H. As X1 is a moplex of H, by Lemma 5, it is a moplex of G. Let G1 be the graph obtained from G by
saturating NG(X1) and removing X1, and let α1 be the restriction of α to V \ X1.

As α is an MEO of G, α1 is an MEO of G1 and as (G1)
+
α1

= H(V \ X1), α1 is a PMO of (G1)
+
α1

.
Hence, by the induction hypothesis, α1 is an MMO of G1, and therefore, α is an MMO of G.

Note that the fact that α is a PMO of G+
α does not imply that it is an MMO of G. For instance, if

G is a non-clique graph with a universal vertex, then any ordering α of G such that α(1) is universal
is a PMO of G+

α (since G+
α is a clique), but not an MMO of G (since it is not an MEO of G).

Proof. (of Theorem 8) Let α be the ordering and H be the graph computed by an execution of
moplex-MLSM on input graph G. As this execution is also an execution of MLSM, α is an MEO
of G and H = G+

α . As moreover at each iteration, the labels are increased exactly in the same way as
in an execution of moplex-MLS on H, α is a PMO of H and, therefore, an MMO of G by Lemma 6.
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Algorithm 11: DCL-MLSM-CliqueTree.

input : a connected graph G and a DCL labeling structure L = (L,�, l0, Inc)
output: an MMO α = (x1, . . . , xn) of G, the associated minimal triangulation H = G+

α , a
clique tree T and the set Sep of minimal separators of H

H ← G; InitCT;
Initialize all labels as l0; prev-max-label ← l0;
for i = n down to 1 do

Choose a vertex x in V \V′ whose label is maximal,
and if possible strictly greater than prev-max-label;
xi ← x; S← NH(x) ∩V′; // S = Nα+

H (x)
if prev-max-label 6≺ label(x) and i < n then

StartClique;
end
IncreaseClique;
Y ← ∅;
foreach y in V \V′ do

if there is a path µ of length ≥ 1 in G(V \V′) between x and y such that for each internal
vertex z of µ label(z) ≺ label(y) then

Y ← Y + {y}; E(H)← E(H) ∪ {xy};
end

end
foreach y in Y do

label(y)← Inc(label(y), i);
end
V′ ← V′ ∪ {x}; prev-max-label ← label(x);

end
DefineCT;

The correctness of the algorithm DCL-MLSM-CliqueTree immediately follows from the
correctness of the algorithms moplex-MLSM and DCL-MLS-CliqueTree.

5.2. Atom Tree and Clique Minimal Separators

An atom tree of a connected graph G can be computed from a clique tree of a minimal
triangulation of G as described in the following theorem.

Theorem 9. [20] Let G be a connected graph; let H be a minimal triangulation of G; let T = (VT , ET) be a
clique tree of H; and let T′ be the forest obtained from T by removing all edges KK′ such that K ∩ K′ is a clique
in G; let T′′ be the tree obtained from T by merging the nodes of each tree of T′ into one node; then, T′′ is an
atom tree of G, and for each edge KK′ of T such that K ∩ K′ is a clique in G, K ∩ K′ = A ∩ A′, where A and
A′ are the atoms of G containing K and K′, respectively.

Thus, the algorithm DCL-MLSM-CliqueTree can be modified into the algorithm
DCL-MLSM-AtomTree computing an atom tree and the clique minimal separators of the input
graph G: in case a new clique is started, a new atom is started only if S is a clique in G; otherwise,
the atom containing Kp is increased. Note that the atoms are not built one after another, since an
atom different from As may be increased if a new clique is started and S is not a clique in G. Variable
q contains the index of the current atom. The algorithm DCL-MLSM-AtomTree (Algorithm 12)
generalizes the algorithm MCSM-atom-tree from [20], while correcting an error in this algorithm (a
confusion between variables q and s).
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InitAT // Initialize the Atom Tree
V′ ← ∅; s← 1; q← 1; A1 ← ∅; E← ∅; CliqueSep← ∅;

StartAtom // Start a new Atom
s← s + 1; As ← S;
E← E ∪ {(p, s)}; CliqueSep← CliqueSep ∪ {S};

IncreaseAtom // Increase the current Atom
Aq ← Aq ∪ {x}; atom(x)← q;

DefineAT // Define the Atom Tree
T ← ({A1, . . . , As}, {Ap Aq, (p, q) ∈ E});

Algorithm 12: DCL-MLSM-AtomTree.

input : a connected graph G and a DCL labeling structure L = (L,�, l0, Inc)
output: an atom tree T and the set CliqueSep of clique minimal separators of G

H ← G; InitAT;
Initialize all labels as l0; prev-max-label ← l0;
for i = n down to 1 do

Choose a vertex x in V \V′ whose label is maximal,
and if possible strictly greater than prev-max-label;
xi ← x; S← NH(x) ∩V′; // S = Nα+

H (x)
if prev-max-label 6≺ label(x) and i < n then

k← min{j, α(j) ∈ S}; p← clique(α(k));
if S is a clique in G then

StartAtom; q← s;
end
else

q← p;
end

end
IncreaseAtom;
Y ← ∅;
foreach y in V \V′ do

if there is a path µ of length ≥ 1 in G(V \V′) between x and y such that for each internal
vertex z of µ label(z) ≺ label(y) then

Y ← Y + {y}; E(H)← E(H) ∪ {xy};
end

end
foreach y in Y do

label(y)← Inc(label(y), i);
end
V′ ← V′ ∪ {x}; prev-max-label ← label(x);

end
DefineAT;

The correctness of the algorithm DCL-MLSM-AtomTree follows from Theorem 9,
Characterization 2 and from the correctness of the algorithm DCL-MLSM-CliqueTree.
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5.3. MLS on a Non-Chordal Graph

A MLS ordering of a non-chordal graph G is not necessarily an MEO of G. It was shown in [8]
that LexBFS ends on a moplex, i.e., if α is a LexBFS ordering of a non-clique graph G, then there is
a moplex X1 of G such that X1 = {α(1), . . . , α(|X1|)}. As the restriction of α to V \ X1 is a LexBFS
ordering of G(V \ X1), it follows that α is compatible with a simple moplex partition of G. However,
if G is not chordal, then α is not necessarily a PMO of G, and it is not necessarily an MMO of G and
not even an MEO of G.

Example 4. Let G be the graph shown in Figure 4, and let α = (1, 2, 3, 4, 5). α is a LexBFS ordering of G (the
final labels are indicated). α is compatible with the simple moplex partition ({1}, {2, 3}, {4, 5}). However, α

is not an MEO of G since the graph H = G+
α (shown in the figure with dashed fill edges) is not a minimal

triangulation of G.

•
1 (4,2)

•2 (5,3)

•3 (5)

•4 (5)

•5 ()
G

•1

•2

•3

•4

•5
H

Figure 4. Lexicographic Breadth-First Search (LexBFS) on a non-chordal graph computes an ordering
that is compatible with a simple moplex partition, but not with an MEO.

The work from [8] also showed that if α is a LexBFS ordering of a graph G, then the minimal
separators included in N(α(1)) are totally ordered by inclusion and that α consecutively numbers
the vertices of each connected component of G(V \ N[α(1)]) and its neighborhood. More accurately,
there is an order (C1, . . . , Cp) on the connected component of G(V \ N[α(1)]), such that for each i in
[1, p− 1]; N(Ci) ⊆ N(Ci+1) (the minimal separators included in N(α(1)) are the sets N(Ci)), and α

is compatible with the ordered partition (X1, N[Cp] \ N(Cp−1), . . . , N[C2] \ N(C1), N[C1]), where X1

is the moplex containing α(1). Xu et al. [14] showed that LexDFS also ends on a moplex of the input
graph G (and therefore, a LexDFS ordering is compatible with a simple moplex partition of G), but
they left open the question whether LexDFS orderings also have the properties on minimal separators
and connected components. The following counterexample shows that these properties of LexBFS do
not extend to LexDFS.

Counterexample 2. Let G be the graph shown in Figure 5, and let α = (1, 2, . . . , , 7). α is a LexDFS ordering
of G (the final labels are indicated). The minimal separators included in N[1] are {2, 6} and {4, 6} and are
incomparable for inclusion. If the property on connected components was true, C1 would be the component
numbered last by α, i.e., {7}, but the vertices of N[{7}] (7, 6 and 2) are not numbered consecutively by α. If G
is the graph shown in Figure 6 with α = (1, 2, . . . , , 6), even the restriction of α to V \ N[1] is not compatible
with a sequence of the connected components of G(V \ N[1]).
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•
1 (2,4,6)

•2 (3,7)

•
3 (4,6)

•4 (5)

•
5 (6)

•6 (7)

•
7 ()

Figure 5. With LexDFS, the minimal separators included in N(α(1)) are not totally ordered
by inclusion.

•
1 (5)

•
2 (3,6)

•3 (5) •4 (5)

•5 (6)

•6 ()

Figure 6. LexDFS does not number the connected components of G(V \ N[α(1)]) one after another.

It is shown in [12] that for each labeling structure L with a total order on labels and each L-MLS
ordering α of a graph G, α(1) is an OCF-vertex of G, i.e., satisfies the property: for each pair {y, z}
of non-adjacent vertices in N(α(1)), there is a connected component C of G(V \ N[α(1)]) such that
y, z ∈ NG(C). However, the definition of a labeling structure given in [12] is less general than the
definition given in this paper, as IC is replaced by conditions (p1): l ≺ Inc(l, i) and (p2): i f l ≺ l′ then
Inc(l, i)l ≺ Inc(l′, i): (p1) and (p2) imply IC and IC implies (p1), but does not imply (p2). It turns out
that the property of α(1) being an OCF-vertex does not extend to a labeling structure defined with IC
instead of (p1) and (p2) (a counterexample can be built with some effort). It is the only result from [12]
that does not extend to a labeling structure defined with IC.

6. Conclusions

In this paper, we explain how a clique tree of a chordal graph H can be computed from an
arbitrary PEO of H, from a PMO of H and from a modification of the algorithm MLS. We show
that a PMO allows one to build the cliques of a clique tree one after another. We characterize
labeling structures for which it is possible to detect the beginning of a new clique using the labels
and show that each labeling structure can detect this with labels when building a clique tree of the
complement graph.

Some results concerning algorithm MLS in Section 3 and MLSM in Section 5 are generalizations
of the results already known for MCS, LexBFS or MCS-M. The proofs in this paper largely use
Inclusion Condition (IC) (through Lemma 1) and make it clear that IC is fundamental for the
properties of the computed orderings. We believe that many results proven for some particular
instances of MLS or MLSM can be proven in a more general way for MLS or MLSM using IC. This
has already been done in [10,12,20]. We leave open the question of which other results could be
generalized using IC and which applications could follow from these generalizations.
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