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Aviral quasispecies, the ensemble of viral strains populating an infected person, can be highly diverse. For optimal assessment

of virulence, pathogenesis, and therapy selection, determining the haplotypes of the individual strains can play a key role.As

many viruses are subject to highmutation and recombination rates, high-quality reference genomes are often not available at

the time of a new disease outbreak. We present SAVAGE, a computational tool for reconstructing individual haplotypes of

intra-host virus strains without the need for a high-quality reference genome. SAVAGEmakes use of either FM-index–based

data structuresor adhoc consensus reference sequence for constructing overlap graphs frompatient sample data. In this over-

lap graph, nodes represent reads and/or contigs, while edges reflect that two reads/contigs, based on sound statistical con-

siderations, represent identical haplotypic sequence. Following an iterative scheme, a new overlap assembly algorithm that is

based on the enumeration of statistically well-calibrated groups of reads/contigs then efficiently reconstructs the individual

haplotypes from this overlap graph. In benchmark experiments on simulated and on real deep-coverage data, SAVAGEdras-

tically outperforms generic de novo assemblers as well as the only specialized de novo viral quasispecies assembler available so

far. When run on ad hoc consensus reference sequence, SAVAGE performs very favorably in comparison with state-of-the-

art reference genome-guided tools. We also apply SAVAGE on two deep-coverage samples of patients infected by the Zika

and the hepatitis C virus, respectively, which sheds light on the genetic structures of the respective viral quasispecies.

[Supplemental material is available for this article.]

Viruses such as HIV, Zika, and Ebola populate their hosts as an
ensemble of genetically related but different mutant strains, com-
monly referred to as viral quasispecies. These strains, each character-
ized by its own haplotypic sequence, are subject to high mutation
and recombination rates (Duffy et al. 2008; Domingo et al. 2012).
Sequencing methods aim at capturing the genetic diversity of
viral quasispecies present in infected samples; the promise is that
next-generation sequencing (NGS)-basedmethods will assist clini-
cians in selecting treatment options and other clinically relevant
decisions.

Ideally, a viral quasispecies assembly characterizes the genetic
diversity of an infection by presenting all of the viral haplotypes,
together with their abundance rates. There are two major chal-
lenges in this.

1. The number of different strains is usually unknown.
Furthermore, two different strains can differ by only minor
amounts of distinguishing mutations. Last but not least, abun-
dance rates can be as low as the sequencing error rates, which
hampers the detection of true mutations present at low
frequency.

2. Due to the great diversity and the highmutation rates, reference
genomes representing high-quality consensus genome sequen-
ces can be obsolete at the time of the disease outbreak. The lack
of a suitable reference genome is a major hindrance for many
viral quasispecies assembly approaches.

It is important to understand that all existing assemblymeth-
ods fail to address either the first or the second point. Recent refer-
ence-guided approaches specialized in viral quasispecies assembly
suggested statistical frameworks modeling the driving forces
underlying the evolution of viral quasispecies. While previous
approaches focused mostly on local reconstruction of haplotypes
(Zagordi et al. 2010, 2011; Quince et al. 2011; Huang et al.
2012), more advanced approaches aimed at global reconstruction
of haplotypes, for example, by making use of Dirichlet process
mixture models (Prabhakaran et al. 2014), hidden Markov models
(Töpfer et al. 2013), or sampling schemes (Prosperi and Salemi
2012). There are also recent combinatorial approaches which com-
pute paths in overlap graphs (Astrovskaya et al. 2011), enumerate
maximal cliques in overlap graphs (Töpfer et al. 2014), or compute
maximal independent sets in conflict graphs (Mangul et al. 2014).
While these approaches soundly address point 1, the vast majority
of them depend on high-quality reference sequence as a backbone
to their methods, which in turn is the reason why they fail to
address point 2. Hence, when confronted with hitherto unknown,
significantly deviating mutation patterns, these approaches fail to
perform sufficiently well.

On the other hand, de novo assembly approaches do not
depend on reference genomes. Although there exist numerous
de novo approaches for mammalian genome assembly (see, e.g.,
Salzberg et al. 2011; Bradnam et al. 2013; Gurevich et al. 2013
for comparative evaluations), these generic methods are not well
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suited for the viral quasispecies assembly problem. The key differ-
ence is that mutation rates in viruses are orders of magnitude
higher than in eukaryotes, resulting inmultiple polymorphic sites
within a single read (Duffy et al. 2008; Domingo et al. 2012). This
makes it possible to phase mutations into separate haplotypes;
however, generic assembly approaches do not exploit this prop-
erty. Rather, generic assemblers aim at reconstructing one single
consensus sequence or are not designed to handle genomes of
heavily polyploid organisms. In this regard, note that there are
de novo assemblers that specialize in viral genome assembly
already (Yang et al. 2012; Hunt et al. 2015). However, these speci-
alized approaches also aim at assembling consensus genomes
rather than strain-specific sequence, where the goal is to construct
new reference rather than individual sequence. To our knowledge,
the only existing de novo approach for haplotype-resolved viral
quasispecies assembly is MLEHaplo (Malhotra et al. 2016b). As a
consequence, while addressing point 2, most existing de novo
assembly methods fail to address point 1 to a satisfactory degree.

A possible principal issue is that nearly all of the NGS-based
genome assemblers, including the above-mentioned specialized
de novo viral quasispecies approaches, rely on the de Bruijn graph
as the assembly paradigm. Thereby, reads are decomposed into k-
mers, where k is usually considerably smaller than the read length.
As a generalization of this concept, the paired de Bruijn graph has
been introduced (Medvedev et al. 2011), which incorporates mate
pair information into the graph structure itself instead of analyz-
ingmate pairs in a post-processing step, which yields larger contigs
in the assembly. As mentioned above, it is imperative in viral qua-
sispecies assembly to distinguish low-frequency mutations from
sequencing errors. While low-frequency mutations are genetically
linked and hence co-occur within different reads, sequencing
errors do not exhibit patterns of co-occurrence. The detection of
patterns of co-occurrence is decisively supported by examining
reads at their full length, but this information cannot be exploited
with de Bruijn graphs. Overlap graphs, on the other hand, make
use of full-length reads and do not decompose them into smaller
parts; hence, we reason that the overlap graph paradigm suits
the problem of viral quasispecies assembly better.

The only existing method for viral quasispecies assembly
based on overlap graphs is HaploClique (Töpfer et al. 2014).
Although this method is reference-guided, it uses the reference
solely for providing anchor points for constructing an overlap
graph. Unlike in many other approaches (Zagordi et al. 2010,
2011; Töpfer et al. 2013; Di Giallonardo et al. 2014), the haplo-
type sequences are then assembled from the reads and not
from the reference. While providing inspiration in general, the
HaploClique algorithm has proven to require excessive computa-
tional resources already on data sets of relatively low coverage
(1000× and more). The reason is that it is based on the enumera-
tion ofmaximal cliques, which is exponential in the read coverage,
both in terms of runtime and space. We therefore present a novel,
more efficient algorithm for the clique enumeration part of the
assembly algorithm.

There are two exit strategies to resolve the issue of the possible
lack of a reference genome. The first strategy is to construct a con-
sensus genome sequence from the patient samples themselves,
using one of the available de novo consensus genome assemblers
(among which the most popular tool is VICUNA [Yang et al.
2012]), and to subsequently run one of the reference-guided
approaches using this ad hoc consensus as a reference. This strat-
egy has also been suggested by Mangul et al. (2014), and we shall
further explore it here. The second strategy is to construct an over-

lap graph directly from the patient sample reads. Subsequently, we
employ a ploidy-aware assembly algorithm that can extract strain-
specific sequences from overlap graphs. The challenge is that con-
structing overlap graphs requires a pairwise comparison of all
reads, which, for deep-coverage data sets, requires sophisticated
indexing techniques to be feasible. Here, we show how to make
efficient use of FM-index–based techniques (Välimäki et al.
2012) to construct overlap graphs without any need for a reference
genome. As such, we provide the first approach for de novo assem-
bly of viral quasispecies based on overlap graphs.

In summary, we make relevant contributions for

1. the construction of overlap graphs from deep coverage read
data, and

2. viral quasispecies assembly using the overlap graph assembly
paradigm.

In combination, we present SAVAGE (strain aware viral
genome assembly), a method that allows for reference-free assem-
bly of viral quasispecies from sequencing data sets of deep coverage
(20,000× and more). In this, we not only provide the first genuine
de novo viral quasispecies assembly approach based on overlap
graphs, but we also provide the first method that can exploit ad
hoc consensus sequence generated from patient samples, as com-
puted, for example, by VICUNA (Yang et al. 2012), for high-per-
formance viral quasispecies assembly.

Results

We have designed and implemented SAVAGE, a method for de
novo viral quasispecies assembly based on overlap graphs. In this
section, we provide a high-level description of the algorithmic
approach and analyze its performance, in comparison to state-of-
the-art viral quasispecies assembly tools and several established
generic genome assemblers. Finally, we present assembly results
using SAVAGE on two real virus samples from patients infected
by the Zika virus and hepatitis C virus, respectively. We refer to
the Methods section for any methodological details.

Approach

Our algorithm proceeds in three stages (panel A of Fig. 1), each of
which iteratively clusters the input sequences and extends them to
unique haplotypes. While Stage a has the original reads as input
and contigs as output, Stage b has these contigs as input and max-
imally extended contigs as output. The extended contigs are sup-
posed to reflect individual haplotype sequences. Finally, the
optional Stage c merges maximally extended contigs into master
contigs, each representing a group of very closely related strains.
This reflects the existence of ‘master strains’ in many viruses,
where each individual haplotype deviates from one of the master
strains by only a relatively minor amount of mutations (the
ensemble of which is commonly referred to as mutant class in
the literature and reflects a viral subpopulation) (see, e.g.,
Domingo et al. 2012). Each stage is divided into ‘overlap graph
construction’ (upper part of panel C in Fig. 1) and ‘overlap
graph-based assembly’ (lower part of panel C in Fig. 1). Between
the stages, this generic structure only differs in the details.

The strength of overlap graphs for viral quasispecies assembly
is in identifying co-occurring mutations, thus enabling the phas-
ing of mutations from the same strain. We distinguish sequencing
errors from truemutations by imposing very strong constraints on
the overlaps in terms of minimal overlap length and sequence
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similarity. In addition, we make use of paired-end read informa-
tion. This results in a very conservative overlap graph, where an
edge indicates that two sequences are very likely to originate
from the same virus strain. Therefore, by enumerating cliques in
the overlap graph, we cluster the reads per strain, thus reconstruct-
ing the individual haplotypes of the viral quasispecies.

We construct overlap graphs in two steps: first, pairs of reads
are determined that share sufficiently long and well-matched
overlaps, followed by a statistical evaluation of the quality of
each overlap. We explore two options for finding all such overlap
candidates. The first option is to apply a completely de novo pro-
cedure using FM-index–based techniques (Välimäki et al. 2012).
The second option is to align all reads against a reference genome,
such that read-to-read alignments can be induced from the
read-to-reference alignments. However, in the case of a viral out-
break, there may not be a suitable reference genome available; we
target such cases by constructing an ad hoc consensus sequence

from the patient samples, as computed by VICUNA (Yang et al.
2012).

SAVAGE offers three different modes, corresponding to the
different approaches to overlap graph construction described
above: ‘SAVAGE-de-novo’ uses the first option and is therefore
completely reference-free, while ‘SAVAGE-b-ref’ uses the second
option and thus relies on a bootstrap reference sequence. For
benchmarking purposes, we also consider ‘SAVAGE-h-ref,’ which
takes as input an existing, high-quality reference sequence.

Benchmarking data

For benchmarking experiments and performance analysis, we con-
sidered several simulated data sets, one gold standard benchmark
from real sequencing reads, and two real patient samples. For the
simulated data sets, sequencing reads were created using the simu-
lation software SimSeq (see Methods).

Figure 1. An overview of the workflow and algorithms of SAVAGE. (A) The three stages of SAVAGE. Each assembles sequences into longer sequences. For
clarity, we assign different names to the sequences output by each stage: contigs, maximally extended contigs, and master contigs, respectively. (B)
Principle of overlap graph construction and distinction among the reads between errors and sharedmutations. (C) Each stage has two steps: first, the over-
lap graph construction; second, assembly. This panel summarizes the differences in each step between the three stages. During overlap graph-based
assembly, steps 4 to 6 are repeated iteratively until there are no edges left in the overlap graph.
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Simulated benchmarks

We created five simulated data sets for benchmarking, consisting
of 2 × 250-bp Illumina MiSeq reads and representing quasispecies
infections from different viruses: human immunodeficiency virus
(HIV), hepatitis C virus (HCV), and Zika virus (ZIKV). We varied
the number of strains per sample as well as the relative abundances
of those strains and the pairwise divergence between strains. To get
data sets as realistic as possible, we used true viral genomes from
the NCBI database and Illumina MiSeq error profiles during simu-
lations. Characteristics of each benchmark are given in Table 1,
and additional information can be found in Supplemental
Methods.

Lab mix

In addition to the simulated benchmarks, we also considered a real
Illumina MiSeq (2 × 250-bp) data set with an average coverage of
∼20,000×, obtained from a lab mixture of five HIV strains (see
also Table 1). This data set was recently presented as a gold stand-
ard benchmark (DiGiallonardo et al. 2014) and is available at https
://github.com/cbg-ethz/5-virus-mix; we will refer to it as the lab
mix.

Divergence-vs.-ratio

To analyze the combined effect of the levels of divergence and of
the relative abundance of the strains, we constructed 36 additional
data sets as follows. Starting from the HIV-1 89.6 haplotype, we
created six alternative haplotypes by introducing, respectively,
0.5%, 0.75%, 1%, 2.5%, 5%, and 10% random mutations. For
each of those six alternative strains, we created six data sets by sim-
ulating reads (2 × 250-bp Illumina MiSeq) from the mutated strain
and the original one at a ratio of 1:1, 1:2, 1:5, 1:10, 1:50, and 1:100,
respectively, with a total coverage of 500× per data set.

Zika virus sample

We applied SAVAGE to a sample of Asian-lineage ZIKV consisting
of Illumina MiSeq 2 × 300-bp sequencing reads (∼30,000× cover-
age) obtained from a rhesusmacaque after 4 d of infection (animal
393422) (Dudley et al. 2016). This data set is available in the NCBI
Sequence Read Archive under experiment SRX1678783, run
SRR3332513.

Hepatitis C virus sample

In addition to the Zika virus sample, we also used a HCV sample of
∼80,000× coverage, covering a region of ∼3000 bp containing the
HS5B gene. This data set is available in the NCBI Sequence Read
Archive under experiment SRX396803, run SRR1056035.

Evaluation preliminaries

In the case of a viral outbreak, the agent and its genome may be
unknown (or may have significantly diverged from closely related
strains such that available reference sequences are potentially
inadequate for analysis), and the samples taken from infected
patients contain an unknown number of divergent strains. Here,
we target these cases where no reference genome is available. A
sample sequenced with next-generation sequencing technology
delivers enough reads and sufficient coverage to allow a de novo
assembly of a viral genome (here, wemean a single genome assem-
bly, not a quasispecies assembly), to be used as an ad hoc reference
genome for further analyses. However, such genome sequences
may not represent any of the true viral haplotypes present in the
sample sufficiently well.

In the remainder of this paper, all assembly algorithms were
run using default settings. Evaluations of assemblies were per-
formed with MetaQUAST (Mikheenko et al. 2016), which com-
putes the usual statistics—number of contigs, largest contigs,
N50, misassembled contig length, target genome(s) covered, and
error rates—and we considered only contigs larger than a thresh-
old of 500 bp. A contig is calledmisassembled if it contains at least
one misassembly, i.e., a position where the left and right flanking
sequences align to the true genomes with a gap or overlap of more
than 1 kbp, or align to different strands, or even align to different
strains.

We compare de novo methods and reference-guided
approaches. While de novo algorithms proceed by iteratively
extending contigs until some convergence criterion is met, refer-
ence-guided approaches alter the reference sequence until a set
of haplotypes is obtained that is supposed to represent the quasi-
species. By altering the reference genome, all output sequences
have the same length, which means that the N50 score equals
the length of the output sequences. For de novo approaches, on
the other hand, the N50 score provides an indication of the contig
length distribution.

Failure of existing de novo assemblers on low-frequency strains

We explored the ability of generic genome assemblers to recon-
struct a viral quasispecies. From the broad collection of tools avail-
able, we selected four assemblers: SGA (Simpson and Durbin
2012), SOAPdenovo2 (Luo et al. 2012), SPAdes (Bankevich et al.
2012), and metaSPAdes (Nurk et al. 2017). The first two methods,
SGA and SOAPdenovo2, are generic assemblers, mostly used on
mammalian genomes. SPAdes was originally designed for bacterial
genomes, andmetaSPAdes is a version of SPAdes adapted formeta-
genome assembly.

First, we evaluate performance on all simulated benchmarks.
Table 2 presents results for all methods on the 5-strain HIV mix,

Table 1. Characteristics of benchmarking data sets

Data set Virus type Genome length (bp) Average coverage Strain count Strain abundance Pairwise divergence

600× HIV mix HIV-1 9478–9719 600× 5 20% 1%–6%
5-strain HIV mix HIV-1 9478–9719 20,000× 5 5%–28% 1%–6%
10-strain HCV mix HCV-1a 9273–9311 20,000× 10 5%–19% 6%–9%
3-strain ZIKV mix ZIKV 10,251–10,269 20,000× 3 16%–60% 3%–10%
15-strain ZIKV mix ZIKV 10,251–10,269 20,000× 15 2%–13% 1%–10%
Lab mix HIV-1 9478–9719 20,000× 5 10%–30% 1%–6%

For each benchmark, we specify virus type, genome length, average coverage, strain count, relative abundance, and pairwise divergence. For the 600×
HIV mix, the strains were homogeneously distributed with a relative abundance of 20% each.
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the 10-strain HCV mix, and the 15-strain ZIKV mix. The only
method capable of assembling at least half of a viral quasispecies
on a 20,000× simulated data set is SPAdes, the only close alterna-
tive being metaSPAdes, with 45.9% on the 10-strain HCV mix.
For the 5-strain HIV mix and the 10-strain HCV mix, SPAdes
assembles 91.3%–91.7% (SAVAGE-de-novo: ≥99.6%) of the true
viral genomes at an error rate of 0.015%–0.084% (SAVAGE-de-
novo: 0.004%), showing that SPAdes misses assembling a consid-
erable fraction of the quasispecies. This becomes more evident
on the 15-strain ZIKV mix, which contains several low-frequency
strains: SPAdes only recovers 65.6% of the target genomes
(SAVAGE-de-novo: 99.4%). The explanation for this is that
SPAdes misses assembling strains of low frequency, as Figure 2 fur-
ther reveals: here, a comparison of all approaches is shown when,
atmost, a bootstrap reference is provided. The performance of each
approach is evaluated on each of the strains of the 20,000× bench-
marks from Table 1 individually, and results are stratified by the
relative abundances of the strains. We see that SPAdes recovers
only 46.8% of the strains of frequency of <5%.

Similar results for the 600× HIV mix and the 3-strain ZIKV
mix can be found in Supplemental Tables S1 and S2; these are rel-

atively easy data sets, since neither contains any low-frequency
strains. Both SOAPdenovo2 and SPAdes perform reasonably on
the 600× data set, reconstructing 78.9% and 87.8% of the viral
quasispecies, respectively. SGA and metaSPAdes, on the other
hand, do not recover more than 19% of the quasispecies. For the
3-strain ZIKV mix, only SPAdes is able to reconstruct more than
40% of the quasispecies; in fact, it finds 99.6% of the target
genomes, performing almost perfectly on this low-ploidy data
set, which is no surprise because assemblers like SPAdes generally
target genomes of limited ploidy.

Finally, we consider the lab mix, which is based on real data
and hence the most challenging benchmark. Table 3 presents
results for all methods. SGA, SOAPdenovo2, SPAdes, and
metaSPAdes all perform quite similarly, reconstructing only
41.0%–53.7% of the viral quasispecies at very high error rates
(1.1%–2.0%). This shows that each of these assemblers has diffi-
culty distinguishing sequencing errors from true variants, thus
pointing out the need for specialized viral quasispecies assemblers.

The first specialized de novo assembler is now available
(Malhotra et al. 2016b). We ran this method, called MLEHaplo,
on our benchmarking data sets. Unfortunately, it could only

Table 2. Assembly results per method on simulated HIV, HCV, and ZIKV benchmarks (20,000× coverage)

# Contigs ≥500
bp

Largest
contig N50

MAC length
(%)

Target genomes
(%)

N-rate
(%)

Mismatches
(%)

Indels
(%)

5-strain HIV mix
PredictHaplo-h-ref 5 9720 9720 0 99.6 0.603 0.085 0.102
PredictHaplo-b-ref 5 9578 9578 0 93.8 0.284 0.110 0.104
ShoRAH-h-ref 289 9514 9514 0 39.4 0.268 2.403 0.016
ShoRAH-b-ref 242 9501 9501 7.0 93.8 0.127 3.197 0.124
SAVAGE-de-novo 36 9413 4913 0 99.8 0 0.004 0
SAVAGE-h-ref 28 9634 5027 0 99.6 0 0.004 0
SAVAGE-b-ref 59 9463 2424 0 99.5 0.002 0.071 0.002

SGA 36 1034 650 0 32.4 0 1.294 0.026
SOAPdenovo2 36 844 516 0 35.7 0 0.633 0
SPAdes 14 9789 5873 0 91.7 0 0.084 0.002
metaSPAdes 13 7044 5159 0 32.7 0 1.681 0.013

10-strain HCV mix
PredictHaplo-h-ref 9 9313 9313 0 90.0 0.004 0.402 0.010
PredictHaplo-b-ref 9 7636 7636 0 73.8 0.006 0.053 0
ShoRAH-h-ref – – – – – – – –

ShoRAH-b-ref 639 7570 7570 0 56.9 0 4.381 0.011
SAVAGE-de-novo 46 9297 8248 0 99.6 0.002 0.004 0
SAVAGE-h-ref 85 9247 3716 0 99.6 0 0.004 0
SAVAGE-b-ref 84 7802 2943 0 86.0 0 0.001 0

SGA 33 832 638 0 18.1 0 1.439 0
SOAPdenovo2 41 926 531 0 22.0 0 0.551 0
SPAdes 13 9311 8582 0 91.3 0 0.015 0
metaSPAdes 81 3041 1549 0 45.9 0 2.133 0

15-strain ZIKV mix
PredictHaplo-h-ref 8 10,258 10,258 0 53.3 0.032 0.147 0.046
PredictHaplo-b-ref 8 10,270 10,270 0 53.3 0.001 0.121 0.004
ShoRAH-h-ref – – – – – – – –

ShoRAH-b-ref 493 10,117 10,117 0 26.3 0.053 4.403 0.017
SAVAGE-de-novo 607 9282 2103 0 99.4 0.002 0.016 0
SAVAGE-h-ref 641 10,243 1935 0 99.4 0.002 0.006 0
SAVAGE-b-ref 604 9079 2018 0 99.5 0.002 0.011 0

SGA 0 – – – 0 – – –

SOAPdenovo2 56 1025 562 0 21.0 0 0.545 0
SPAdes 60 10,269 2577 0 65.6 0 0.131 0
metaSPAdes 37 6495 3926 0 17.5 0 1.200 0

For reference-guided methods, we present results using an established, high-quality reference genome (h-ref) as well as an ad hoc, bootstrap reference
genome (b-ref). All assemblies were evaluated on the following criteria: number of contigs ≥500 bp, length of the largest contig, N50 statistic,
MissAssembled Contigs (MAC) length relative to total contig length, percentage of the target genomes recovered, percentage of undetermined bases
(N), and percentage of mismatches and indels compared to the ground truth.
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handle the 600× HIVmix; for all 20,000× benchmarks, MLEHaplo
did not finish within a week and used more than 140 GB of main
memory per data set. On the 600× HIV mix, it performed very
poorly, reconstructing only 10% of the target genomes at a mis-
match rate of more than 2%.

Dependence of reference-based approaches on reference genome

quality

Reference-based quasispecies assembly tools proved to perform
adequately when a high-quality reference genome is available
(Zagordi et al. 2011; Prabhakaran et al. 2014). We question
whether reference-based approaches could yield appropriate qua-
sispecies assemblies if provided with a de novo assembled genome
sequence obtained from the sample reads, rather than a high-qual-
ity reference genome. To address this point, we compared state-of-
the-art methods PredictHaplo (Prabhakaran et al. 2014) and
ShoRAH (Zagordi et al. 2011) on our benchmarks (Table 1) in
two settings: either with a high-quality reference genome, or
with a genome sequence obtained by running the VICUNA assem-
bler (Yang et al. 2012) on the sample reads. We refer to the former
as a ‘high-quality reference genome,’ denoted h-ref, and the latter
as a ‘bootstrap reference genome,’ denoted b-ref. The quality of the
output assemblies, as evaluated with MetaQUAST, is described in
Tables 2 and 3, as well as in Supplemental Tables S1 and S2.

For PredictHaplo and ShoRAH, the number of output sequen-
ces provides an estimate of the total number of strains in the qua-
sispecies, since each output sequence represents a putative strain
in the quasispecies. In Table 2, we see that, on all benchmarks
except the 15-strain ZIKV mix, the number of output sequences
for PredictHaplo is very close to the true number of strains. For
the 3-strain ZIKV mix, both the high-quality reference genome
and the bootstrap reference genome lead to a perfect assembly of
three sequences without any mismatches and <0.042% indels
(Supplemental Table S2). However, considering the remaining
(more challenging) data sets, we see that using a bootstrap refer-
ence genome causes a serious loss in the fraction of target genomes
recovered by PredictHaplo (compared to using a high-quality refer-
ence). On the 600× HIV mix and the lab mix, using the bootstrap

reference even results in 100% of the
sequences being misassembled (Supple-
mental Table S1). Only for the 15-strain
ZIKV mix, the difference between the h-
ref and b-ref approaches is small: both
recover only 53% of the target genomes
(eight out of 15 strains) (see Table 2).

For ShoRAH, we observe that for all
data sets the number of output sequences
is one or two orders of magnitude larger
than the true number of strains. In addi-
tion, themismatch rate is high compared
to other methods, varying between 2.4%
and 4.4% on the simulated 20,000×
benchmarks. Unfortunately, we can
only compare the bootstrap reference
and high-quality reference approaches
on the HIV data, because ShoRAH-h-ref
crashed repeatedly on the HCV and
ZIKVbenchmarks. Remarkably, the boot-
strap reference approach increases target
genome coverage from 39.4% to 93.8%
on the 5-strain HIV mix (Table 2).

However, in both the 20,000× HIV mix and the 600× HIV mix,
we see that the bootstrap reference also results in a small fraction
of the total sequence length being misassembled (7.0% and
1.6%, respectively). This effect becomes much more apparent on
the lab mix, with 89.3% of the total sequence length being misas-
sembled. This shows that, similar to PredictHaplo, the quality of
the ShoRAH assembly is highly dependent on that of the reference
genome sequence.

Both tools, especially PredictHaplo, seem valuable when the
reference genome is closely related to sample strains but inad-
equate to handle cases where a good reference genome is unavail-
able. Moreover, Figure 2 shows that both PredictHaplo and
ShoRAH have trouble reconstructing low-frequency strains, recov-
ering <17%of the low-frequency (<5%) target strains. These results
emphasize the need for new assembly approaches that are inde-
pendent of a reference genome.

SAVAGE evaluation

For the sake of comparison, we ran SAVAGE on the same bench-
marks as above (Table 1) in both de novo mode and reference
mode, both with default parameters. The 20,000× coverage data
sets were split into patches of 750× each, on which we applied
SAVAGE Stage a. Subsequently, all Stage a contigs were put
together into one big collection of contigs and used as input for
Stage b (Supplemental Fig. S1).

Table 2 presents the evaluation results on simulated bench-
marks of the Stage b maximally extended contigs for each of
the three modes: SAVAGE-h-ref with a high-quality reference
genome, SAVAGE-b-ref with the genome assembled by VICUNA,
and SAVAGE-de-novo (without reference). Remember that all de
novo assemblers, including SAVAGE, proceed by progressively
assembling longer and longer contigs starting from the raw reads,
until finally each output contig may (partially) cover the target
genomes. Hence, unlike for PredictHaplo and ShoRAH, the num-
ber of contigs cannot be interpreted directly as a number of
strains.

With a reference, the results of SAVAGE-h-ref and SAVAGE-b-
ref are very similar: the contigs cover more than 99% of the target

Figure 2. Target genome fraction recovered per strain for all 20,000× benchmarks, stratified by strain
frequency.
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genomes, with the largest contig length close to the genome size
of the virus in question. The mismatch, indel, and N rates are
globally better than those offered by PredictHaplo and ShoRAH:
the indel and N rates are, respectively, one or two orders of
magnitude lower. Above all, the contigs are free of misassemblies
(MAC length is 0%). Strikingly, providing a high-quality reference
genome or a bootstrap genome makes little difference, and on
some data sets, SAVAGE with a bootstrap genome achieves
better results for certain statistics (higher N50, larger target
genome fraction, lower mismatch rate for the 15-strain ZIKV
mix in Table 2). These observations also hold on the lab mix
(Table 3), where SAVAGE-ref recovers 91.5%–92.2% of the target
genomes at a mismatch rate of 0.101%–0.251% and very low
indel rates.

On all benchmarks, SAVAGE-de-novo delivers an assembly
that is qualitatively at least as good as the SAVAGE-h-ref and -b-
ref assemblies. Figure 2 shows that, in terms of target genome
recovered, SAVAGE-de-novo slightly but consistently outperforms
SAVAGE-ref. More importantly, this figure shows that both
SAVAGE-de-novo and SAVAGE-b-ref greatly outperform all other
methods, especially on low-frequency strains (i.e., frequency <
10%).

To analyze the effect of read length on SAVAGE assembly per-
formance, we also built a 5-strain HIV mix with the exact same
properties as given in Table 1 but with shorter reads (2 × 150 bp).
We evaluated the resulting maximally extended contigs for
SAVAGE-de-novo, SAVAGE-h-ref, and SAVAGE-b-ref (Supplemen-
tal Table S3). Compared to the original 5-strain HIV mix, which
has 2 × 250-bp reads, SAVAGE produces a more fragmented assem-
bly but still covers 90.6%–98.4% of the target genomes with mis-
match rates between 0% and 0.006%.

Overall, SAVAGE can process samples containing amixture of
multiple strains and recover most of the target genomes with a
high level of sequence quality. It performs slightly better in de
novo mode than with a reference sequence and also performs
well on shorter sequencing reads. Moreover, compared to existing
methods, our approach does not suffer from misassemblies. For
SAVAGE-de-novo, the misassembled contig (MAC) length is 0%
on all simulated data sets and 0.1% on the lab mix, which drasti-
cally outperforms all approaches that reach ≥90% genome cover-
age and operate without a high-quality reference. Moreover,
SAVAGE can take advantage of a bootstrap reference sequence

built by a single genome assembler. Finally, SAVAGE offers contigs
with improved mismatch and indel rates, especially on low-fre-
quency strains.

Runtime and memory usage

We evaluate algorithm efficiency on both the 600× and the
20,000× simulated HIV mix, as well as the lab mix. We report
CPU time andmaximummemory usage for all methods evaluated
previously on each of these HIV data sets in Supplemental Table
S4. In terms of CPU time, SAVAGE-b-ref was considerably faster
than SAVAGE-de-novo, with 6.4 versus 19 min on the 600× HIV
mix, 449 versus 5296min on the 20,000×HIVmix, and 850 versus
7495 min on the lab mix. This was to be expected, since de novo
overlap graph construction requires enumeration of all approxi-
mate suffix-prefix overlaps among the reads. In comparison,
PredictHaplo was faster but of the same order of magnitude as
SAVAGE-b-ref with 7, 223, and 158 min, respectively. ShoRAH
was comparable to SAVAGE and PredictHaplo on the 600× HIV
mix (12 min) but very slow on the 20,000× data (22,256–32,375
min). The de Bruijn graph-based assemblers (SOAPdenovo2,
SPAdes, and metaSPAdes) were very fast on all data sets, with a
CPU time of 0.15–2 min on the 600× HIV mix, 5–46 min on the
20,000× HIV mix, and 6–166 min on the lab mix. The generic
assembler SGA was considerably slower, with 24, 164, and 300
min, respectively. Finally, with 54 min on the 600× data,
MLEHaplo was the slowest, which also points out why it could
not finish the 20,000× benchmarks.

Peak memory usage varied between 0.04 GB (PredictHaplo)
and 8.4 GB (SPAdes/metaSPAdes) for the 600× HIV mix, between
0.5 GB (SGA) and 10 GB (ShoRAH) for the 20,000× HIV mix, and
between 0.7 GB (SGA) and 12 GB (ShoRAH) for the lab mix.
Both SAVAGE-de-novo and SAVAGE-b-ref are on the lower end
of this scale, with 0.6/1.3 GB for the 600× HIV mix, 0.9/1.7 GB
for the 20,000× HIV mix, and 1.1/3.0 GB for the lab mix, respec-
tively. A complete comparison of runtime and memory usage for
all methods is presented in Supplemental Table S4.

Effect of strain divergence and relative abundance

Assembling the sequences of several strains from a viral sample
may turn out to be more difficult depending on both the level
of strain divergence and on their relative abundance. After

Table 3. Assembly results per method on the HIV lab mix, a gold standard benchmark containing real sequencing data (20,000× coverage)

# Contigs ≥500
bp

Largest
contig N50

MAC length
(%)

Target genomes
(%)

N-rate
(%)

Mismatches
(%)

Indels
(%)

PredictHaplo-h-ref 5 9642 9642 0 99.2 0.259 0.615 0.104
PredictHaplo-b-ref 5 11,000 11,000 100 94.5 0.425 0.011 0.136
ShoRAH-h-ref 160 9581 9581 0 98.9 0.378 3.203 0.113
ShoRAH-b-ref 169 10,854 10,854 89.3 99.0 0.770 0.911 0.165
SAVAGE-de-novo 846 1221 588 0.1 92.6 0.183 0.161 0.040
SAVAGE-h-ref 848 1167 588 0.3 91.5 0.220 0.251 0.036
SAVAGE-b-ref 828 1226 595 0.1 92.2 0.162 0.101 0.040

SGA 60 1117 635 1.5 41.0 0 1.811 0.046
SOAPdenovo2 56 984 591 1.5 41.9 0 1.655 0.114
SPAdes 60 2952 591 1.2 42.6 0 1.154 0.097
metaSPAdes 27 4543 3266 0 53.7 0 2.045 0.100

For reference-guided methods, we present results using an established, high-quality reference genome (h-ref) as well as an ad hoc, bootstrap reference
genome (b-ref). All assemblies were evaluated on the following criteria: number of contigs ≥500 bp, length of the largest contig, N50 statistic,
MissAssembled Contigs (MAC) length relative to total contig length, percentage of the target genomes recovered, percentage of undetermined bases
(N), and percentage of mismatches and indels compared to the ground truth.
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comparing SAVAGE to state-of-the-art methods, we investigated
the ranges of divergence levels and of relative abundances that
SAVAGE can properly handle and examined the combined effect
of these two parameters on the assembly quality. We used a series
of 36 benchmark data sets simulated from two HIV-1 strains: a
combination of six divergence levels (from 0.5% to 10% of
nucleotidic divergence) with six ratios of abundance (from 1:1
to 1:100). We ran SAVAGE-de-novo and SAVAGE-b-ref (i.e., with
VICUNA assembled genome). All assemblies were evaluated
with MetaQUAST, and Figure 3 reports the heat maps of (A) the
coverage fraction of the two genomes, (B) the mismatch rate,
and (C) the relative error on the frequency estimates of each
strain.

Comparing the two modes of SAVAGE, de novo or with a
bootstrap reference, we observe similar results and a slight
advantage to SAVAGE-de-novo in terms of genomes coverage.
Altogether, SAVAGE obtains quasispecies assemblies of very
low mismatch rates for all divergence levels and all relative abun-
dance ratios, proving its ability to distinguish sequencing errors
from true mutations. In general, the target genome coverage is
very high for relative abundance ratios starting from 1:1 until
1:10, at all divergence levels. As the relative abundance of
the minor strain decreases, it becomes more difficult to recon-
struct the corresponding sequence. An extreme relative abun-
dance of 1:100 hinders SAVAGE from reconstructing both
strains: genome coverage values around 50% indicate that only
one of the two strains has been assembled. We conclude that
SAVAGE performs well in both modes (de novo and reference-
guided) for relative abundances above 1:50 and a wide range of
divergence levels.

Capacity to estimate the frequency of each strain

The problem of estimating relative frequencies of the contigs
assembled for a viral quasispecies is very similar to quantifying
the abundances of bacterial genomes from high-throughput
sequencing (HTS) data. Previous work (Bray et al. 2016) has shown
that Kallisto can accurately tackle the latter problem, sowe applied
this method to our virus contigs as well (see Methods). For the 36
synthetic ‘divergence-vs.-ratio’ benchmarks, we compared the
estimated frequency of the minor strain in the sample with the
real frequencies. The rightmost panel of Figure 3 shows the relative
difference between the estimated frequency and the true fre-
quency of the minor strain. This comparison was performed
only when the strains were almost fully assembled (exactly two
strains of length≥ 4000 bp); hence, abundance ratios of 1:50
and 1:100 were excluded. Of the remaining 24 data sets, 9–10 sam-
ples did not satisfy these criteria; the corresponding entries are
marked ‘-’ in the heat maps. Since there are only two strains in
the sample, the absolute error is identical for both strains; how-
ever, the relative error will be much larger on the low-frequency
strain. Hence, we evaluate performance on the most difficult
task, namely estimating the frequency of the minor strain. In gen-
eral, the relative estimation errors are very low: on average, 1.65%
for the SAVAGE-de-novo contigs and 1.39% for the SAVAGE-b-ref
contigs, with an overall minimum of 0% (a perfect estimate) and a
maximum of 5.34%.

Zika virus sample

To test SAVAGE-de-novo on real conditions, we ran it on a sample
taken from a rhesus macaque infected by an Asian lineage Zika

Figure 3. Performance of SAVAGE-de-novo and SAVAGE-b-ref, depending on pairwise distance and mixture ratio. (A) Target genome fraction recovered
(%) considering all maximally extended contigs ≥500 bp. (B) Overall mismatch rate (%) considering all maximally extended contigs ≥500 bp. (C) Relative
error of estimated frequency for the minor strain (%). Frequency estimates were computed using Kallisto, and only assemblies containing exactly twomax-
imally extended contigs longer than 4000 bp were evaluated.
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virus (Dudley et al. 2016). The sequencing reads covered the full
ZIKV reference genome used (NCBI sequence KU681081.3) at an
average coverage of 30,000×. Using a similar procedure as for the
real HIV data (lab mix), we split the reads into patches of ∼750×
each and proceeded with Stage a assembly on each patch
(Supplemental Fig. S1). Subsequently, we used the whole collec-
tion of Stage a contigs together as input for Stage b, which yielded
148 maximally extended contigs longer than 500 bp. A small frac-
tion (4%) of these contigs could not be aligned to the reference
genome but instead matched four human BAC clones (accession
AC117500.13, AC002565.1, AC079754.4, and AC015819.5) and
one rhesus macaque BAC clone (accession AC190318.8) at >90%
sequence identity, indicating contamination, so we removed
them from further consideration. The remaining 142 contigs con-
tained 13 sequences longer than 1000 bp, the largest contig being
1874 bp long, and the N50 measure was 572 bp. The contigs cov-
ered the 10,767-bp reference genome between positions 225 and
10,767, the greatest divergence occurring between positions
1700 and 4200.

In Stage c, we allowedup to 1%divergence between contigs in
the overlap graph, thus assembling representatives for groups of
very closely related strains (see Methods). This resulted in six con-
tigs of length at least 500 bp, now calledmaster contigs. The largest
sequence was 4155 bp long, and the N50 measure was 2065.
Aligning the contigs to the reference genome reveals that the mas-
ter contigs together form two master strains: their sequences dif-
fered only by a 1-nt deletion at position 4103, followed by a SNP
at position 4106 (see Supplemental Fig. S2). Our frequency estima-
tion procedure predicted the haplotype harboring the deletion to
be the minor haplotype with a frequency of 8.6%, compared to
91.4% for the major haplotype. We hope that, in the future, novel
external data obtained by different means will become available
for this sample, allowing an in-depth validation of our two-strain
quasispecies assembly.

Hepatitis C virus sample

Analogous to the ZIKV analysis above, we applied SAVAGE to a
hepatitis C patient sample presented in Töpfer et al. (2014). This
sample covers the NS5B region (positions 7602–9374), a gene
encoding for the RNA-dependent RNApolymerase, which is essen-
tial for viral replication. We found 857 contigs in Stage b, with an
N50 measure of 533 bp and the largest contig 839 bp long.
Aligning the contigs to the HCV reference genome (NCBI
sequenceNC_004102.1) reveals that the 9646-bp genomewas cov-
ered between positions 6128 and 9304, with a relatively constant
amount of variation across the whole region.We observed no con-
tigs resulting from sample contamination (all contigs could be
aligned to the reference sequence).

By allowing up to 1% divergence between contigs in the over-
lap graph in Stage c, we continued the assembly. This led to 80
master contigs of length at least 500 bp, of which five were longer
than 1000 bp. The N50 measure was 535 and the largest sequence
counted 1433 bp. Aligning the master contigs to the reference
genome shows that one of themaster contigs contains a large dele-
tion of 444 bp. This particular sequence couldnot be aligned across
the deletion; instead, we found two clipped alignments for the
contig, one for the first 781 bases and one for the last 319 bases.
Combining these two alignments, the contig covers positions
7723–9267 of the reference genome (nearly the entire NS5B
gene), apart from a gap of 444 bases starting at position 8504.
The largest master contig spans almost the same region (positions

7923–9356), but it does not show any deletions compared to the
reference genome. We conclude that there is a 444-bp deletion
in the NS5B gene in only some of the strains in the sample, in
agreement with results from an earlier study (Töpfer et al. 2014).

Compared to the previous sample (ZIKV), the current sample
shows much more variation in both contigs and master strains. A
likely explanation for this is the large difference in numbers of days
of infection between the samples: 4 d for ZIKV versus 135 for HCV.
To get an estimate on the number of master strains in the HCV
sample, we built a conflict graph based on the alignments of the
master contigs to the reference genome. An edge in this graph
reflects that two contigs disagree on at least one position of the
reference genome; hence, any clique corresponds to a set of
sequences all belonging to different strains. The largest clique in
this graph was of size 16, suggesting the existence of at least 16 dif-
ferent strains in the HCV sample.

Discussion

Recent outbreaks of viral diseases, such as the Ebola or the Zika
virus, have pointed out a pressing need for methods to assess the
genetic diversity of viral infections in a flexible manner, without
strongly depending on the quality of available reference genomes.
Here, we have presented SAVAGE, the first method for de novo
assembly of viral quasispecies based on overlap graphs.

Viral genomes are characterized by highmutation and recom-
bination rates. They are therefore often extreme in terms of both
ploidy and the low relative abundance of single haplotypes. In
our experiments, existing genome assemblers that do not depend
on reference genomes were unable to reconstruct a viral quasispe-
cies completely, where the (often resistance-inducing) low-fre-
quency strains could not be captured sufficiently well. This has
demonstrated that onlymore specialized assemblers that can oper-
ate without depending on a reference genome have the power to
overcome the current limitations.

WehaveshownthatSAVAGEhas thispowerand thusprovides
answers to such currently pressing issues. SAVAGE has performed
very favorably—if not crucially advantageously—in comparison
to a large collection of state-of-the-art de novo assemblers and spe-
cialized (but reference-dependent) viral quasispecies assemblers.
Thereby, it proved particularly beneficial when being compared
to reference-free approaches in terms of reconstructing strains of
low frequency, which had been one of the essential goals of this
study. Comparisons with existing reference-guided approaches
demonstrated that those methods yield contigs that are affected
more by sequencing errors in general. Moreover, they tend to
become confused by reference genomes of suboptimal quality,
while SAVAGEbehaves in a robustmannerandcanalsomake favor-
able use of such suboptimal bootstrap (ad hoc) reference genomes.
Last but not least, our method significantly outperforms the only
availabledenovoviral quasispecies assembler (MLEHaplo) in terms
of assembly quality, runtime, and memory usage. In an overall
account, SAVAGEhasproven tobridge a significant gap in the spec-
trum of viral quasispecies assembly approaches.

We believe that the central methodological reason for the
benefits of our approach is the use of overlap graphs as the under-
lying assembly paradigm. While assembling genomes of low
ploidy usually works favorably based on de Bruijn graphs, we
have pointed out that using reads at their full length is key in
assembling viral quasispecies, where distinguishing between low-
frequency mutations and sequencing errors is imperative. The
key insight is that (genetically linked) true mutations co-occur
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among different reads. Examining the full read span decisively
enhances the detection of patterns of co-occurrence. Beyond
enabling the detection of low-frequency strains, this also allows
correction of sequencing errors in novel ways. We have demon-
strated this bymaking integrative use of sound statistical sequence
models in combination with an iterative algorithmic scheme,
which extends reads into contigs of increasing length and
extremely low error content.

Key to reference-free construction of overlap graphs has been
the use of FM-index–based techniques, which is novel in the con-
text of the analysis of viral data. Moreover, we have demonstrated
that overlap graphs also seem to be the approach of choice when
aiming to make use of ad hoc consensus reference genomes,
such as those provided by specialized tools that construct a single
consensus sequence from patient sample read data. Often, the
resulting consensus sequence is of worse quality than a well-cura-
ted reference sequence. This can substantially disturb approaches
that rely on the underlying reference as a sequence template
(e.g., PredictHaplo, ShoRAH). Overlap graphs constructed bymak-
ing use of reference sequence coordinates provide a robust alterna-
tive, since they use the reference sequence only as a coordinate
system for the determination of overlaps.

A few more things are noteworthy. First, the bootstrap refer-
ence approach SAVAGE-b-ref has proven to outperform refer-
ence-guided approaches in terms of the error rates of the contigs,
even when they make use of high-quality reference sequence,
which further underlines the general use of overlap graphs.
Second, the target genome coverage of our full de novo approach
SAVAGE-de-novo exceeded that of the high-quality reference-
guided approaches, which demonstrates its ability to distinguish
sequencing errors from true mutations. Finally, SAVAGE-b-ref
also depends on the quality of the reference sequence: the target
genome coverage is 13.6 points lower compared to SAVAGE-h-ref
on the 10-strain HCV mix. This, of course, had to be expected: if
reference coordinates are too mistaken, overlaps cannot be
detected. This last point underscores that a full de novo approach
can come with decisive extra advanatages.

Of course, there is still room for improvements. While sub-
stantially faster and more space-efficient than previous overlap
graph-based viral quasispecies assembly algorithms, SAVAGE has
been particularly tailored toward dividing deep-coverage data
sets into chunks of 500–1000× and merging the contigs of the
chunks in subsequent steps, because this reflects its statistical cal-
ibration. While this works well, it sets certain limits on the fre-
quency of strains it can recover—haplotypes of frequencies
below 1% remain difficult to reconstruct. In future work, we will
seek to lower these limits further by considering novel strategies
for computing cliques in overlap graphs. On the algorithmic
side, we will also explore alternative
indexing techniques that allow for
more relaxed definitions of overlaps
and faster computation. Last but not
least, incorporating long read data into
SAVAGE may help to reconstruct full-
length genomes.

Methods

Overlap graph construction

We first provide a brief definition of an
overlap graph and then sketch how to

construct such graphs from patient sample read data using indexes
or reference genomes as two options.

Overlap graphs

For a collectionR of sequencing reads (Stage a) or contigs (Stages b,
c), both of which are sequences over the alphabet of nucleotides
{A,C,G,T,N} (which includes N as a common placeholder for
unknown nucleotides), the overlap graph G = (V,E) is a directed
graph, where vertices v∈V correspond to reads/contigs R [ R
and directed edges connect reads/contigs Ri,Rj [ R whenever a
suffix of Ri of sufficient length matches a prefix of Rj and QS(Ri,
Rj)≥ δ where QS:V × V→R is a quality score that has to exceed a
certain threshold δ. For Stages a, b, we make use of the statistical
model presented in Töpfer et al. (2014), whereQS(Ri, Rj)≥ δ reflects
that the overlapping parts of reads Ri and Rj present a locally iden-
tical haplotypic sequence. Note that the statistical model includes
a refined analysis of the (Phred-scaled) error profiles that underlie
Ri and Rj so as to reflect that sequencing is an erroneous process
and hence to assess the identity of their overlapping parts on a
sound statistical basis.

In Stage c, QS(Ri, Rj) reflects the fact that the two contigs share
only a limited amount of mismatches in their overlaps, meaning
that they did likely emerge from identical master strain sequences.

Paired-end reads

SAVAGE was designed for short reads (typically, Illumina reads);
after merging self-overlapping pairs, the input in Stage a may con-
tain paired-end reads and/or single-end reads. To make use of the
pairing information, we add another edge restriction by allowing
only the overlap cases shown in Figure 4. For overlaps involving
a paired-end read, we require both read ends to have a sufficiently
long overlap (at least half of the minimum overlap length for sin-
gle-end reads) as well as a sufficiently high quality score.

Construction

Construction of overlap graphs always proceeds in two steps. First,
pairs of reads (Ri,Rj) are determined that have a sufficiently long
and well-matching overlap. Subsequently, QS is evaluated on all
pairs (Ri,Rj). For Stages b and c, where the input is sufficiently
small, the first step is implemented by pairwise comparison of all
contigs using BLAST (Altschul et al. 1990). The only difficulty is
the first step in Stage a, where the input is very large (the original
deep coverage data). This requires some sophistication; we explore
two options:

1. With a read index: We determine all sufficiently long overlaps
between sequencing reads using FM-index–based techniques
(Välimäki et al. 2012, SFO) such that overlaps contain at most
2% mismatches (accounting for up to 1% sequencing errors

Figure 4. Edge criteria. For an overlap to become an edge in the overlap graph, it must satisfy three
criteria. First, the overlap length lmust be at least the minimal overlap length L. Second, the overlap qual-
ity score QS(R1, R2) must be at least the minimal score δ. For overlaps involving paired-end reads, we
require both l1≥ L and l2≥ L, and, analogously, QS(R1a , R2a ) ≥ d and QS(R1b , R2b ) ≥ d. Finally, we only
accept overlaps where the sequence orientations of a paired-end read agree: either both sequences in
forward orientation, or both sequences in reverse orientation.
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in each of the reads). This method, however, only works on sin-
gle-end reads, so we first ignore the paired-end relations and
consider each of the sequences as a single-end read. Then, after
listing all pairwise overlaps with SFO, we reconsider the pairing
information, outputting only overlaps that are supported by
both read ends as described above.

2. With a reference genome: We align all reads against a reference
genome; here, we may use an ad hoc consensus genome
obtained by running an assembly tool on the sample reads.
With all read alignments in hand, it is then computationally
straightforward to determine all sufficiently long and suffi-
ciently matching overlaps between reads.

Read orientations

When merging multiple reads into one consensus sequence, it is
important that the reads agree on their respective orientations.
Therefore, we apply a read orientation routine that assigns a label
(+/−) to every read, indicating the orientation in which its
sequence should be considered. This routine starts by setting the
orientation of a node of minimal in-degree to +, then recursively
labels all out-neighbors as defined by the corresponding edges
(Fig. 5, panel A). When there is no perfect labeling possible, mean-
ing that there are conflicts among the read orientations due to
inversions, we heuristically search for an orientation that leads
to a minimal amount of conflicts among the reads.

Overlap graph-based assembly

In all stages, our algorithm proceeds as an iterative procedure
where contigs growwith the iterations. The final contigs (in partic-
ular, the output of Stage b, or optionally, Stage c) can substantially
exceed the length of the original reads. As our analyses demon-
strate, these contigs present haplotype-specific sequences with
high accuracy.

Cliques and contigs

The main idea of our algorithm is to compute cliques in the over-
lap graph. A clique is a subset of the nodes such that each pair of
nodes is linked by an edge. By definition of the edges, a clique
groups reads that stem from identical haplotypes. Within a clique,
reads/contigs share (possibly low-frequency) truemutations, while
sequencing errors are not shared by the majority of reads (Fig. 1,
panel B). Hence, cliques can be used to clearly distinguish between
truemutations and sequencing errors. This further allows us to cor-

rect these errors by transforming cliques into contigs that repre-
sent an error-corrected consensus sequence of the reads in the
clique.

Transitive edge removal

The number of maximal cliques in an overlap graph grows expo-
nentially with the number of nodes in the graph, that is, here,
with the read coverage of the data set giving rise to the overlap
graph. While our method relies on cliques for the purpose of error
correction, the size of the cliques does not have to exceed a certain
threshold for that goal.

A common approach to reduce the complexity of an overlap
graph is to remove transitive edges (see, e.g., Simpson and Durbin
2012). An edge u→w is called transitive if there exist a vertex v and
edges u→v, v→w. We call an edge u→w double transitive if there
exists a vertex v and transitive edges u→v, v→w, illustrated in
Figure 5, panel B. Note that, by definition, any double transitive
edge is also single transitive.We found that removing double tran-
sitive edges bounds the size of the cliques to four, thus decisively
limiting the number of maximal cliques and allowing efficient
maximal clique enumeration, while still allowing for safely distin-
guishing errors from true mutations.

To find all double transitive edges, we first remove all non-
transitive edges from the overlap graph to obtain the transitive
graph G′. This can be done efficiently by computing the inner
product of a−u and a+v for all pairs (u, v)∈V ×V, where a−u is the adja-
cency vector of outgoing edges of u and a+v is the adjacency vector
of incoming edges of v. Applying this procedure toGwe obtainG′,
and to find all double transitive edgeswe apply the same procedure
to G′.

In the first iteration of Stage a, we remove all double transitive
edges from the overlap graph. This reduces the number of contigs
obtained in this iteration by an order of magnitude, leading to a
decrease in CPU time and memory usage of even two orders of
magnitude (Supplemental Table S4). In later iterations, our algo-
rithm no longer depends on clique formation because the reads
(contigs) are assumed to be already of high quality. This allows
us to remove not only double but also single transitive edges.

Read clustering

In the first iteration of Stage a, we cluster reads by enumerating
maximal cliques in the overlap graph. After double transitive

Figure 5. Algorithmic details. (A) Read orientations: Given an edge u→vwith orientations (−,+). Then, if u is labeled +, the induced label for v is−, while if
u is labeled −, the induced label for v is +. This procedure leads to a vertex labeling in O(V ) time. (B) Transitive edges: An edge u→w is called nontransitive,
shown in black, if there is no vertex v such that there are edges u→v, v→w. It is called single transitive, shown in green, if for all vertices v such that there are
edges u→v, v→w, one of the edges is nontransitive. It is called double transitive, shown in red, if there is a vertex v with edges u→v, v→w which are both
transitive. (C ) Read clustering by cliques (top) or by pairs (bottom). (D) Error correction: When a consensus sequence is constructed from a cluster of reads,
the extremities are removed.
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edge removal in an acyclic graph, the maximum clique size is
four, as illustrated in Figure 5, panel B: a clique of size five will
always use a double transitive edge. In practice, our overlap
graphs are nearly acyclic and all cliques are of size at most four.
This implies that the total number of cliques is polynomial in
the number of nodes; hence, we can efficiently enumerate all
maximal cliques; we use the degeneracy algorithm presented in
Eppstein et al. (2010) to do so. For the error correction algorithm
to function optimally, we solely consider cliques of size four in
this iteration.

In later iterations, after removing all single transitive edges,
we merge pairs of contigs into new (extended) contigs. This does
not require clique enumeration of any kind. See Figure 5, panel
C for an illustration of the two read-clustering techniques. In the
case of conserved regions among multiple strains, there can be
branches in the overlap graph. In such situations, it is often impos-
sible to connect the variants left and right of the conserved region;
hence, we do notmerge any pair of contigs connected by a branch-
ing edge (Supplemental Fig. S3).

Contig formation and error correction

As outlined above, we transform all reads/contigs within a cluster
(a clique or a pair of contigs) into a consensus sequence. It is impor-
tant to determine the consensus very carefully, because the origi-
nal sequencing reads may contain up to 1% sequencing errors.
Every consensus base is determined by a position-wise weighted
majority vote, where the weights correspond to the respective
base quality scores, as described in Töpfer et al. (2014) and in
Supplemental Methods. This procedure was designed to correct
for all putative sequencing errors showing amongmembers of a cli-
que, which is especially relevant in the first iteration of Stage a (the
error correction step). In this specific iteration, therefore, we
require cliques of size at least four; it is then highly unlikely that
all the reads in a cliquewill agree on a sequencing error.We remove
the extremities of the resulting contig where the support of the cli-
que is <4 (Fig. 5, panel D). Reads that are not contained in any size
four clique are discarded after this iteration.

Graph updating

The newly constructed contigs become the nodes of the updated
overlap graph, and we need to determine the edges between those
nodes. In otherwords, weneed to find all pairs of contigs satisfying
our overlap criteria. In Stage a, we examine all pairs of contigs that
share an original read. This approach is very efficient but risks
ignoring overlaps of contigs that do not share an original read.
In Stages b and c, the graph is sparse enough such that we can
update the edges by considering all induced overlaps. This means
that for every edge u→v in the graph before updating, we consider
every overlap u′→v′ for all u

′
∈ Su, v

′
∈ Sv, where Su,Sv are the sets of

all newly constructed contigs containing u, v, respectively. In addi-
tion, we also reconsider all overlaps that were not included as an
edge in the graph before updating due to an insufficient overlap
quality score.

Iteration

The key idea of the SAVAGE assembly algorithm now is to repeat-
edly apply this twofold procedure of clique enumeration (Stage a)
ormerging pairs (Stages b and c) and contig formation. Thereby, all
contigs of iteration i≥ 1 become nodes in the overlap graph of iter-
ation i + 1, which results in an overlap graph to be processed in iter-
ation i + 1. We repeat this procedure until there are no more edges
in the overlap graph. Key to success is that contigs are constantly
growing along the iterations and, upon convergence, greatly

exceed the length of the original reads. An example of the progres-
sion of contig lengths during the three stages of the algorithm is
given in Supplemental Table S5.

Parameter settings

There are three parameters to be set, namely, the overlap score
threshold δ, the mismatch rate mr allowed in the overlaps, and
theminimal overlap length L. To analyze the behavior of the over-
lap score function, we simulated 2 × 250-bp Illumina MiSeq reads
fromdifferent genomes, diverging between 1% and 10%.We com-
puted all overlaps among those reads and classified them by the
number of true mutations in the overlap (not counting mis-
matches that are due to sequencing errors). This resulted in distri-
butions Pi, i≥ 0, representing the overlap scores found in case of i
true mutations (Supplemental Fig. S4), from which we concluded
that δ = 0.97 is the optimal choice. To be more conservative, this
threshold can be raised, but this comes at the cost of a decrease
in the target genome coverage.

The mismatch rate parameter allows overlaps having a suffi-
ciently high overlap score to become edges in the overlap graph
if the mismatch rate is sufficiently low. By default, this parameter
is set to 0, meaning that we only rely on the overlap score for con-
structing the overlap graph. When assembling master strains,
however, the allowedmismatch rate was set to 0.01, so that strains
diverging by <1% were merged into a consensus sequence.

Finally, the setting of the minimal overlap length parameter
depends on the average read coverage and sequencing depth.
Increasing the minimal overlap length results in a faster algorithm
and lower error rate, because the overlap graph will be very much
restricted. However, this achievement comes with a potential loss
of low-frequency strains, since the corresponding reads may not
have sufficiently long overlaps. In general, we found a minimal
overlap length of 50%–70% of the total read length to work well.
The exact command lines and parameter settings used for all
experiments can be found in Supplemental Methods.

Frequency estimation

We apply Kallisto (Bray et al. 2016) to estimate relative frequen-
cies of the contigs assembled for a viral quasispecies. Kallisto
was designed for quantifying the abundances of bacterial
genomes from HTS data, which is similar in spirit to estimating
frequencies for viral quasispecies assembly. The Kallisto algorithm
takes as input the original sequencing reads along with the con-
tigs and returns for every contig a so-called TPM (transcripts per
million). This number estimates the amount of sequencing reads
corresponding to this contig for every one million reads consid-
ered, and it is independent of the contig length. We translate
these counts to relative frequencies by dividing each TPM by
the sum of TPMs of all contigs evaluated. For the heat maps in
Figure 3, panel C, we only evaluated the two contigs of at least
4000 bp.

Other methods used for evaluation

For benchmarking, we compared SAVAGE against the state-of-the-
art approaches ShoRAH (Zagordi et al. 2011) and PredictHaplo
(Prabhakaran et al. 2014). Both methods were run with default
parameter settings, after aligning the reads to the reference
genome using BWA-MEM (Li 2013). The de novo assembler
MLEHaplo (Malhotra et al. 2016b) required the reads to be error-
corrected first, for which we used MultiRes (Malhotra et al.
2016a) with default settings (recommended by the authors).
Unfortunately, we could not compare against VGA (Mangul
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et al. 2014) and HaploClique (Töpfer et al. 2014) because these
software packages were no longer maintained.

Data simulations

To evaluate performance of SAVAGE, we designed several simu-
lated data sets. We used the software SimSeq (https://github.
com/jstjohn/SimSeq) to simulate Illumina MiSeq reads from the
genome of interest. In order to obtain reads similar to real MiSeq
data, we simulated 2 × 250-bp paired-end reads, with a fragment
size of 450 bp and the MiSeq error profile provided with the soft-
ware. In addition, we also simulated a 5-strain HIV mix with
shorter reads (2 × 150 bp). The genomes used for each data set
are listed in the Supplemental Methods.

Read trimming and merging

Before running any of the methods, the raw Illumina reads were
trimmed using CutAdapt (Martin 2011). Next, we applied PEAR
(Zhang et al. 2014) for merging self-overlapping read pairs. This
resulted in a final read set containing both single-end and
paired-end reads, on which we ran SAVAGE. For the other meth-
ods (MLEHaplo, PredictHaplo, ShoRAH, and VICUNA), we used
the trimmed reads without merging, since none of these methods
accepts a combination of single- and paired-end reads. In addi-
tion, MLEHaplo required an error correction step on the input
reads which was performed using MultiRes (Malhotra et al.
2016a).

MetaQUAST evaluation

WeuseMetaQUAST (Mikheenko et al. 2016) for quality evaluation
of the assembled contigs, which evaluates the contigs against each
of the true viral genomes. By default, MetaQUAST uses the option
“–ambiguity-usage all,” which means that all possible alignments
of a contig are taken into account. However, the genomes in a viral
quasispecies can be so similar that a contig may align to multiple
strains, even though it only matches one haplotype. Therefore,
we manually changed this option to –ambiguity-usage one, such
that, for every contig, only the best alignment is used. Contigs
shorter than 500 bp were ignored during evaluation.

Software availability

A C++ implementation of SAVAGE is available for public use at
https://bitbucket.org/jbaaijens/savage and as Supplemental Code.

Data access

All simulated data sets from this study have been submitted
to https://bitbucket.org/jbaaijens/savage-benchmarks and are
included as Supplemental Data S1. All assemblies obtained during
experiments on real data are available as Supplemental Data S2.
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