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Diagonally non-computable functions and fireworks
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Abstract

A set C of reals is said to be negligible if there is no probabilistic algorithm which
generates a member of C with positive probability. Various classes have been proven to
be negligible, for example the Turing upper-cone of a non-computable real, the class of
coherent completions of Peano Arithmetic or the class of reals of minimal degrees. One
class of particular interest in the study of negligibility is the class of diagonally non-
computable (DNC) functions, proven by Kučera to be non-negligible in a strong sense:
every Martin-Löf random real computes a DNC function. Ambos-Spies et al. showed that
the converse does not hold: there are DNC functions which compute no Martin-Löf random
real. In this paper, we show that the set of such DNC functions is in fact non-negligible.
More precisely, we prove that for every sufficiently fast-growing computable h, every 2-
random real computes an h-bounded DNC function which computes no Martin-Löf random
real. Further, we show that the same holds for the set of reals which compute a DNC
function but no bounded DNC function. The proofs of these results use a combination of
a technique due to Kautz (which, following a metaphor of Shen, we like to call a ‘fireworks
argument’) and bushy tree forcing, which is the canonical forcing notion used in the study
of DNC functions.

1 Background

1.1 Negligibility, Levin-V’yugin algebra and DNC functions

Let C ⊆ 2ω be a class of infinite binary sequences (a.k.a. reals) and, consider the set

{X ∈ 2ω : X Turing-computes some element of C}

By Kolmogorov’s 0-1 law theorem, its (Lebesgue) measure is either 0 or 1. If it is equal to 0,
the class C is said to be negligible, a terminology due to Levin and V’yugin [17]. Equivalently,
this means that there is no (infinite) probabilistic algorithm which generates a member of C
with positive probability.

Various classes have been proven to be negligible, for example the Turing upper-cone
of a non-computable A [5] (or a countable class of such A’s), the class of coherent comple-
tions of Peano Arithmetic [10], the class of minimal degrees [18], the class of shift-complex
sequences [20, 12], etc. Likewise, many classes have been showed to be non-negligible (or
‘typical’). Obviously classes of positive measure, such as the class of Martin-Löf random re-
als, are all non-negligible. Much more interesting examples were given by Kautz [11]1. He

1Very similar ideas were used by V’Yugin in [22, 23]

1



showed that the following are non-negligible: the class of hyperimmune sets, the class of 1-
generic reals, and the class of sets of CEA degrees. All three results are variations of the
same technique. However, the way Kautz presents his technique is quite abstract and in some
sense hides its true spirit, namely that what is being used is a probabilistic algorithm. In
the paper [19], Rumyantsev and Shen give a more explicit and intuitive explanation of the
underlying algorithm, using the metaphor of a fireworks shop in which a customer is trying
to either buy a box of good fireworks, or expose the vendor by opening a flawed one, and
uses a probabilistic algorithm to maximize his chances of success. Following the tradition
of colourful terminology in computability theory (Lerman’s pinball machine, Nies’ decanter
argument...), we propose to refer to this method as a fireworks argument, the precise template
of which will be recalled in the next section.

The dichotomy between negligibility and non-negligibility has received quite a lot of at-
tention in recent years. We refer the reader to [2, 3, 21] for a panorama of the existing results
in this direction.

One class of particular interest in the study of negligibility is the class of diagonally
non-computable functions, or ‘DNC functions’ for short. It consists of the total functions f :
N → N such that f(n) 6= ϕn(n) for all n, where (ϕn) is a standard enumeration of partial
computable functions from N to N. By definition, there is no computable DNC function. On
the other hand, as showed by Kučera [15], the class of DNC functions is non-negligible. If we
take the point of view of probabilistic algorithms, this is clear: since for all n there is only
one value for f(n) to avoid (namely, ϕn(n) if it is defined), so by picking f(n) at random
between 0 and some large integer (e.g. 2n), we ensure a positive probability of success. The
situation becomes more interesting when one restricts the class DNC to the subclass

DNCh = {f : N→ N | f is a DNC function and (∀n)f(n) < h(n)}

where h is a given function, typically a computable one. The faster h grows, the easier it is to
obtain an element of DNCh. And indeed, depending on the growth rate of h the class DNCh

can be negligible or non-negligible (an unpublished result due to J. Miller, see [3] for a proof).

This notion relativizes to an arbitrary oracle X: a DNCX function is a function f such
that f(n) 6= ϕXn (n) for all n. Likewise, we set

DNCX
h = {f : N→ N | f is a DNCX function and (∀n)f(n) < h(n)}

Of course, the stronger the oracle X, the harder it is to compute a DNCX function.

In this paper, we study the role of DNC functions in the setting of the Levin-V’yugin
algebra, which is the algebra of Turing invariant Borel sets ‘modulo negligibility’. That is,
for two Turing-invariant sets A and B we write A v B if Ar B is negligible. We say that A
and B are equivalent if A v B and B v A. We call an equivalence class for this equivalence
relation a Levin-V’yugin degree.

Despite having been introduced some time ago and being a very natural notion, little work
has been done on the Levin-V’yugin degrees, except for the seminal papers [17, 22, 23] and
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some ongoing work by Hölzl and Porter. It is during discussions with the authors of the latter
that a question arose. Kučera’s result discussed above shows that reals of Martin-Löf random
degree are also of DNC degree, so mlr v dnc, where mlr is the set of sequences Turing-
equivalent to a Martin-Löf random real, and dnc those equivalent to a DNC function. On
the other hand, it is well-known that there are DNC functions which do not Turing-compute
any Martin-Löf random real (see subsection 1.3 below). But does this result translate in
the setting of V’yugin’s algebra? More precisely, is it then the case that mlr @ dnc (i.e.,
that dnc r mlr is non-negligible)? In this paper, we answer this question in the affirmative.
Namely, we prove:

Theorem 1 (Main theorem) For every sufficiently fast-growing computable h, every 2-random
(i.e., Martin-Löf random relative to ∅′) real Z computes some f ∈ DNCh which does not
compute any Martin-Löf random real.

Not only is this result interesting in its own right, but its proof is particularly instructive.
It combines fireworks arguments with bushy tree forcing, a forcing notion used in many recent
papers to study the properties of DNC functions [1, 4, 7, 9, 13]. To our knowledge, our proof
is the most elaborate use of a fireworks argument to date. It illustrates quite convincingly
the power of the technique, and is likely to yield further applications in the future.

Also interesting is the fact that if we want to study functions which are DNC relative to
some oracle X, we can state a stronger theorem than what we would get from a straightforward
relativization of Theorem 1.

Theorem 2 (Main theorem, relativized) For any real X and a sufficiently fast-growing
computable h, every real Z which is both X-random and 2-random computes a function
f ∈ DNCX

h which itself computes no Martin-Löf random real.

A straightforward relativization of Theorem 1 would require Z to be X ′-random, and
would give a function f which does not compute any X-Martin-Löf random real, but it could
still compute a Martin-Löf random real. Note that taking X = ∅′ gives us a stronger result
than Theorem 1: Every 2-random real Z computes some f ∈ DNC∅

′

h which is does not compute
any Martin-Löf random real.

We finally remark en passant that ‘2-random’ in the hypothesis of Theorem 2 cannot be
substituted for ‘Martin-Löf random’, as shown by the following easy proposition.

Proposition 3 There is a Martin-Löf random real which computes no member of dncrmlr.

Proof. Take any hyperimmune-free Martin-Löf random Z. Because of hyperimmune-freeness,
everything Turing-computed by Z is in fact tt-computed by Z. Moreover, every non-computable
real which is tt-computed by a Martin-Löf random real is also of Martin-Löf random degree [6].
In particular, every DNC function it computes is of Martin-Löf random degree.

Remark. Readers who are experts in algorithmic randomness may not fully be satisfied with
this last proposition, and rightfully so. Indeed, there is a wealth of algorithmic randomness
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notions between Martin-Löf randomness and 2-randomness, and it would be interesting to
know precisely which levels of randomness it is sufficient for a real to have in order to compute
a member of dnc r mlr. A more precise answer is the following: weak-2-randomness is not
sufficiently strong, but Demuth randomness is. For the first part of this assertion, observe
that in the proof of Proposition 3, one can take Z to be weak-2-random (indeed there are
hyperimmune-free weak-2-randoms). The second part is more involved and requires a fine
analysis of fireworks arguments which will be done in a forthcoming paper by Christopher
Porter and the first author. However, the crude ‘2-randomness’ bound we use in this paper
is sufficient for our main goal, which is to prove the non-negligibility of dnc r mlr.

1.2 Notation and terminology

Unless otherwise specified, a string is a finite sequence of integers. We denote the set of
strings by ω<ω, by λ the empty string and by |σ| the length of a string σ. Unless specified
otherwise, a sequence is an infinite list of integers. The set of sequences is denoted by ωω. We
will sometimes need to consider binary sequences (which we also call reals), the set of which
we denote by 2ω. The n-th element of a string or sequence Z is denoted by Z(n− 1) and Z�n
denotes the finite sequence consisting of the first n values of Z. A string τ is a prefix of a
string σ (we also say that σ extends τ), noted τ � σ, if |σ| ≥ |τ | and σ�|τ | = τ .

A sequence Z ∈ ωω is said to be a DNC function (resp. X-DNC function) if for all n,
Z(n) 6= ϕn(n) (resp. Z(n) 6= ϕXn (n)), where (ϕn) is a standard enumeration of partial com-
putable functions from N to N with oracle.

A tree T ⊆ ω<ω is a set of strings closed downwards under the prefix relation, i.e., if
σ ∈ T and τ � σ then τ ∈ T . Members of a tree are often referred to as nodes. A node σ is a
child (or immediate extension) of a node τ in a tree T if τ � σ, τ and σ are nodes of T , and
|σ| = |τ |+ 1. A leaf of a tree T is a node with no immediate extension in T . A path in a tree
T is a sequence f such that every initial segment of f is in T . The class of paths of a tree T
forms a closed set denoted by JT K.

1.3 Bushy trees

In this section we present the notion of bushy tree and its main properties. Roughly speaking,
bushiness is a purely combinatorial property, which states that a tree is ‘sufficiently fast
branching’, in a way that guarantees the existence of a DNC path through the tree. The idea
of bushy tree was invented by Kumabe, who used it to construct a DNC function of minimal
Turing degree (see [16] for an exposition of this result), which in particular shows that there
is a DNC function which computes no Martin-Löf random real (as no Martin-Löf random real
can have minimal degree). Since then, bushy trees have been successfully applied to the study
of DNC functions. We refer the reader to the excellent survey of Khan and Miller [13].

Definition 1 (Bushy tree) Fix a function h and a string σ ∈ ω<ω. A tree T is h-bushy (resp.
exactly h-bushy) above σ if every τ ∈ T is comparable with σ and whenever τ � σ is not a
leaf of T , it has at least (resp. exactly) h(|τ |) immediate children. We call σ the stem of T .
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Definition 2 (Big set, small set) Fix a function h and some string σ ∈ ω<ω. A set B ⊆ ω<ω
is h-big above σ if there exists a finite tree T which is h-bushy above σ and such that all leaves
of T are in B. If no such tree exists, B is said to be h-small above σ.

Bushy tree forcing consists generally of building decreasing sequences of infinite bushy
trees T0 ⊇ T1 ⊇ T2 . . . where Ti is h-bushy over σi for some string σi. Each stem σi is an
initial segment of the constructed sequence. During the construction we maintain a set B of
“bad” extensions, i.e., of strings to avoid. This set must remain g-small above σi at any stage
for some function g. Bushy tree forcing is especially convenient for building DNC functions.
Let BDNC be the set of strings which are not initial segments of any DNC function:

BDNC =
{
σ ∈ ω<ω : (∃e < |σ|)ϕe(e) ↓= σ(e)

}
One can easily see that BDNC is 2-small above λ.

The following three lemmas are at the core of every bushy tree argument. We state them
without proof and refer the reader to [13] for details.

Lemma 1 (Concatenation) Fix a function h. Suppose that A ⊆ ω<ω is h-big above a string σ.
Let (Sτ )τ∈A be a family of subsets of ω<ω. If Sτ ⊆ ω<ω is h-big above τ for every τ ∈ A, then⋃
τ∈A Sτ is h-big above σ.

The concatenation property is often used in the following contrapositive form: If we are
given a finite tree T h-bushy above some string σ and a “bad” set B of extensions to avoid
which is h-small above σ, then there exists a leaf τ of T such that B is still h-small above τ .
In particular, if a set A is h-big above σ, there exists an extension τ of σ which is in A and
such that B is still h-small above τ .

Lemma 2 (Smallness additivity) Suppose that B1, B2, . . . , Bn are subsets of ω<ω, g1, g2, ...,
gn are functions, and σ ∈ ω<ω. If Bi is gi-small above σ for all i, then

⋃
iBi is (

∑
i gi)-small

above σ.

Lemma 3 (Small set closure) We say that B ⊆ ω<ω is g-closed if whenever B is g-big
above a string ρ then ρ ∈ B. Accordingly, the g-closure of any set B ⊆ ω<ω is the set
C = {τ ∈ ω<ω : B is g-big above τ}. If B is g-small above a string σ, then its closure is also
g-small above σ.

As explained in [13], Lemma 3 is very useful during our constructions. We are given a
“bad” set B of nodes, which is g-small above σ where σ is a partial approximation of the
object we are constructing. We want to extend σ still avoiding B and in particular preserving
g-smallness of B. Lemma 3 enables us to consider w.l.o.g. that if ρ is an extension of σ which
does not preserves g-smallness of B, then ρ is already on B.

The next lemma is very simple and yet central in this paper. It expresses the fact that if
a set B is sufficiently small in an h-bushy tree T , then there is only a small probability that
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a random path of the tree meets B (has a member of B as prefix). By “random path”, we
mean the probability distribution over paths induced by a downward random walk where one
starts at the root and at each step goes from a node to one of its children, all children being
given the same probability of being picked.

Lemma 4 Fix two functions positive functions g and h with g ≤ h. If T is an infinite tree
h-bushy above λ and B ⊆ T is a g-small above λ, then the probability that a random path
of T avoids B is greater than ∏

i∈ω

(
1− g(i)

h(i)

)

Note that this quantity is positive if and only if
∑
g(i)/h(i) < ∞, due to the identity∏

i∈ω (1− ei) = exp
(
−
∑

i∈ω ln(1− ei)
)

and the asymptotic estimate − ln(1− x) = x+ o(x).

Proof. Without loss of generality, we can assume that B is g-closed (otherwise, take its clo-
sure). We prove by induction over n that the probability of having avoided B by the time we
reach depth n is at least

∏n−1
i=0

(
1−g(i)/h(i)

)
(a quantity equal to 1 for n = 0, by convention).

The lemma immediately follows from this fact.

The base case n = 0 is trivial as λ is the only such node and B is g-small above λ.
Assume it is true for some depth n. Suppose we have reached a node ρ ∈ T of length n such
that B is g-small above ρ. By h-bushiness of T , ρ has at least h(n) immediate extensions. If B
were g-big above g(n)-many immediate extensions of ρ then B would be also g-big above ρ,
by g-closedness. Hence B is g-small above at least h(n)− g(n) immediate extensions of ρ. It
follows easily that, conditional to having reached ρ, the probability to avoid B at the next
level is at least 1− g(n)/h(n). This finishes the induction.

Remark. Lemma 4 makes no computability assumption on T and B. However, when T is
computable, taking a path of T at random can be performed using a probabilistic algorithm,
which will then produce a path avoiding B with probability at least

∏n−1
i=0

(
1−g(i)/h(i)

)
(and

this still makes no computability assumption about B).

Now we see how randomness helps us compute DNC functions: take a computable func-
tion h such that

∏
i(1 − 2/h(i)) > 0 (which is equivalent to

∑
i 1/h(i) < ∞; for example,

h(n) = (n+1)2 will do) and take an h-bushy tree T . Now, take a path of T at random. Since,
as we saw above, BDNC is 2-small in T , the previous lemma tells us that the probability to
get a path of the tree which avoids B, and thus is a DNC function, is at least

∏
i(1− 2/h(i)),

thus is positive.

1.4 Fireworks arguments

A fireworks argument can be seen as “probabilistic forcing” for Σ1 properties. It is best
illustrated by the following theorem, due to Kautz: there exists a probabilistic algorithm
which with positive probability produces a 1-generic real (more precisely, every 2-random real
computes a 1-generic real). Let us present the argument in a more abstract way so as to
better fit the setting of the next section, where we will (implicitly) force with bushy trees. Let
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(P,≤) be a computable partial order, and let W1, W2, ... be a list of uniformly c.e. subsets
of P. We want to get a probabilistic algorithm to generate an infinite list p0 ≥ p1 ≥ p2 ≥ ...
such that for every set Wi, the requirement Ri holds, where Ri says that there exists a j such
that either pj ∈Wi holds or for every q ≤ pj , q /∈Wi. (For example, to get Kautz’s result, on
takes for P the set of finite strings, where σ ≤ τ if σ extends τ and the Wi are all c.e. sets of
strings. In this paper, P will typically consist of a set of finitely represented bushy trees, and
T ′ ≤ T will mean that T ′ is a subset of T ).

Suppose we have already built the sequence of pj up to some pk, and we want to satisfy
the requirement Ri. If we did not care about the effectivity of the construction, we could
easily satisfy the requirement by distinguishing two cases:

Case 1 (the Π1 case): there is no p′ ≤ pk such that p′ ∈ Wi. In this case nothing needs
to be done, Ri is already satisfied!

Case 2 (the Σ1 case): there is some p′ ≤ pk such that p′ ∈Wi. Here it suffices to search
for such a p′ (which can be done effectively since Wi is c.e.), and set pk+1 = p′ after
which Ri is satisfied.

Although both cases only require effective actions (do nothing or effectively search for
a p′, respectively), the problem is that one cannot computably distinguish between them, as
being in Case 2 is only a c.e. event (hence the name ‘Σ1 case’). And indeed in general there
is no deterministic algorithm to build a sequence of pj satisfying all requirements (otherwise
one could, for example, computably build a 1-generic).

There is however, a probabilistic algorithm which builds such a sequence of pj ’s with
positive probability. It works as follows. We start with any p0 ∈ P. Next, for each i, we pick
an integer ni at random between 1 and N(i), where N is a fixed computable function (the
faster N grows, the higher the probability of success of the algorithm will be). Moreover,
for each i, we let ci be a counter, initialized at 0, which will count how many wrong passive
guesses we have made for requirement Ri.

By “passive guess”, we mean that in the construction of the pj ’s, we assume at some
step k that we are in the Π1 case, i.e., that no q ≤ pk is in Wi. It is a passive guess because
as we saw, if it is indeed true, requirement Ri is already satisfied and no particular action is
needed. Of course, this guess may be incorrect but since Wi is c.e., if it is incorrect we will
discover this at some later stage k′ of the algorithm. When this happens, we make a new
assumption that there are no q ≤ pk′ in Wi and so on. If at any point we make a correct
passive guess, requirement Ri is satisfied. There is however a danger that all the passive
guesses we make for requirement Ri turn out to be wrong. What we do is use the number ni
as a cap on how many times we allow ourselves to make a wrong passive guess for Ri. If for
some i the cap ni is reached at stage k, we then make the opposite guess (“active guess”),
i.e., that there is a q ≤ pk such that q ∈ Wi holds, try to find such a q and take it as our
pk+1, thus satisfying requirement Ri. This guess is “active” because we need to find such a q
before doing anything else. But at least, as we said above, since Wi is a c.e. set, such a q can
be effectively found if it exists. Then we take pk+1 = q.
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This active/passive guessing strategy is still not guaranteed to work, as one bad case
remains: if we make an incorrect active guess for some Ri, we then get stuck while waiting
for a q in Wi which we will never find. However, this is the only bad case: if it does not
happen for any Ri, then the algorithm succeeds in producing a sequence p0 ≥ p1 ≥ p2 ≥ ... as
wanted. Indeed, for every i, either it makes a good passive guess for Ri that never turns out
to be wrong, meaning that for some ps, no q ≤ ps is in Wi, or it makes a good active guess
that some q ≤ ps is in Wi, eventually finds such a q, and take it as an extension.

Why can the probability of success of the algorithm be made arbitrarily close to 1? The
reason is the following key observation: For all i, if all {nj : j 6= i} are fixed, then there is at
most one value of the random variable ni for which we get stuck in a loop while trying to sat-
isfy requirement Ri. Indeed, suppose we get stuck having chosen a value ni. This means that
we made ni−1 incorrect passive guesses and then one incorrect active guess. Any other choice
n′i < ni would have been fine, because our n′i-th guess would then have been a correct active
guess and a q in Wi. And any other choice n′i > ni would also have been fine, as in this case
our ni-th guess would have been a correct passive guess. Thus, the probability to get stuck
because of requirement Ri is at most 1/N(i), giving a total probability of success of the al-
gorithm of at least 1−

∑
i 1/N(i), which can be made arbitrarily close to 1 for a well chosen N .

Now the last thing we need to check is how much randomness (in the sense of algorithmic
randomness) is needed for this probabilistic algorithm to work. Let us explain what we mean.
A probabilistic algorithm is nothing but a Turing functional Γ with access to a ‘random’ (in
the classical sense) oracle R ∈ 2ω. This is the R used by the algorithm to make its random
decisions. What we have argued above is that the failure set of the algorithm

U = {R | ΓR is either undefined or fails to satisfy some Ri }

has probability < 1 (by ‘undefined’ we mean that the algorithm does not produce an infinite
sequence of pj ’s).

In fact, this probability can be made arbitrarily small, therefore fireworks arguments do
not give us one algorithm but a uniform family of algorithms: For any given integer m, one
can design, uniformly in m, a probabilistic algorithm which fails with probability at most 2−m

(it suffices to choose the function N such that
∑

1/N(i) < 2−m). Call Γm the corresponding
algorithm, and consider

Um = {R | ΓRm is either undefined or fails to satisfy some Ri }

which is of measure at most 2−m. The set
⋂
m Um, which is the set of R’s on which all

the algorithms Γm fail is a null set. This means that if R is ‘sufficiently random’, in the
sense of effective randomness, it does not belong to all Um and thus some algorithm Γm
succeeds using R. Which level of algorithmic randomness is actually needed? One should
observe that every Um is in fact an effectively closed set relatively to ∅′. Indeed, as we have
seen, the only case the algorithm Γm fails is when it waits in vain for a q extending some
condition p and belonging to some Wi. If such a situation happens, it does so at some finite
stage, i.e., having used only a finite initial segment of R, hence Um is open. Moreover, testing
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whether the algorithm Γm is stuck at a given stage can be done using ∅′: indeed, the predicate
[(∀q ≤ p) q /∈Wi] is a Π1-predicate uniformly in p and i.

Thus, (Um)m∈N is a ∅′-Martin-Löf test, which shows that every 2-random real computes,
via some functional Γm, an infinite sequence p0 ≥ p1 ≥ p2 ≥ ... such that for every i there is
a j such that either pj ∈Wi holds or for every q ≤ pj , q /∈Wi, as wanted.

2 Main result

We shall now see how to combine fireworks arguments with bushy tree forcing to prove The-
orem 2. We first provide an informal presentation of the proof. Full details will be given in
the next section.

2.1 Proof overview

For this construction, we will need a hierarchy of very fast growing computable functions

g0 � g1 � g2 � . . .

(g � g′ is an informal notation: it means that g′ grows ‘much faster’ than g) and another
fast-growing function h (which is meant to grow faster that all the gi but with certain restric-
tions). At this point, we do not specify precisely what functions gi and h we take. We will
see during the construction which properties they need to have to make the argument work.

Contrary to most bushy tree arguments, the whole construction will happen within a
single tree T , which is exactly h-bushy:

T = {σ ∈ ω<ω : (∀i) σ(i) < h(i)}

Typically, a bushy tree forcing argument constructs a sequence T0 ⊇ T1 ⊇ . . . of bushy trees,
and the path obtained by forcing is in the intersection of all of those. We will not need such
a sequence in our argument. However, some steps of the construction can be understood as
“locally” taking a subtree of T . What we keep from other bushy tree arguments is the idea
of maintaining during the construction a small set of bad strings to be avoided. But again,
there is a difference in our construction: to build a DNCX function by forcing, one usually
starts with the initial small bad set

BDNC =
{
σ ∈ ω<ω : (∃e < |σ|) ΦX

e (e) ↓= σ(e)
}

We will not do this as we need our bad set of strings to be c.e. at all times. Our fireworks argu-
ment will (with high probability) build an A which does not compute any Martin-Löf random
real. It is only an a posteriori analysis of the construction which will allow us to conclude
that A is also DNCX with high probability. In the absence of any other requirement, we would
just build A value by value, picking for each n the value of A(n) at random between 0 and
h(n)−1. This would give us a probability of avoiding BDNC of at least

∏
n(1−1/h(n)), which

is positive for h fast-growing. But of course there are other requirements our construction
needs to meet, namely all the requirements of the form:
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RΓ,d: either ΓA is partial or there is an n such that K(ΓA�n) < n− d

where d is an integer, Γ is a Turing functional from ω<ω to 2ω, and K is the prefix-free
Kolmogorov complexity function. (Here we use the Levin-Schnorr theorem that a real Y is
Martin-Löf random if and only if for some constant d, and all n, K(Y �n) ≥ n− d).

Let us see how we would ideally like to satisfy such a (single) requirement. Suppose we
have already built some string σ ∈ T of length k and consider the set

S = {τ ∈ T : |Γτ | ≥ h(k − 1)}

where |Γτ | ≥ h(k−1) means that the Turing reduction Γ produces at least h(k) bits of output
on input τ , and distinguish two cases:

• Case 1: S is gk-small above σ. In this case there is essentially nothing to worry about.
We can just continue to build A by making random choices. The probability that we
hit the set S at some point is small, namely it is at most 1−

∏
i≥k+1(1− gk(i)/h(i)) (by

Lemma 4), and recall that h(i) ≥ gk+1(i)� gk(i) for i ≥ k+ 1. And if we do not hit S,
then ΓA will end up being partial, therefore satisfying RΓ,d.

• Case 2: S is gk-big above σ. Each element τ ∈ S is such that |Γτ | ≥ h(k− 1), therefore
we can decompose S as

S =
⋃

|ρ|=h(k−1)

Sρ where Sρ = {τ ∈ S | Γτ � ρ}

There are 2h(k−1) strings of length h(k − 1), therefore by Lemma 2, there must be a ρ∗

such that Sρ∗ is
(
gk/2

h(k−1)
)
-big above σ (note that in this expression, gk is a function

while h(k − 1) is just an integer). Since being big is a Σ1-property, such a ρ∗ can be
found effectively knowing σ and Γ, and thus the first such ρ∗ found with this effective
search must satisfy

K(ρ∗) ≤ K(σ) +K(Γ) + c ≤ 2
∑
i≤k−1

log h(i) +K(Γ) + c′ (1)

for some fixed constants c, c′ (the last term is due to the fact that σ is a list of k − 1
integers such that the i-th integer is less than h(i), therefore has complexity less than
2 log h(i)). Since |ρ∗| = h(k − 1) we have

K(ρ∗)− |ρ∗| ≤ 2
∑
i≤k−1

log h(i)− h(k − 1) +K(Γ) + c′

If h grows fast enough, and k is sufficiently large then this last inequality implies
K(ρ∗) ≤ |ρ∗| − d. Thus, any A which passes through a node in S∗ρ satisfies require-

ment RΓ,d. Moreover, since Sρ∗ is
(
gk/2

h(k−1)
)
-big above σ, this means by definition

that there is a finite
(
gk/2

h(k−1)
)
-bushy tree T ′ ⊆ T of stem σ all of whose leaves are

in Sρ∗ . Then, what we can do is effectively find the tree T ′ and temporarily restrict our
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random walk to T ′ (picking at each step the next value at random among nodes of T ′) un-
til we reach a leaf of T ′. This guarantees the satisfaction ofRΓ,d and the probability that
we hit BDNC during this temporary restriction is less than 1−

∏
i≥k(1− 2h(k−1)/gk(i)),

which can be made small if gk is well-chosen.

Of course, the problem is that, having built σ, we cannot effectively determine whether
we are in Case 1 or in Case 2. This is where the fireworks argument comes into play. We are
going to pick a number n = n(Γ, d) between 1 and some large N = N(Γ, d), and assume up
to n times that we are in Case 1 (the Π1 case), and if proven wrong n times, we will then
wait until proven that we are in Case 2 (the Σ1 case), and if so, implement the above strategy
for Case 2. As with other fireworks arguments, the probability that we decide to wait at the
wrong moment is at most 1/N , which we can thus make arbitrarily small.

These considerations are enough to give us a strategy which ensures, with arbitrarily high
probability, the satisfaction of a single requirement RΓ,d while avoiding the set BDNC with
high probability. However, there is a subtle point to address when we try to satisfy several
requirements in parallel. Indeed, what can happen is that the strategy for a first requirement
has made the assumption that some set S is gk-small in T - and thus small probability of
being hit - while a strategy for a second requirement needs to make a temporary restriction
to a tree T ′. While the probability to hit S was small for a random walk within T , it could
happen that the random walk restricted to T ′ has a much greater probability to hit S. This
is what the assumption gi � gj for i < j takes care of: Whenever a strategy needs to make
such a restriction to a

(
gk/2

h(k−1)
)
-bushy subtree, we will have that gk/2

h(k−1) grows much
faster than the gj ’s previously considered in the proof, and thus, if a set S is gj-small, it will
still be unlikely that we hit S while choosing a path of a

(
gk/2

h(k−1)
)
-bushy tree at random

for any k > j.

2.2 The full algorithm and formal proof of correctness

We now state the precise theorem regarding the probabilistic algorithm discussed above. The
analysis of the level of effective randomness required will be done separately.

Theorem 4 Let X ∈ 2ω and h be a sufficiently fast-growing computable function. For every
rational ε > 0, one can effectively design a probabilistic algorithm (= Turing machine with
random oracle) which, with probability at least 1− ε, produces an A ∈ ωω such that (1) A is
DNCX

h and (2) A computes no Martin-Löf random real.

Let m = m(ε) (we will argue at the end of the proof that choosing m large enough
guarantees that the algorithm succeeds with probability at least 1− ε). Let us first define the
functions gk and h we alluded to above. Set g0 to be the function defined by g0(n) = 2n+m.
Then, for all k > 1, inductively define

gk(i) =

{
1 if i < k

gk−1(i) · 2gk−1(k−1)+i+m otherwise

11



Finally define for all k
h(k) = gk(k)

Let us now give the details of the algorithm. First, number all the requirements RΓ,d

and call Ri the i-th requirement. As usual, we organize them in a way that all requirements
receive attention infinitely often, and only one requirement receives attention at any given
stage. We will see during the verification that a small extra assumption should be added,
namely that every requirement should be considered for the first time at some ‘late enough’
stage.

Stage 0: Initialization. The first thing we do is pick for all i a number ni at random
between 1 and 2i+m. Then, we initialize σ to be the empty string. For all i, set a counter ci
originally equal to 0.

Loop (to be repeated indefinitely). Suppose that the values σ(0), ..., σ(k − 1) of σ are
already defined (the last one being between 0 and h(k − 1) − 1). Assume some requirement
Ri = RΓ,d receives attention.

(a) If this requirement receives attention for the first time, we make for this requirement
the assumption that the set

S = {τ ∈ T : |Γτ | ≥ h(k − 1)}

is gk-small above the current σ (again, note that this is a Σ1 assumption so if it is false
it will be discovered to be so at some finite stage).

(b) If it does not receive attention for the first time, we check whether the current assumption
made for this requirement still appears to be true at stage k.

(1) If it does, we maintain this assumption and simply pick the value of σ(k) at random
between 0 and h(k)− 1.

(2) If the assumption is discovered to be false, we increase our ‘error counter’ ci by 1.

(i) If the new value of ci remains less than ni, we forget our previous assumption
for requirement Ri and make a new assumption: we now assume that the set
S = {τ ∈ T : |Γτ | ≥ h(k − 1)} is gk-small above (the current) σ.

(ii) If the new value of ci is equal to ni, we then wait until we find, for some ρ of
length h(k−1), a set Sρ = {τ ∈ S | Γτ � ρ} which is

(
gk/2

h(k−1)
)
-big above σ.

When this happens, i.e., when we find a finite subtree T ′ of T of stem σ which
is
(
gk/2

h(k−1)
)
-bushy above σ and all of whose leaves are in Sρ, we choose the

next values of σ by a downward random walk restricted to T ′ until we reach a
leaf of T ′ (note that we may never find such a tree in which case our algorithm
gets stuck at this stage and thus fails to even return an infinite sequence).
When a leaf is reached, we mark the i-th requirement as satisfied.
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The sequence A returned by the algorithm is the minimal element of ω≤ω extending
all the values taken by σ throughout the algorithm. We now turn to the verification of our
algorithm, which we have already done for the most part in Section 2.1. We do this via a
series of claims.

Claim 1. The probability that the algorithm gets stuck at some substage of type (b.2.ii)
(waiting to find a big tree T ′ which does not exist) is at most 2−m+1.

Proof. This is standard fireworks calculation: all other randomly chosen values being fixed,
there at most one value of ni which causes the algorithm to get stuck at (b.2.ii) because of
requirement Ri. And since ni is chosen randomly between 1 and 2i+m, the probability that
the algorithm gets stuck at (a.2.ii) because of requirement Ri is at most 2−i−m. Thus, over
all requirements, this gives a probability of at most 2−m+1.

Claim 2. Conditionally to our algorithm returning an infinite sequence, the probability that
all requirements are met is at least 1− 2−m+2.

Proof. Let us look at a given requirement Ri = RΓ,d. This requirement receives attention
infinitely often until satisfied. This means that if the algorithm does not get stuck, one of the
following happens

• at some point it makes for Ri a correct assumption during substep (a) or (b.2.i) or,

• the i-th requirement causes the algorithm to enter some substep (b.2.ii) but a tree T ′ is
found thereafter.

These two cases are mutually exclusive. In the first case, for some k a set

S = {τ ∈ T : |Γτ | ≥ h(k − 1)}

is correctly assumed to be gk-small above the current σ. For any later stage of the
algorithm (i.e., at stages i ≥ k), the value of σ(i) is chosen at random among h̃(i) values,
where h̃(i) is either equal to h(i) or to gk′(i)/2

h(k′−1) for some k′ > k in case some other
strategy has caused a temporary restriction of the tree. The latter quantity is the smaller of
the two, and by definition of the gk’s, it follows that h̃(i) ≥ 2i+mgk(i).

By the calculations of the proof of Lemma 4, it follows that in this case, the probability
of hitting a node of S at some later stage is at most

1−
∏
i≥k

(
1− gk(i)

h̃(i)

)
≤ 1−

∏
i≥k

(
1− gk(i)

2i+mgk(i)

)
≤
∑
i≥k

2−i−m ≤ 2−k−m+1

In the second case the requirement Ri is always satisfied. Indeed, in this case, we find a
string ρ∗ of length h(k − 1) and finite tree T ′ whose leaves are contained in Sρ∗ = {τ ∈ S |
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Γτ � ρ∗} and then make a random walk within T ′ until we reach a leaf. As explained in the
previous section, we then have

K(ρ∗) ≤ K(σ) +K(Γ) + c ≤ 2
∑
i≤k−1

log h(i) + c′ +K(Γ)

for some fixed constants c, c′. But |ρ∗| = h(k − 1), so

K(ρ∗)− |ρ∗| ≤ 2
∑
i≤k−1

log h(i) +K(Γ)− h(k − 1) + c′′ (2)

for some fixed c′′. By construction of h, h(k − 1) − 2
∑

i≤k−1 log h(i) tends to ∞, thus for k
large enough (and this ‘large enough’ can be found computably), the value of above expression
is less than −d, which means that the requirement RΓ,d is satisfied as soon as we reach a leaf
of T ′. We thus add the technical extra assumption that requirement RΓ,d is only allowed to
receive attention at stage k if in the above expression the right-hand side is smaller than −d.
This essentially changes nothing since it only prevents every requirement to receive attention
for finitely many stages.

Given a requirement RΓ,d, we say that stage k is good for RΓ,d when after having
built σ�k, in the next iteration of the loop, RΓ,d receives attention and either a true as-
sumption is made at steps (a) or (b.2), or stage (b.2.ii) is reached and a tree T ′ is found.
To every requirement corresponds exactly one good stage (and no two requirements have a
good stage in common). As we have just argued, if k is the good stage for a requirement, the
probability that the requirement is satisfied, conditional to the algorithm returning an infinite
sequence, is at least 1 − 2−k−m+1. Over all requirements, this gives a probability of at least
1−

∑
k 2−k−m+1 = 1− 2−m+2.

Claim 3. The probability that we hit a node of BDNC during the algorithm is at most 2−m+1.

Proof. There is at most one ‘bad’ value of σ(n) the algorithm can choose (namely, ϕXn (n), if
it is defined). Whenever a value σ(n) is chosen at random for some n, it is either chosen at
random between 0 and h(n)− 1 or, in case of a temporary restriction to a subtree, between 0
and gk(n)/2h(k−1) − 1 for some k ≤ n (in case of a temporary restriction of the tree). Both
quantities are at least 2n+m, by construction. This gives a total probability of at most∑

n 2−n−m = 2−m+1 of hitting BDNC.

The theorem immediately follows from the three claims: the probability that an infinite
sequence A is returned and all requirement are satisfied is at least 1−2−m+1−2−m+2−2−m+1 =
1− 2−m+3.

2.3 How much randomness do we need?

It remains to conduct, like in Section 1.4, an analysis of the level of algorithmic randomness
needed to make the algorithm work. The attentive reader will notice that there are two uses
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of randomness in the construction: the first one to choose the sequence (ni) which will make
the fireworks argument work (i.e., the algorithm won’t get stuck), and the second one which
helps choosing a node of the tree at random during the construction. For a given k, consider
the algorithm Γk with probability of success at least 1− 2−k. There are three ways in which
it can fail:

1. It could get stuck at some stage b.2.ii.

2. It could hit a node which belongs to BDNC.

3. It could make at some stage k a true assumption that a set S is gk-small, but nonetheless
hit a node of S later on (when it hits a node of the set S corresponding to a wrong
assumption, this is not a problem because the assumption will be discovered to be wrong
later on and a new assumption will be made for the requirement).

Technically, the occurrence of the third case does not necessarily mean that the algorithm
has failed, but if neither of these three cases occur the algorithm succeeds, as explained above.
The total probability of such events is at most 2−k. Moreover, if any event of the above three
types happens, it does so at some finite stage, thus after having used only finitely many bits
of the random oracle. The open set of oracles that cause events of type 1 and 3 to happen
can be effectively enumerated relatively to ∅′. Indeed, for the first type this is exactly what
is explained in Section 1.4, namely that ∅′ can check at any given given stage whether the
algorithm is stuck at stage b.2.ii. The third type can also be checked using ∅′: indeed, the
sets we assume to be gk-small are c.e. sets and since gk is computable uniformly in k, the
smallness can be checked using ∅′ and checking whether a node chosen at some stage of the
algorithm is in S can also be done effectively in ∅′ (since S is c.e.). Thus we can design a
∅′-Martin-Löf test (U∅′k )k∈N such that U∅′k covers the set of oracles which make the algorithm
Γk fail because of cases 1 or 3.

The second type of failure is even easier to analyse. The set BDNC is X-c.e., so the set
of oracles which cause the algorithm to hit a node of BDNC is effectively open relative to X.
Thus we can design a X-Martin-Löf test (VXk )k∈N such that VXk covers the set of oracles which
make the algorithm Γk fail because of case 2.

This finishes the proof of Theorem 2: if Z is X-random and 2-random, for k large enough
it will be outside U∅′k and outside VXk , hence the algorithm Γk will succeed on input Z.

3 Further results

The proof of Theorem 2 can be adapted to prove more results on the class of DNC functions
in V’Yugin’s algebra. For example, in this proof, we construct a real of DNCX degree which
computes no Martin-Löf random real, but we do so using Kolmogorov complexity in a rather
liberal way. By being very slightly more precise we can get a stronger result.

Theorem 5 Let X ∈ 2ω. For every fixed computable function h0, for every sufficiently fast-
growing h, every real Z which is both X-Martin-Löf random and 2-random computes a DNCX

h

function which computes no DNCh0 function.
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This is a stronger theorem than Theorem 2 because, as we saw in Section 1.1, when h0 is
sufficiently fast-growing, every Martin-Löf random real computes a DNCh0 function. Again,
the fact that dnch0 is strictly contained in dnch1 when h1 grows sufficiently faster than h0 is
known (see [13]), but our theorem shows that this separation holds in V’Yugin’s algebra as
well.

The first thing to do to adapt our previous proof is to use the relationship between
Kolmogorov complexity and DNC functions discovered by Kjos-Hanssen et al. [14]. For a
function h : N → N, call h-complex a real A ∈ 2ω such that K(X�h(n)) ≥ n − O(1). Call
a real complex if it is h-complex for some computable h. Kjos-Hanssen et al. proved that a
real computes a DNC function with computable bound if and only if it computes a complex
real. More precisely: for any computable h0, for any computable h1 which grows sufficiently
faster than h0, if a real A computes a DNCh0 function, it computes an h1-complex real, and
if A computes an h0-complex real, it computes a DNCh1 function.

Proof of Theorem 5. By the correspondence between DNC functions and complex reals, it
suffices to show the following: For every fixed computable function h0, for every sufficiently
fast-growing h, every real Z which is both X-Martin-Löf random and 2-random computes a
DNCX

h function which computes no h0-complex function. We modify the proof of Theorem 2
as follows. The requirements now become:

RΓ,d: either ΓA is partial or there is an n such that K(ΓA�h0(n)) < n− d

The new functions gi’s are defined by

gk(i) =

{
1 if i < k

gk−1(i) · 2h0(gk−1(k−1))+i+m otherwise

and again, h(k) = gk(k) for all k. The sets S considered in Step (a) of the algorithm are now

S = {τ ∈ T : |Γτ | ≥ h0(h(k − 1))}

The rest of the construction remains the same. The estimate (1) is left unchanged by
this modification, but we now have |ρ∗| ≥ h0(h(k−1)). Together with (1), for k large enough,
this guarantees the satisfaction of RΓ,d (where Γ is the reduction with respect to which ρ∗ is
defined).

Using another adaptation of the proof of Theorem 2, we can also transfer to V’Yugin’s
algebra the following result, due to Miller (see [13, section 3]): there exists a DNC function
which computes no complex real. Namely, the following holds.

Theorem 6 Let X ∈ 2ω. Every real Z which is both X-Martin-Löf random and 2-random
computes a DNCX function which computes no DNCh function for any computable h.
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Although the general structure is similar, this second adaptation is not straightforward
and quite a number of important changes are needed. The first thing to notice is that there is
obviously no hope to conduct the whole construction in an h-bushy tree for a computable h
since we want A to compute no complex real, which is equivalent to computing no computably
bounded DNC function. Thus we will need to work in the full tree ωω and at each level k,
choose dynamically the interval [0, h(k)] for the random choice of σ(k).

For this construction, the requirements are of the form:

RΓ,ϕ,d: ΓA is partial, or ϕ is partial, or there is an n such that K(ΓA�ϕ(n)) ≤ n− d

where the Γ’s are still Turing functionals from ωω to 2ω, and the ϕ’s are partial com-
putable functions from N to N. How can we satisfy a single requirement RΓ,ϕ,d? Again,
suppose some string σ of length k has already been built, and consider the set

S =
{
τ ∈ 2<ω : |Γτ | ≥ ϕ(r + d)

}
where r is an upper bound for the Kolmogorov complexity of (Γ, d, ϕ, σ) (which can be found
computably since there are computable upper bounds of prefix-free Kolmogorov complexity).
By convention, this set is empty if ϕ(r + d) is undefined. Again, let us analyze the different
cases and how to succeed in each of them.

• Case 1: ϕ(r + d) is undefined. Then the requirement is satisfied vacuously.

• Case 2: ϕ(r+d) is defined and S is
(
2ϕ(r+d) · g0

)
-small above σ, where g0 is the function

defined in previous constructions. In this case, it suffices to choose a function g1 �
2ϕ(r+d) ·g0 and for all k′ ≥ k pick the value of σ(k′) at random between 0 and g1(k′). By
smallness of S, using Lemma 4 as usual, we will avoid the set S with high probability,
thus satisfying requirement RΓ,ϕ,d.

• Case 3: ϕ(r + d) is defined and S is
(
2ϕ(r+d) · g0

)
-big above σ. Each element τ ∈ S is

such that |Γτ | ≥ ϕ(r + d), therefore we can decompose S as

S =
⋃

|ρ|=ϕ(r+d)

Sρ where Sρ = {τ ∈ S | Γτ � ρ}

and since there are 2ϕ(r+d) strings of length ϕ(r + d), there must be a ρ∗ such that Sρ∗

is g0-big above σ and such a ρ∗ can be found effectively knowing (Γ, d, ϕ, σ), hence by
the choice of r,

K(ρ∗) ≤ r

We have |ρ∗| = ϕ(r + d), so for m large enough, this guarantees K(ρ∗�ϕ(r + d)) ≤ r,
thus satisfying requirement RΓ,ϕ,d with n = r + d.

We want to use a fireworks argument to help us choose between these three cases, but
some care is needed since we no longer have a Σ1/Π1 dichotomy. Indeed Case 2 is neither Σ1

nor Π1. The solution is to introduce a priority between passive guesses. We will first make a
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number of assumptions that ϕ(r+d) is undefined at different stages. If all of these assumptions
turn out to be wrong (= the error counter reaches its cap), we will then make the assumption
that ϕ(r + d) is defined at the current stage, wait for the value ϕ(r + d) to be defined, and
only then make one assumption that the current S is

(
2ϕ(r+d) · g0

)
-small above the current σ.

If proven wrong, we will begin another round of assumptions that ϕ(r+d) is undefined (using
a new error counter with a new cap) before making a new ‘Case 2’ assumption. Finally, when
many of these ‘Case 2’ assumptions are proven to be wrong, we make one last assumption, a
‘Case 3’ assumption, and if everything goes well we will satisfy the requirement RΓ,ϕ,d. Thus,
for any given requirement, our sequence of assumptions will look like this:

C1, C1, ..., C1, C2, C1, ..., C1, C2, C1, ..., C1, C2, ..........., C2, C1, C1, ..., C1, C3

(where Ci=Case i) unless one of the C1/C2 assumptions is never proven to be wrong, in which
case we succeed. This time there are two possible ways for the algorithm to get stuck: either
wrongly assume in Case 2 that ϕ(r + d) is defined, and then wait forever for it to converge,
or like in the previous proofs, get stuck because of a wrong C3 assumption, waiting in vain
to find a big subtree with leaves in a given c.e. set. The probability of either of these events
happening can be made arbitrarily small by a fireworks argument.

The idea to handle several requirements at the same time is similar to what was done in
our previous constructions, but this time is dynamic: Before making a C2/C3 assumption of
type ‘the following set S is small/big’, we need to dynamically decide what ‘big/small’ should
mean. What we do is first look at what other smallness assumptions are currently being made
for other requirements. If there are l current assumptions of type ‘Si is gi-small’ for i ≤ l,
then we first choose a function G much larger than g1 + ....+gl and evaluate the smallness of S
in terms of this new function. In case S is then assumed to be small it is just added to the
list of current assumptions. In case it is correctly assumed to be big, since G is much larger
than the other gi’s, the probability that we hit one of the Si during the temporary restriction
of the tree will be, as in the previous proofs, close to 0.

While we hope that the reader is already convinced at this point, we provide the formal
details for completeness.

Theorem 7 Let X ∈ 2ω and h be a sufficiently fast-growing computable function. For every
rational ε > 0, one can effectively design a probabilistic algorithm which, with probability at
least 1 − ε, produces an A ∈ ωω such that (1) A is DNCX and (2) A computes no complex
real.

The algorithm with parameter m = m(ε) is the following.

Stage 0: Initialization. First, for each requirement Ri, pick a number n(i, 1) at random
between 1 and 2〈i,1,0〉+m. The number n(i, 1) is meant to be a cap for the number of wrong
C2 assumptions for requirement Ri. As well, for each integer b between 0 and n(i, 1), pick
a number n(i, 2, b) at random between 1 and 2〈i,2,b〉+m. Each time C2 makes a wrong as-
sumption, C1 starts a new series of assumptions with n(i, 2, b) as a new cap, where b is the
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number of wrong C2 assumptions. Create two counters ci, c
′
i, initialized at 0 (ci counts the

number of wrong C2 assumptions for requirement Ri and c′i counts the number of wrong C1
assumption during the current run of such assumptions for requirement Ri). Let L be a list
of assumptions (coded as integers, with at most one assumption per requirement), initially
empty. Finally, initialize σ to be the empty string.

Loop (to be repeated indefinitely). Suppose that the values σ(0), ..., σ(k − 1) of σ are
already defined and some requirement Ri = RΓ,ϕ,d receives attention. Let r be an upper
bound of the Kolmogorov complexity of the current tuple (σ,Γ, ϕ, d,L). Let g0, ..., gl be the
computable functions such that an assumption ‘S is gi-small’ is currently in L. We (locally)
define a function G by G(u) = 2u+m(g0(u) + . . .+ gl(u)).

(a) If this requirement receives attention for the first time, we make for this requirement
the assumption that ϕ(r + d) is undefined, and add this assumption to L.

(b) If it does not receive attention for the first time, we check whether the current assumption
made for this requirement still appears to be true at stage k.

(1) If it does, we maintain this assumption and simply pick the value of σ(k) at random
between 0 and G(k).

(2) If the assumption is discovered to be false, and it was a C1 assumption (ϕ undefined
on some value), we remove this assumption from L and increase c′i by 1.

(i) If the new value of c′i remains less than n(i, 2, ci), we make a new assumption:
we now assume that ϕ(r + d) is undefined and add this assumption to L.

(ii) If the new value of c′i reaches n(i, 2, ci), we wait for ϕ(r+d) to become defined.
We then make the assumption that the set S = {τ ∈ 2<ω | |Γτ | ≥ ϕ(r + d)} is
(2ϕ(r+d) ·G)-small above σ and add this assumption to L.

(3) If the assumption is discovered to be false, and it was a C2 assumption (smallness
of some set S), we remove this assumption from L, and increase ci by 1.

(i) If the new value of ci remains less than n(i, 1), we make a new assumption: we
now assume that ϕ(r+ d) is undefined, add this assumption to L, and reset c′i
to 0.

(ii) If the new value of ci is equal to n(i, 1), we then wait until we find, for some ρ
of length ϕ(r + d), a set Sρ = {τ ∈ S | Γτ � ρ} which is G-big above σ.
When this happens, i.e., when we find a finite tree T of stem σ which is G-
bushy above σ, we choose the next values of σ by a downward random walk
restricted to T until we reach a leaf of T . When a leaf is reached, we mark the
i-th requirement as satisfied.

The sequence A returned by the algorithm is the minimal element of ω≤ω extending all
the values taken by σ throughout the algorithm.

The verification is similar to the previous proofs.

Claim 4. The probability that the algorithm gets stuck at some substage of type (b.2.ii) or
(b.3.ii) is at most 2−m+1.
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Proof. Indeed, by the standard verification of fireworks arguments, the probability that the
algorithm gets stuck at the end of the b-th run of C1 assumptions for requirement i (making a
bad assumption that ϕ is defined on some value) is, by construction, 2−〈i,2,b〉−m. Likewise, the
probability that it gets stuck because of a bad C3 assumption for requirement i is 2−〈i,1,0〉−m.
Since the sum of the terms 2−〈i,a,b〉−m is 2−m+1, we have the desired result.

Claim 5. Conditionally to algorithm returning an infinite sequence, the probability that all
requirements are met during the construction is at least 1− 2−m+2.

Proof. Fix a requirement Ri = RΓ,ϕ,d. This requirement receives attention infinitely often
until satisfied. This means that if the algorithm does not get stuck, one of the following
happens

• At some point it makes for Ri a correct assumption that ϕ is undefined on some value
during substep (a) or (b.3.i).

• At some point it makes for Ri a correct assumption that S = {τ ∈ 2<ω | |Γτ | ≥ ϕ(r+d)}
is (2ϕ(r+d) · g)-small above σ for some computable g.

• the i-th requirement causes the algorithm to enter some substep (b.3.ii) but a tree T is
found thereafter.

In the first case, the requirement is satisfied vacuously. In the second case, we have a set
S = {τ ∈ 2<ω | |Γτ | ≥ ϕ(r + d)} which is correctly assumed to be (2ϕ(r+d) · g)-small above σ
for some computable g. For any i ≥ k, the value of σ(i) is chosen at later stages of the
algorithm at random among at least G(i)-many values, where G is chosen to be greater than
2i+m · h for any function h appearing in the list L, which in particular includes g (since the
assumption featuring g is correct, it is never removed from the list). By Lemma 4, it follows
that the probability of hitting a node of S at some later stage is at most

1−
∏
i≥k

(
1− g(i)

2i+mg(i)

)
= 1−

∏
i≥k

(
1− 1

2i+m

)
≤
∑
i≥k

2−i−m ≤ 2−k−m+1

In third case, we find a string ρ∗ of length ϕ(r+d) and G-bushy finite tree T whose leaves
are contained in Sρ∗ = {τ ∈ S | Γτ � ρ∗}. The string ρ∗ can be effectively found knowing
Γ, ϕ, d, the current value of σ and G. But G can be computed knowing the list L, and the
integer r is precisely defined to bound the complexity of the tuple (σ,Γ, ϕ, d,L), thus

K(ρ∗) ≤ r

But |ρ∗| = ϕ(r + d), so the requirement RΓ,ϕ,d is satisfied for n = r + d. Note that to be
completely rigorous, when we say that ‘r bounds the Kolmogorov complexity of (σ,Γ, ϕ, d,L)’,
we also need r to be large enough to overcome the additive constants that will arise in the
calculation of the bound of K(ρ∗). This is done, as usual, by picking r ‘large enough’ (which
can be achieved computably), or using a fixed-point argument.

Now, given a requirement RΓ,ϕ,d, we say that stage k is good for RΓ,d when after having
built σ�k, the next iteration of the loop, RΓ,ϕ,d receives attention and a true assumption is
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made or stage (b.3.ii) is reached and a tree T is found. To every requirement corresponds
exactly one good stage (and no two requirements have a good stage in common). As before,
if k is the good stage for a requirement, the probability that the requirement is satisfied,
conditional to the algorithm returning an infinite sequence, is at least 1− 2−k−m+1 and over
all requirements, this gives a probability of at least 1−

∑
k 2−k−m+1 = 1− 2−m+2.

Claim 6. The probability that we hit a node of BDNC is at most 2−m+1.

Proof. For every n the value of σ(n) is chosen at random among at least 2n+m values, so the
probability of picking ϕXn (n), if defined, is at most 2−n−m, thus a total bound of

∑
n 2−n−m =

2−m+1.

Thus the probability of success of the algorithm is at least 1 − 2−m+3. To get Theo-
rem 6, it remains to evaluate the level of algorithmic randomness needed, but the situation
is essentially the same as in previous proofs. Checking whether the algorithm gets stuck at a
given stage can be tested effectively in ∅′ (with ∅′ we can check whether partial functions are
defined or not, and we can check bigness/smalllness of c.e. sets of strings) and whether it hits
BDNC can be tested using X as discussed before.

4 Conclusion

The above results provide a clear picture of the hierarchy of DNC notions in V’Yugin’s algebra.
Namely, for every computable function h0 which grows fast enough, and computable h1 which
grows fast enough compared to h0, we have the strict inclusions:

mlr @ dnch0 @ dnch1 @ complex @ dnc

Moreover, every 2-random real computes a witness for each of the four separations. While
this is an interesting result in and of itself, the techniques we employed to prove these re-
sults are without doubt the main contribution of this paper. They illustrate the power and
flexibility of fireworks arguments and show that they interact well with complex forcing no-
tions. What is also interesting is that ‘true randomness’ seems to be needed for our fireworks
arguments. Other known fireworks arguments, such as the proof that every 2-random real
computes a hyperimmune set or that every 2-random computes a 1-generic real require only a
very weak form of randomness. Indeed, for both of these constructions, Barmpalias et al. [2]
showed that it suffices to have a non-computable real which is Turing-below a 2-random, de-
spite the fact that a real which is simply below a 2-random may have very little randomness
content. Having a non-computable real which is below a 2-random real is not sufficient in our
case: Indeed no 1-generic real computes a DNC function (see for example [8]), and as we just
said, there are 1-generic reals which are below a 2-random real.

We believe that fireworks arguments will yield more applications in the future. In the
constructions of this paper, the strategies for different requirements do interact, but there is
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no injury per se. It would be very interesting to find examples of situations where fireworks
arguments can be mixed with finite/infinite injury constructions.
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