
SCHIFI: SCalable and flexible
High performance FPGA-based Fault Injector

Suman Sau12, Maha Kooli1,
Giorgio Di Natale1, Alberto Bosio1

1LIRMM CNRS-UM
<firstname.lastname>@lirmm.fr

Amlan Chakrabarti2
2University of Calcutta
acakcs@caluniv.ac.in

Abstract*—One of the consequence of the scaling down of
latest technologies, is that digital circuits are more prone to be
affected by faults caused by physical manufacturing defects,
environmental perturbations (e.g., radiations, electromagnetic
interference), or aging-related phenomena. Understanding the
behavior of the whole system in the presence of faults affecting
digital circuits is crucial for designing and validating fault
tolerance techniques. Fault injection is a well-known and widely
used approach for estimating the behavior of a system in the
presence of errors. Among the different techniques, FPGA-based
fault injection is one of the most popular since it allows a low-
cost, rapid and accurate approach compared to simulation- and
hardware based fault injectors. In this paper we present a
flexible FPGA fault injector able to inject in the memory
hierarchy of a given system.

Keywords—Reliability, FPGA, Fault Injector, Hardware
Faults, Memories

I. INTRODUCTION
System reliability has become an important design aspect

for computer systems due to the aggressive technology
miniaturization, which introduces a large set of different failure
sources for hardware components [1][2][3]. The hardware
system can be affected by faults caused by physical
manufacturing defects, environmental perturbations (e.g.,
radiations, electromagnetic interference), or aging-related
phenomena [4]. Faults propagate through the different
hardware structures composing the full system (see Fig. 1).
However, faults can be masked during this propagation either
at the technological or at architectural level [5][3]. When a
fault reaches the software layer of the system, it can corrupt
data, instructions or the control flow. These errors may impact
the correct software execution by producing erroneous results
or prevent the execution of the application leading to abnormal
termination or application hang.

The system reliability includes both the software and the
hardware reliability. In order to target the overall system
reliability, we have to consider: (i) faults affecting the software
layer and (ii) the faults affecting the hardware layer. In the
literature, several methods and tools have been proposed to
accurately evaluate the impact of the faults affecting either the
software layer (e.g., Mutation Testing) or the hardware layer
(e.g., Fault Injection).

In this work, we mainly focus on the faults affecting the
hardware layer that can actually really impacts on the software
layers. The idea is to target a subset of all possible fault
locations to speed up the fault injection campaign.

Fig. 1. System Layers and Fault Propagation

For this purpose, we present in this paper a scalable and
flexible high performance fault injector based on the use of
FPGA board. The proposed tool main aims at giving to the user
the possibility to easily build its own fault injector in order to
target the desired set of fault locations. We present a set of
preliminary results carried out on the open sourceAmber
project[6], that is a complete embedded system implemented
on the Xilinx Spartan-6 SP605[7] FPGA development board.

The remainder of the paper is organized as follows. Section
II present the background and state-of-the-art about fault
injections techniques. Section III discusses the architecture of
the proposed fault injector. Section IV presents preliminary
experimental results. Finally, Section V concludes the paper.

II. BACKGROUND
To evaluate the system reliability, fault injection [8] is a

well-known and powerful technique to observe the impact of
generated errors on the system behavior. It is based on the
realization of controlled experiments to evaluate the system
behavior in the presence of artificial faults.

Hardware-based fault injection technique allows injecting
physical faults (e.g., bit flip fault, stuck at fault) in the target

Physical	Board	(FPGA)	

RAM	

Cache	

Registers	

ISA	

Virtual	ISA	

Applica>ons	
So@ware	

Pr
oc
es
so
r		

M
em

or
y	

Ha
rd
w
ar
e	
M
as
ki
ng
	

So
@w

ar
e	

	M
as
ki
ng
	

System	Crash	

This work has been supported by the joint FP7 Collaboration Project
CLERECO (Grant No. 611404).

hardware system. It uses either a manufactured processor
prototype, a simulation of the processor architecture, or an
implementation of the processor on an FPGA board. However,
they are expensive in terms of execution time and injection
facilities (i.e., the way how the faults are really injected in to
the hardware). In addition, it is difficult to control the injection
instant and location, which limits the fault evaluation.

A. Physical Fault-Injection Techniques
The physical fault injection techniques apply external

perturbations on the circuit under test to evaluate the reliability
[9]. Particle radiations, laser beams or pin forcing are used to
create realistic faults:

• Radiation Methods: These methods test the device in its
real environment by exposing it to the particle radiation
[10][11][12]. The advantage of this method is that the
device is put in realistic conditions and the fault is
correctly modeled. However, using this method it is
difficult to control the fault location and instant.

• Laser Methods: The laser beams generate a photon
material interaction instead of a particle material
interaction. These methods can better control the fault
location. Researchers prove that both the radiation and
laser methods offer accurate results [13][14][15].

• Pin Forcing: The pin values at the input/output of the
device are directly modified [16][17] to create the same
effect of the radiation and the laser methods. This
solution is cheaper, but it is only applied on simple
circuits [9].

B. Simulation-based Fault-Injection Techniques
The simulation-based fault injection techniques do not

operate on the physical device, but they employ a model of the
device described using a simulation language, such as VHDL
[18][19][20]. They can inject faults in the VHDL model either
at run-time or at compile-time. Compared to the physical fault
injection techniques, the simulation-based techniques are
cheaper in term of set-up and can better control where the fault
is injected. In addition, they present no risk to damage the
hardware system under evaluation. However, they create a
computational overhead depending on the complexity of the
device under evaluation [21].

C. FPGA-based Fault-Injection Techniques
The FPGA-based fault injection techniques implement the

device on an FPGA board and perform the fault injection
campaigns on the different device components. Compared to
the simulation-based techniques, they can precisely control
where the fault is injected. Furthermore, they offer a faster fault
evaluation [21]. The fault injection process applies one of the
following mechanisms:

• Reconfiguration Mechanism: The bits of the FPGA
board are reconfigured to inject the fault in the specified
location [22][23]. The fault injection takes place either
at run-time or at compile-time. However, the
reconfiguration process creates a time overhead.

• Instrumentation Mechanism: Additional circuit
elements in the different components of the system are

built to inject the fault in the target location, which are
called Saboteurs [24][25]. The activation of these
elements generates the fault. The instrumentation
mechanism is therefore faster than the reconfiguration
mechanism.

III. PROPOSED FAULT INJECTOR ARCHITECTURE
In modern processors-based computation systems, the

concept of memory hierarchy is now always implemented.
Actually, the main idea behind the memory hierarchy is to
reduce as much as possible the need for transferring data from
and to the main memory (RAM) and the processor. For this
reason, cache memories have been introduced to store
data/instructions in order to accelerate their future requests by
the processor. To be cost-effective and to enable efficient use
of data/instructions, the caches are relatively small compared to
the RAM. This cache-based architecture introduces a sort of
hardware redundancy for increasing performances. This means
that the same variable can have, at the same time, several
copies in different locations. It can reside the RAM (the data
segment or the stack), the data cache or/and the CPU (the
registers), as shown in Fig. 2. The same description can be
applied to the register bank embedded in to the processor itself.

Fig. 2. Data Location in System

In this work we mainly target the components of the
memory hierarchy as possible locations for faults that could
reach the software layer (e.g.,by corrupting a variable or an
instruction). The target fault model is the well-known Single
Event Upset (SEU) that corresponds to the inversion of the
logic value stored in a single memory element (i.e., the single
bit). It models soft errors caused by electromagnetic
interference, external radiations (such as thermal neutrons,
cosmic rays creating energetic neutrons and protons and alpha
particles from package decay)[9].

Fig. 3. Fault Injector Hardware Model

CPU	

ALU	

Registers	

Cache	

Data	Cache	

Instruc5on	
Cache	

RAM	

Code	

Stack	

Data	

System	

Fault Injecter Hardware Model

Memory	

Saboteur	
Addr,Mask	

Data	Address	
Faulty	Data	

Random	
Address	

In Fig. 3, the hardware block diagram of the implemented
Fault Injector (FI) is shown. We simple design a saboteur mask
for select the desired memory address and flip a random bit on
the data corresponding to that address. Bit flip is done by
simply using a XOR gate as shown in the Fig. 3. The memory
block depicted in the Fig. 3 can be the RAM, the cache or the
register bank. The user can actually specify what is the target.

The Injection mechanism is managed by a Finite State
Machine depicted in Fig. 4. “S0” is the FI initial state. When
the user set the start command, it goes to “S1” state. In this
state depending on the saboteur mask result, the next state will
be decided. If the Address of the target memorymatches with
the random Address for fault injection with other satisfied
conditions, then next state will be“S4” otherwise next state will
be “S3”.Actually, the state “SA” corresponds to the activation
of the injection. Here, the output of the saboteur is set to logic
‘1’, so that the target bit is flipped by the XOR gate as shown
in the Fig. 3. On the other hand, in the state “S3” the injection
is not activated. Here, the output of the saboteur is set to logic
‘0’ so that the XOR does not invert the target bit. Next state of
both “S3” and “S4” will be the “S0”. From “S0”, if the user set
the end command, the next state will be “S3”.

Fig. 4. State Diagram Graph of the FSM controlling the Fault Injection Block

Fig. 5. Work flow diagram of the FPGA-based Fault Injector

The Fig. 5 sketches the full flowchart of a complete fault
injection campaign. First of all the proposed fault injector is
written in VHDL, synthesized by using the Xilinx ISE14.4[7].
The resulting bitstream is then download on the target board
Xilinx Spartan 605[7].

The Workstation A, we designed a fault injector with amber
core[6] where it is synthesized to generate the bit file. The
download.bit file is downloaded to FPGA board via the JTAG
port from Workstation A. From another Workstation B, the
same board is connected using two different ways: Ethernet
and Serial connection.

The target application corresponding to a given software C
code is compiled to obtain the executable (.elf) file. The
executable is downloaded on the Amber main memory
implemented on the FGPA through the Ethernet connection.
The Trivial File Transfer Protocol (TFTP) is exploited for the
download. After that, the injection campaign automatically
starts. First of all a golden run is done to store the expected
application outputs. The, at each injection, a random address
(i.e., the address can be a RAM, cache or register location) and
mask are generated to inject the fault. After the execution of
the faulty application, the system compares the obtained
outputs with the goldenoutputs.The comparison result is
classified into three categories:

• Masked: The software produces correct results. The
faults is masked.

• Silent Data Corruption: The application outputs are
different from the fault free outputs.

• Detected: The fault is detected by the application.

• Crash/Unresponsive: The application stops working or
it never stops.

The Serial connection is used to monitor the Fault Injector
behavior by using a HyperTerminal. The injections run up to
anuser defined value N.

Finally, the Fig. 6 shows the real Lab setup implementing
the flow above described.

Fig. 6. Real experimental setup with FPGA

IV. PRELIMINARY RESULTS
In this section we present a set of preliminary results

carried out by the proposed fault injector. The target
application is a simple matrix multiplication program with

S0	

S1	S3	

S4	

Output	with	out	
F.I	

Output	with	F.I	

					Start	

Fault	injec9on	
Decision			

Boot-loader	

Execu/on	

TFTP	
	Proto

col	

Progra
m.elf	

Golden	
Run	

Run	a:er	
Fault	

Injec/on	

N:=set	val	
If	RG!=RF.I	
Dfault	++	
Else	fault	
masked	

R F.I	R
G	

If	i	<=:N	

System	Crash	

UART	

Xi
lin

x	
FP
GA

	S
P6

05
	

Download.bit	Worksta/on	A	

Worksta/on	B	

twoversions: (1) simple version, (2) duplicated version with a
correction mechanism.The target application has been
implemented in C programming language

The Table 1 gives the results obtained by the injector on the
considered applications. For each application, we implement
three different cache sizes. The goal was to see the impact of
the cache size on the global system reliability (i.e., the impact
on the running application). For each sub column, we report the
percentage of Silent Data Corruption. This is the only outcome
since we target only the RAM containing the data segment of
the application; therefore the instructions are not involved.

TABLE I. RESULTS

Application
Silent Data Corruption%

32 Kbytes 64 Kbytes 128 Kbytes

Standard 68.83 66.47 64.69

Duplicated 29.39 27.6 23.86

As we can see, increasing the cache size positively impacts
the reliability of the whole system since the percentage of SDC
decreases. It is also important to mention that the difference of
SDC between the standard and the duplicated version is due to
the capability to correct many of the injected faults. Finally, the
whole injection campaigns were of 10k injections for each
configuration. The required injection time is on the order of
minutes.

V. CONCLUSIONS
In this work, we presented a scalable and flexible high

performance fault injector based on the use of FPGA board.
The proposed tool main aims at giving to the user the
possibility to easily build its own fault injector in order to
target the desired set of fault locations. We carried out a set of
preliminary results carried out on the open source Amber
project [6], that is a complete embedded system implemented
on the Xilinx Spartan-6 SP605 [7] FPGA development board.

REFERENCES

[1] R. Baumann, “Soft errors in advanced computer systems,” IEEE Des.
Test, vol. 22, no. 3, pp. 258–266, May 2005.

[2] S. Borkar, T. Karnik, and V. De, “Design and reliability challenges in
nanometer technologies,” in Proceedings of the 41st Annual Design
Automation Conference, ser. DAC ’04, 2004, pp. 75–75.

[3] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A
systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor,” in Proceedings of the
36th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO 36, 2003, pp. 29–

[4] M. Kooli, A. Bosio, P. Benoit, and L. Torres, “Software testing and
software fault injection,” in 10th International Conference on Design &
Technology of Integrated Systems in Nanoscale Era, DTIS 2015, Napoli,
Italy, April 21-23, 2015, 2015, pp. 1–6.

[5] R. Vadlamani, J. Zhao, W. Burleson, and R. Tessier, “Multicore Soft
Error Rate Stabilization Using Adaptive Dual Modular Redundancy,” in
Proceedings of the Conference on Design, Automation and Test in
Europe, ser. DATE ’10, 2010, pp. 27–32.

[6] http://opencores.org/amber
[7] http://www.xilinx.com/
[8] M. Kooli and G. Di Natale, “A survey on simulation-based fault

injection tools for complex systems,” in Proceedings of the 9th
International Conference on Design & Technology of Integrated
Systems in Nanoscale Era, DTIS 2014, Santorini, Greece, May 6-8,
2014, pp. 1–6.

[9] M. Nicolaidis, Soft errors in modern electronic systems. Springer
Science & Business Media, 2010, vol. 41.

[10] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo,
“Using heavy-ion radiation to validate faulthandling mechanisms,” IEEE
micro, pp. 8–11, 1994.

[11] S. Duzellier and G. Berger, “Test facilities for see and dose testing,” in
Radiation Effects on Embedded Systems. Springer, 2007, pp. 201–232.

[12] R.Ecoffet,“In-flightanomaliesonelectronicdevices,”inRadiation Effects
on Embedded Systems. Springer, 2007, pp. 31–68.

[13] R. Velazco, B. Martinet, and G. Auvert, “Laser injection of spot defects
on integrated circuits,” in Test Symposium, 1992.(ATS’92),
Proceedings., First Asian (Cat. No. TH0458-0). IEEE, 1992, pp. 158–
 163.

[14] P. Fouillat, V. Pouget, D. Lewis, S. Buchner, and D. McMorrow,
 “Investigation of single-event transients in fast integrated circuits with a
pulsed laser,” International journal of high speed electronics and
systems, vol. 14, no. 02, pp. 327–339, 2004.

[15] F. Miller, N. Buard, T. Carrie`re, R. Dufayel, R. Gaillard, P. Poirot, J.-
M. Palau, B. Sagnes, and P. Fouillat, “Effects of beam spot size on the
correlation between laser and heavy ion seu testing,” IEEE transactions
on nuclear science, vol. 51, no. 6, pp. 3708–3715, 2004.

[16] D. Powell, E. Martins, J. Arlat, and Y. Crouzet, “Estimators for fault
tolerance coverage evaluation,” Computers, IEEE Transactions on, vol.
44, no. 2, pp. 261–274, 1995.

[17] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell, “Fault
injection and dependability evaluation of fault-tolerant systems,”
Computers, IEEE Transactions on, vol. 42, no. 8, pp. 913–923, 1993.

[18] J. Pontes, N. Calazans, and P. Vivet, “An accurate single event effect
digital design flow for reliable system level design,” in Proceedings of
the Conference on Design, Automation and Test in Europe, DATE. EDA
Consortium, 2012, pp. 224–229.

[19] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson, “Fault injection
into vhdl models: the mefisto tool,” in Fault-Tolerant Com- puting,
1994. FTCS-24. Digest of Papers., Twenty-Fourth International
Symposium on. IEEE, 1994, pp. 66–75.

[20] V. Sieh, O. Tschache, and F. Balbach, “Verify: Evaluation of reli- ability
using vhdl-models with embedded fault descriptions,” in Fault-Tolerant
Computing, 1997. FTCS-27. Digest of Papers., Twenty-Seventh Annual
International Symposium on. IEEE, 1997, pp. 32–36.

[21] M. Ebrahimi, A. Mohammadi, A. Ejlali, and S. G. Miremadi, “A fast,
flexible, and easy-to-develop FPGA-based fault injection technique,”
Microelectronics Reliability 2014, vol. 54, no. 5, pp. 1000–1008.

[22] D. De Andre ́s, J. C. Ruiz, D. Gil, and P. Gil, “Fault emulation for
dependability evaluation of vlsi systems,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 16, no. 4, pp. 422–431,
2008.

[23] L. Sterpone and M. Violante, “A new partial reconfiguration- based
fault-injection system to evaluate seu effects in sram-based fpgas,”
Nuclear Science, IEEE Transactions on, vol. 54, no. 4, pp. 965–970,
2007.

[24] S.-A. Hwang, J.-H. Hong, and C.-W. Wu, “Sequential circuit fault
simulation using logic emulation,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 17, no. 8,
pp. 724–736, 1998.

[25] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and M.
Violante, “Exploiting circuit emulation for fast hardness eval- uation,”
Nuclear Science, IEEE Transactions on, vol. 48, no. 6, pp. 2210–2216,
2001.

