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Abstract*—One of the consequence of the scaling down of 
latest technologies, is that digital circuits are more prone to be 
affected by faults caused by physical manufacturing defects, 
environmental perturbations (e.g., radiations, electromagnetic 
interference), or aging-related phenomena. Understanding the 
behavior of the whole system in the presence of faults affecting 
digital circuits is crucial for designing and validating fault 
tolerance techniques. Fault injection is a well-known and widely 
used approach for estimating the behavior of a system in the 
presence of errors. Among the different techniques, FPGA-based 
fault injection is one of the most popular since it allows a low-
cost, rapid and accurate approach compared to simulation- and 
hardware based fault injectors. In this paper we present a 
flexible FPGA fault injector able to inject in the memory 
hierarchy of a given system. 
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I.  INTRODUCTION 
System reliability has become an important design aspect 

for computer systems due to the aggressive technology 
miniaturization, which introduces a large set of different failure 
sources for hardware components [1][2][3]. The hardware 
system can be affected by faults caused by physical 
manufacturing defects, environmental perturbations (e.g., 
radiations, electromagnetic interference), or aging-related 
phenomena [4]. Faults propagate through the different 
hardware structures composing the full system (see Fig. 1). 
However, faults can be masked during this propagation either 
at the technological or at architectural level [5][3]. When a 
fault reaches the software layer of the system, it can corrupt 
data, instructions or the control flow. These errors may impact 
the correct software execution by producing erroneous results 
or prevent the execution of the application leading to abnormal 
termination or application hang.  

The system reliability includes both the software and the 
hardware reliability. In order to target the overall system 
reliability, we have to consider: (i) faults affecting the software 
layer and (ii) the faults affecting the hardware layer.  In the 
literature, several methods and tools have been proposed to 
accurately evaluate the impact of the faults affecting either the 
software layer (e.g., Mutation Testing) or the hardware layer 
(e.g., Fault Injection).  

In this work, we mainly focus on the faults affecting the 
hardware layer that can actually really impacts on the software 
layers. The idea is to target a subset of all possible fault 
locations to speed up the fault injection campaign. 

 
Fig. 1. System Layers and Fault Propagation 

For this purpose, we present in this paper a scalable and 
flexible high performance fault injector based on the use of 
FPGA board. The proposed tool main aims at giving to the user 
the possibility to easily build its own fault injector in order to 
target the desired set of fault locations. We present a set of 
preliminary results carried out on the open sourceAmber 
project[6], that is a complete embedded system implemented 
on the Xilinx Spartan-6 SP605[7] FPGA development board. 

The remainder of the paper is organized as follows. Section 
II present the background and state-of-the-art about fault 
injections techniques. Section III discusses the architecture of 
the proposed fault injector. Section IV presents preliminary 
experimental results. Finally, Section V concludes the paper. 

II. BACKGROUND 
To evaluate the system reliability, fault injection [8] is a 

well-known and powerful technique to observe the impact of 
generated errors on the system behavior. It is based on the 
realization of controlled experiments to evaluate the system 
behavior in the presence of artificial faults.  

Hardware-based fault injection technique allows injecting 
physical faults (e.g., bit flip fault, stuck at fault) in the target 
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hardware system. It uses either a manufactured processor 
prototype, a simulation of the processor architecture, or an 
implementation of the processor on an FPGA board. However, 
they are expensive in terms of execution time and injection 
facilities (i.e., the way how the faults are really injected in to 
the hardware). In addition, it is difficult to control the injection 
instant and location, which limits the fault evaluation.  

A. Physical Fault-Injection Techniques  
The physical fault injection techniques apply external 

perturbations on the circuit under test to evaluate the reliability 
[9]. Particle radiations, laser beams or pin forcing are used to 
create realistic faults:  

• Radiation Methods: These methods test the device in its 
real environment by exposing it to the particle radiation 
[10][11][12]. The advantage of this method is that the 
device is put in realistic conditions and the fault is 
correctly modeled. However, using this method it is 
difficult to control the fault location and instant.  

• Laser Methods: The laser beams generate a photon 
material interaction instead of a particle material 
interaction. These methods can better control the fault 
location. Researchers prove that both the radiation and 
laser methods offer accurate results [13][14][15].  

• Pin Forcing: The pin values at the input/output of the 
device are directly modified [16][17] to create the same 
effect of the radiation and the laser methods. This 
solution is cheaper, but it is only applied on simple 
circuits [9].  

B. Simulation-based Fault-Injection Techniques  
The simulation-based fault injection techniques do not 

operate on the physical device, but they employ a model of the 
device described using a simulation language, such as VHDL 
[18][19][20]. They can inject faults in the VHDL model either 
at run-time or at compile-time. Compared to the physical fault 
injection techniques, the simulation-based techniques are 
cheaper in term of set-up and can better control where the fault 
is injected. In addition, they present no risk to damage the 
hardware system under evaluation. However, they create a 
computational overhead depending on the complexity of the 
device under evaluation [21].  

C. FPGA-based Fault-Injection Techniques  
The FPGA-based fault injection techniques implement the 

device on an FPGA board and perform the fault injection 
campaigns on the different device components. Compared to 
the simulation-based techniques, they can precisely control 
where the fault is injected. Furthermore, they offer a faster fault 
evaluation [21]. The fault injection process applies one of the 
following mechanisms:  

• Reconfiguration Mechanism: The bits of the FPGA 
board are reconfigured to inject the fault in the specified 
location [22][23]. The fault injection takes place either 
at run-time or at compile-time. However, the 
reconfiguration process creates a time overhead.  

• Instrumentation Mechanism: Additional circuit 
elements in the different components of the system are 

built to inject the fault in the target location, which are 
called Saboteurs [24][25]. The activation of these 
elements generates the fault. The instrumentation 
mechanism is therefore faster than the reconfiguration 
mechanism.  

III. PROPOSED FAULT INJECTOR ARCHITECTURE 
In modern processors-based computation systems, the 

concept of memory hierarchy is now always implemented. 
Actually, the main idea behind the memory hierarchy is to 
reduce as much as possible the need for transferring data from 
and to the main memory (RAM) and the processor. For this 
reason, cache memories have been introduced to store 
data/instructions in order to accelerate their future requests by 
the processor. To be cost-effective and to enable efficient use 
of data/instructions, the caches are relatively small compared to 
the RAM. This cache-based architecture introduces a sort of 
hardware redundancy for increasing performances. This means 
that the same variable can have, at the same time, several 
copies in different locations. It can reside the RAM (the data 
segment or the stack), the data cache or/and the CPU (the 
registers), as shown in Fig. 2. The same description can be 
applied to the register bank embedded in to the processor itself. 

 
Fig. 2. Data Location in System 

In this work we mainly target the components of the 
memory hierarchy as possible locations for faults that could 
reach the software layer (e.g.,by corrupting a variable or an 
instruction). The target fault model is the well-known Single 
Event Upset (SEU) that corresponds to the inversion of the 
logic value stored in a single memory element (i.e., the single 
bit). It models soft errors caused by electromagnetic 
interference, external radiations (such as thermal neutrons, 
cosmic rays creating energetic neutrons and protons and alpha 
particles from package decay)[9]. 

 
Fig. 3. Fault Injector Hardware Model 
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In Fig. 3, the hardware block diagram of the implemented 
Fault Injector (FI) is shown. We simple design a saboteur mask 
for select the desired memory address and flip a random bit on 
the data corresponding to that address. Bit flip is done by 
simply using a XOR gate as shown in the Fig. 3. The memory 
block depicted in the Fig. 3 can be the RAM, the cache or the 
register bank. The user can actually specify what is the target. 

The Injection mechanism is managed by a Finite State 
Machine depicted in Fig. 4. “S0” is the FI initial state. When 
the user set the start command, it goes to “S1” state. In this 
state depending on the saboteur mask result, the next state will 
be decided. If the Address of the target memorymatches with 
the random Address for fault injection with other satisfied 
conditions, then next state will be“S4” otherwise next state will 
be “S3”.Actually, the state “SA” corresponds to the activation 
of the injection. Here, the output of the saboteur is set to logic 
‘1’, so that the target bit is flipped by the XOR gate as shown 
in the Fig. 3. On the other hand, in the state “S3” the injection 
is not activated. Here, the output of the saboteur is set to logic 
‘0’ so that the XOR does not invert the target bit. Next state of 
both “S3” and “S4” will be the “S0”. From “S0”, if the user set 
the end command, the next state will be “S3”. 

 
Fig. 4. State Diagram Graph of the FSM controlling the Fault Injection Block 

 
Fig. 5. Work flow diagram of the FPGA-based Fault Injector 

 

The Fig. 5 sketches the full flowchart of a complete fault 
injection campaign. First of all the proposed fault injector is 
written in VHDL, synthesized by using the Xilinx ISE14.4[7]. 
The resulting bitstream is then download on the target board 
Xilinx Spartan 605[7]. 

The Workstation A, we designed a fault injector with amber 
core[6] where it is synthesized to generate the bit file. The 
download.bit file is downloaded to FPGA board via the JTAG 
port from Workstation A. From another Workstation B, the 
same board is connected using two different ways: Ethernet 
and Serial connection. 

The target application corresponding to a given software C 
code is compiled to obtain the executable (.elf) file. The 
executable is downloaded on the Amber main memory 
implemented on the FGPA through the Ethernet connection. 
The Trivial File Transfer Protocol (TFTP) is exploited for the 
download. After that, the injection campaign automatically 
starts. First of all a golden run is done to store the expected 
application outputs. The, at each injection, a random address 
(i.e., the address can be a RAM, cache or register location) and 
mask are generated to inject the fault. After the execution of 
the faulty application, the system compares the obtained 
outputs with the goldenoutputs.The comparison result is 
classified into three categories:  

• Masked: The software produces correct results. The 
faults is masked.  

• Silent Data Corruption: The application outputs are 
different from the fault free outputs.  

• Detected: The fault is detected by the application.  

• Crash/Unresponsive: The application stops working or 
it never stops.  

The Serial connection is used to monitor the Fault Injector 
behavior by using a HyperTerminal. The injections run up to 
anuser defined value N. 

Finally, the Fig. 6 shows the real Lab setup implementing 
the flow above described. 

 

 
Fig. 6. Real experimental setup with FPGA 

IV. PRELIMINARY RESULTS 
In this section we present a set of preliminary results 

carried out by the proposed fault injector. The target 
application is a simple matrix multiplication program with 
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twoversions: (1) simple version, (2) duplicated version with a 
correction mechanism.The target application has been 
implemented in C programming language  

The Table 1 gives the results obtained by the injector on the 
considered applications. For each application, we implement 
three different cache sizes. The goal was to see the impact of 
the cache size on the global system reliability (i.e., the impact 
on the running application). For each sub column, we report the 
percentage of Silent Data Corruption. This is the only outcome 
since we target only the RAM containing the data segment of 
the application; therefore the instructions are not involved. 

TABLE I.  RESULTS 

Application 
Silent Data Corruption% 

32 Kbytes 64 Kbytes 128 Kbytes 

Standard 68.83 66.47 64.69 

Duplicated 29.39 27.6 23.86 

 

As we can see, increasing the cache size positively impacts 
the reliability of the whole system since the percentage of SDC 
decreases. It is also important to mention that the difference of 
SDC between the standard and the duplicated version is due to 
the capability to correct many of the injected faults. Finally, the 
whole injection campaigns were of 10k injections for each 
configuration. The required injection time is on the order of 
minutes. 

V. CONCLUSIONS 
In this work, we presented a scalable and flexible high 

performance fault injector based on the use of FPGA board. 
The proposed tool main aims at giving to the user the 
possibility to easily build its own fault injector in order to 
target the desired set of fault locations. We carried out a set of 
preliminary results carried out on the open source Amber 
project [6], that is a complete embedded system implemented 
on the Xilinx Spartan-6 SP605 [7] FPGA development board. 
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