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Abstract

Relying on a single imperfect human annotator is not recommended in real

crowdsourced classification problems. In practice, several annotators’ propo-

sitions are generally aggregated to obtain a better classification accuracy.

Bayesian approaches, by modelling the relationship between each anno-

tator’s output and the possible true labels (classes), have been shown to

outperform other simpler models.

Unfortunately, they assume that the total number of true labels is known.

This is not the case in lots of realistic scenarios such as open-world classifi-

cation where the number of possible labels is undetermined and may change

over time.

In this paper, we show how to set a non-parametric prior over the possible

label set using the Dirichlet process in order to overcome this limitation. We

illustrate this prior over the Bayesian annotator combination (BAC) model

from the state of the art, resulting in the so-called non-parametric BAC

(NPBAC).
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We show how to derive its variational equations to evaluate the model

and how to assess it when the Dirichlet process has a prior using the Laplace

method.

We apply the model to several scenarios related to closed-world classifica-

tion, open-world classification and novelty detection on a dataset previously

published and on two datasets related to plant classification. Our experi-

ments show that NPBAC is able to determine the true number of labels,

but also and surprisingly, it largely outperforms the parametric annotator

combination by modelling more complex confusions, in particular when few

or no training data are available.

Keywords: Bayesian, variational, Laplace, classification, combination,

Dirichlet process, crowdsourcing

1. Introduction

The huge potential of leveraging human power has been noted in recent

years, especially when typical machine learning techniques such as deep learn-

ing [23] fails. This is particularly needed for instance when constructing the

large training sets needed by these techniques [9]. In this paper, we focus on

the particular case of data classifications, i.e. given a set of data items such

as images, sounds or any other documents, we would like to associate a label

to each of them. Unfortunately, a perfect annotator that would obtain 100%

accuracy does not exist in most realistic scenarios. In practice, we often ag-

gregate information from several annotators, hoping that their abilities are

complementary and that the resulting aggregation has better accuracy than a

single annotator [23]. Crowdsourcing platforms, such as Amazon Mechanical
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Turk or Zooniverse, offer an efficient way to involve lots of annotators and

collect their classification propositions [6, 24]. Similarly, in a previous work,

we presented The Plant Game, a gamified approach to crowdsourcing where

each classification proposition given by an annotator and validated by the

crowdsourced consensus increases the annotator’s ranking [21]. In all of these

platforms, annotators are asked to propose a label without the knowledge of

the propositions put forward by other annotators.

A common problem is therefore to merge classification propositions. A

simple approach involves counting the number of times each label (class) has

been proposed which is called majority voting. More sophisticated methods

can be devised such as weighed majority voting [16], where the weight of

each annotator depends on its overall classification accuracy. In these ap-

proaches, the label of each item stems from the classification propositions.

Recent studies have focused on the Bayesian combination of so-called im-

perfect annotators’ propositions [15, 17, 23]. These models rely on the idea

of confusions which consists of modelling the output probability of each an-

notator given all possible true labels – two annotators can have two totally

different outputs, such as humans speaking different languages. Therefore

they outperform the majority voting approaches. As an example, let us con-

sider a scenario based on ImageNet [9]. The ImageNet challenge consists of

finding the true class of a set of images over a large variety of values, such

as cars, flowers, etc. An annotator’s confusion could indicate that he/she is

not capable of disambiguating different types of flowers.

Unfortunately, and contrary to simple majority voting, Bayesian ap-

proaches do assume that the number of true labels is known when computing
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all confusion matrices. This assumption is strong and can be unrealistic in

some scenarios. In open-world classification problems [2], determining the

set of possible true labels is impossible and can even change over time. In

biodiversity surveillance on a crowdsourcing platform, the annotators have

to identify species of plants based on their images and they are particularly

interested in detecting new species. This would not be possible with a fixed

predetermined number of true labels.

In this paper, we propose a non-parametric Bayesian combination model

to solve the problem of combining annotators’ propositions when the label

set is not initially known. In addition, we will show that a non-parametric

model enables us to take more complex confusions for each annotator into

account.

Related studies focused on Bayesian non-parametric models often rely

on a distribution called the Dirichlet process [4, 10]. The basic intuition

behind such distributions is that the number of possible labels is theoretically

infinite while several data items (e.g. images, sounds) can have the same label

with a positive probability. More formally, the Dirichlet process has infinite

dimensions while almost surely staying discrete1. The granularity of each

resulting class of the non-parametric model depends on the concentration

parameter of the Dirichlet process.

However, even though fixing the concentration parameter is less problem-

atic than having to fix the number of possible labels, we also study the model

when the concentration parameter itself follows a prior distribution. Thus,

1“almost surely” refers to the fact that some outcomes, while being theoretically pos-

sible, have a zero probability.
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the model should converge to the “best” granularity based on the observed

data and our prior knowledge.

In order to infer the posterior probabilities, we derive all variational equa-

tions required by the model. Variational inference [4, 23] is known to approx-

imate the joint probability very efficiently while sampling based methods are

known to be much slower [3, 23]. Unfortunately, setting a prior over the con-

centration parameter makes its variational equation intractable. To solve this

issue, we show that the Laplace development of the concentration parameter

variational equation approximates it by a Gaussian distribution.

In summary, this paper introduces the following original contributions:

• We propose a non-parametric Bayesian annotator combination model

to solve the problem of learning the model when the labels set is not

known as well as the problem of modelling complex confusions. We also

discuss its relationship with the classical parametric model (described

in [15, 23]).

• We develop variational equations of the non-parametric model in order

to efficiently estimate its joint probability, even in high dimensions.

• We show how the Dirichlet process parameter itself can be described

with a distribution and how to compute its variational equation using

the Laplace method.

• We present an extensive application analysis of previous contributions

in the experiments section and show that NPBAC can correctly es-

timate the number of classes and even outperforms the state of the
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art Bayesian combination approach that we build upon as well as the

simpler majority voting approach.

The rest of this paper is structured as follows. The related work is in-

troduced in Section 2. Section 3 describes the classical parametric Bayesian

annotator combination model. In Section 4, we show how to transform the

parametric model with the Dirichlet process to make it non-parametric. The

variational equations of the non-parametric model are explained in Section 5.

In Section 6, we show how to add a prior distribution over the concentration

parameter and how to estimate its posterior distribution with the Laplace

development of its variational equation. In Section 7 we report and discuss

the results of our experiments.

2. Related Work

Whereas crowdsourcing is a relatively new domain [6, 11, 14], contribu-

tions related to human classifiers (i.e. annotators) combinations or error-rate

evaluations go back as far as the 1970s. Dawid and Skene [8], in particular,

focused on estimating the error-rate of several expert annotators from a noisy

ground truth. This paper underlies several recent works that we will present

in this section.

In [25], Tulyakov et al. propose an overview of several classifier combina-

tion methods: from the simplest, such as majority voting or Borda – the rank

of a result depends on its rank proposed by all classifiers – to more complex

methods such as those using the Dempster-Shafer theory of evidence.

Recently, Bayesian models have been shown to outperform other com-

bination methods [15, 20, 23]. In [20], Raykar et al. show how to train a
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machine learning classifier using data features and classification votes from

human annotators. Their approach is only partially Bayesian as the model

is simply used as a “point estimate”. Moreover, the main goal was not to

perform classification but to learn a machine learning classifier on more real-

istic labels: each item in the training dataset is not associated with a single

class but rather to a probability distribution over all classes. The goal is to

determine these probability distributions and to train a classifier on it.

Kim and Ghahramani [15] propose a complete Bayesian model to aggre-

gate the classification votes of multiple imperfect human or machine classi-

fiers. They develop two main approaches, one taking the dependency among

classifiers into account and one ignoring it. They show that both models

actually achieve very similar results. In addition, they use Gibbs sampling

to evaluate the model.

In [26], Venanzi et al. propose to exploit correlations among annotators

to increase the classification quality. Each user is thus part of a community

whose members likely have the same confusion matrix. The main advantage

of this approach is to estimate the classification capabilities of the annotators

more precisely even when very few classification examples are available.

Simpson et al. [23] propose a Bayesian approach similar to that introduced

by Kim and Ghahramani. However, they use variational Bayes to estimate

the joint probability. Moreover, they model evolving skills using the dynamic

classifier combination notion. Their variational model underlies our inference

procedure.

Welinder and Perona [28] also provide a Bayesian approach for image

classification. In addition to combining multiple annotators, they focus on
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task assignment using the inferred abilities of each one of them.

Bragg et al. [5] propose a method where the confidence in an annotator’s

ability is computed based on his/her number of correct classifications (from a

ground truth). In our study, we use a Bayesian network to infer annotators’

abilities.

Moreno et al. [17] propose a non-parametric approach for aggregating

votes. The authors focus on crowdsourcing and propose to cluster similar

users when few votes are available. The cluster set has a non-parametric

prior and their number grows with the data. An annotator’s confusion matrix

has a prior based on the cluster he/she belongs to. The non-parametric

aspect of their model is therefore in the number of clusters and they show

that parametric and non-parametric clustering obtain similar results. Note

however that their model is parametric in the number of labels which still

need to be set a priori.

However, contrary to the presented model, all of these studies assume that

the label set is either known or can easily be estimated from the observed

data (because there is a bijection between the annotator/classifier output

and the true label set). In this paper, we study the NPBAC model to solve

this problem. We illustrate how to make the number of labels non-parametric

and we apply our contribution to the approaches presented in [15] and [23]

but the same is applicable to other Bayesian models.

3. Bayesian Annotator Combination (Baseline)

In this section we discuss the particular parametric case of the Bayesian

classifier/annotator combination (BAC) approach used in [23] and presented
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in Figure 1. A typical common assumption is to consider all annotators

as independent. Kim and Ghahramani [15] have shown that although it is

possible to model the dependency among annotators, this does not actually

enhance the model accuracy but only its computational needs.

In the Bayesian annotator combination approach, we are given a set of

N items where the ith item has the unknown true label ti. It is assumed

that the possible labels are known and indexed from 1 to J , so that ti ∈

{1, ..., J}. Then ti is considered to be generated by a multinomial distribution

of parameters κ: p(ti = j|κ) = κj. We are then given K annotators which

produce finite outputs indexed by 1, ..., L, where L is the total number of

possible outputs. In particular, c
(k)
i refers to the output of annotator k for

the data item indexed by i. Let us assume that c
(k)
i follows a multinomial

distribution of parameters π
(k)
ti

: p(c
(k)
i = l|ti = j,π

(k)
j ) = π

(k)
jl . The literature

generally refers to π(k) as the confusion matrix of annotator k; basically,

given a true label j, π
(k)
j refers to the confusion of annotator k for this

specific label. Both π
(k)
j and κ are considered to be drawn from Dirichlet

distributions of parameters α
(k)
0,j and ν0, respectively. Note that α and ν are

indexed by 0 acknowledging they are our prior belief. Inferring the model

means that we will update our belief over the variables by taking into account

the observable variables, that is, the annotator outputs.

As explained in Simpson et al. [23], the joint probability for this model

is expressed as

p(κ,Π, t, c|A0,ν) = (
N∏
i=1

κti

K∏
k=1

π
(k)

ti,c
(k)
i

)p(κ|ν0)p(Π|A0), (1)

where Π refers to all confusion matrices π(k) and A0 refers to all parameters
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Figure 1: Parametric Bayesian annotator combination.

α
(k)
0 for each annotator k. It is assumed in this model that the number of

different true labels J is known in advance (e.g. matrices π(k) are of fixed

size J × L). This assumption does not necessarily exist in real life. In the

sequel we investigate a non-parametric approach to avoid having to set J .

This approach relies on the Dirichlet process [10].

4. Dirichlet Process

In subsection 4.1, we first describe how the Dirichlet process stems from

the definition of the parametric BAC model introduced in the previous sec-

tion. Then, in subsection 4.2, we present the so-called “stick-breaking” rep-
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resentation of the Dirichlet process and how it is integrated in our model.

4.1. From the Dirichlet Distribution to the Dirichlet Process

The intuition of the Dirichlet process introduced by Ferguson [10] stems

from a multinomial distribution and its conjugate prior, i.e. the Dirichlet

distribution. Recall that for any data item indexed by i, variable ti denotes

its true label and is drawn from a multinomial distribution of parameter κ.

Thus,

p(t1, ..., tN |κ) =
J∏
j=1

κ
nj

j ,

where nj refers to the number of data items with true label j. In addition, κ

is drawn from a Dirichlet distribution of parameter ν. Let us suppose that

our prior belief for κ is uninformative, leading to

ν1 = ... = νJ =
β

J
,

where β/J can be seen as a pseudo-count for each class j. We obtain the

following probability distribution:

κ|ν ∼ Dir(
β

J
, ...,

β

J
) =

Γ(β)

Γ(β/J)J

J∏
j=1

κ
β/J−1
j .

Let us integrate out κ (express t1, ..., tN with respect to β/J)2:

2Thanks to the following trick which consists of integrating a Dirichlet distribution over

all possible values:

Γ(
∑J
j=1 βj)∏J

j=1 Γ(βj)

∫ J∏
j=1

κ
βj−1
j dκ = 1
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p(t1, ..., tN |β) =

∫
p(t1, ..., tN |κ)p(κ|β)dκ

=
Γ(β)

Γ(β/J)J

∫ J∏
j=1

κ
β/J−1+nj

j dκ

=
Γ(β)

Γ(β +N)

J∏
j=1

Γ(β/J + nj)

Γ(β/J)
.

The probability of the true label of the ith item conditioned over the other

items can thus be expressed as follows:

p(ti = j|t̄i, β) =
nt̄i,j + β/J

N − 1 + β
,

where t̄i denotes {tm : m ∈ 1, ..., N,m 6= i} and nt̄i,j is the number of items

that have true label j without counting ti. In other words , the ith item is

more likely to belong to a class where there already are a lot of data items.

Now, taking the limit of J to infinity yields the Dirichlet process:

p(ti = j|t̄i, β) =


nt̄i,j

N−1+β
, j ∈ {1, ..., R} if ti takes an existing value,

β
N−1+β

, if ti takes a new value (i.e., nt̄i,j = 0).

Here R is the number of classes j with nt̄i,j > 0. Note that β/(N − 1 + β) =

1−
∑R

j=1 nt̄i,j/(N − 1 + β). That is, the true label of the ith item can either

take a new value (i.e. a new true label) with a probability proportional

to β, or an existing value with the probability of each existing true label

proportional to the number of items already associated to it. Note that the

∏J
j=1 Γ(βj)

Γ(
∑J
j=1 βj)

=

∫ J∏
j=1

κ
βj−1
j dκ.
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distribution remains discrete even though the number of possible classes is

infinite. Note also that the order in which the items are considered does not

affect the resulting joint distribution probability. Parameter β is known as

the scaling parameter (i.e. concentration parameter). A bigger value will

force the final classification to have smaller granularity, while a smaller value

will force the opposite.

4.2. Stick-Breaking Representation

Another way of describing the Dirichlet process is through a stick-breaking

representation, as introduced by Sethuraman [22]. First, let us consider that

all possible true labels are ordered by their index j. Then consider an infinite

collection of random variables ν, where each νj represents the probability that

an item will be associated with the jth true label given that it is not associ-

ated with the j−1 first labels. Each νj is assumed to be generated by a beta

distribution of parameter 1 and β (the scaling parameter): νj ∼ Beta(1, β).

Hence, 1− νj is the probability that an item will be associated with a label

with an index above j, given that it is not inferior to j. The probability that

a true label ti has value j is κj and follows the stick breaking construction:

κj = νj

j−1∏
τ=1

(1− ντ ).

That is, the true label of data item i, denoted ti, is drawn from a multi-

nomial distribution (similarly to the parametric model) of parameters with

infinite dimension κ. In the sequel, all equations are expressed directly with

respect to ν.

Note that the confusion matrix π(k) of each annotator k now also has an
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j = 1, …, ∞

k = 1, …, K

α0
( k ) #j(k) νj

t ici
(k)

i = 1, …, N

β0

Figure 2: Nonparametric Bayesian annotator combination.

infinite number of rows. This is because π(k) is conditioned over ti, which is

generated from a multinomial distribution of infinite dimension.

The joint probability distribution of the non-parametric BAC illustrated

in Figure 2 can be expressed as follows:

p(ν,Π, t, c|A0, β0) =

N∏
i=1

[

∞∏
j=1

{ν1[ti=j]
j (1− νj)1[ti<j]}

K∏
k=1

π
(k)

ti,c
(k)
i

]p(ν|β0)p(Π|A0).

(2)

Note that the index 0 over β0 shows that it is our prior belief.

5. Variational Inference

Variational inference, contrary to MCMC methods such as Gibbs sam-

pling [3], is known to be extremely fast [12] while still achieving a good
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approximation of the joint probability distribution. This is important, espe-

cially in open-world classification scenarios where the number of true labels

is not known and can be huge. In subsection 5.1, we first recall the intuition

of the mean field variational Bayes. Then, in subsection 5.2, we present the

specific equations for the NPBAC model. Finally, in subsection 5.3, we show

how to handle the infinite dimension of the Dirichlet process as well as the

variational algorithm.

5.1. Variational Method

This family of methods is used to approximate the computation of in-

tractable integrals. In our particular context, this consists of finding a

tractable distribution q which will approximate the true posterior distribu-

tion p(Z|X), with Z being the parameters and X the observed data. This

is performed using the Kullback-Leiber divergence (KL-divergence) [12] of q

with respect to p, which is defined as follows:

DKL(q||p) =

∫
q(Z)log

q(Z)

p(Z|X)
dZ

=

∫
q(Z)log

q(Z)

p(Z,X)
dZ + log p(X)

= L(q) + log p(X),

(3)

where L(q) is called the variational free energy.

While formulating (3) as

log p(X) = DKL(q||p)− L(q), (4)

and since p(X) is invariant regarding q, one has to minimize the variational

free energy in order to minimize the KL-divergence.
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Here we rely on the mean field theory [18] to estimate our model. One

common shortcoming of this theory is that it assumes that the distribution

q(Z) factorizes among its latent variables and parameters as

q(Z) =
M∏
i=1

qi(Zi|X).

Using calculus of variations, it can be demonstrated that in order to minimize

the variational free energy L(q), it is possible to work one variable at a time

and that according to [12] the best form for q is:

log qi(Zi|X) = Ej 6=i[log p(Z,X)] + const. (5)

When developing this equation, choosing conjugated priors implies that qi(Zi|X)

will have the same distribution as p(Zi). On the contrary, if the prior is not

conjugated, then qi(Zi|X) will become intractable. Then circular dependen-

cies will appear among the different variational equations. These depen-

dencies actually describe the algorithm that will iterate until convergence.

Convergence can be evaluated using the variational free energy L(q) [12, 23].

5.2. Variational Equations

Recall that under the mean field assumption, the latent variables of our

model are assumed to factorize. Besides already independent variables, the

variational factorization hypothesis of our problem is as follows:

q(t,Π,ν) = q(t)q(Π,ν).

In the sequel, q is developed for each latent variable. We will show that

Π and ν can be derived separately.
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The variational equation for the true labels variable t is

ln q(t) = Eν,Π[ln p(ν,Π, t, c)] + const.

This equation can be formulated for each data item. For the sake of

simplicity and to be in line with Simpson et al. [23], we use the following

notation:

ln ρi,j = Eν,Πj
[ln p(ν,Πj , ti, ci)]

=

j−1∑
τ=1

{Eνj [ln (1− ντ )]}+ Eνj [ln νj] +
K∑
k=1

EΠj
[ln π

(k)

j,c
(k)
i

],
(6)

yielding to the probability of a true label as

q(ti = j) = Et[1[ti = j]] =
ρi,j∑∞
τ=1 ρi,τ

. (7)

where 1[ti = j] equals 1 if ti = j and 0 otherwise. For the sake of simplicity,

let us consider the notations

Nj =
N∑
i=1

Et[1[ti = j]] and

N+
j =

∞∑
τ=j+1

Nτ ,

(8)

which respectively represent the number of data items that belong to class j

and the number of items that belong to a class with an index above j. Let

us also assume that the following notation represents the number of times

an annotator k gave answer l when the true label was j:

N
(k)
jl =

N∑
i=1

1[c
(k)
i = l]Et[1[ti = j]], (9)

where 1[c
(k)
i = l] equals 1 if c

(k)
i = l and 0 otherwise.
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The second term q(ν,Π) can be developed as

q(ν,Π) =
∞∏
j=1

q(νj)
K∏
k=1

q(π
(k)
j ).

Indeed, from the joint distribution we note that ν and Π can be factorized

without any assumption.

As both variables can be evaluated separately, let us begin with νj:

ln q(νj) =
N∑
i=1

{Et[ln (1− νj)1[ti>j] + ln ν
1[ti=j]
j ]}+ ln(1− νj)β0 + c1

= N+
j ln (1− νj) +Nj ln νj + (β0 − 1)ln (1− νj) + c1.

(10)

It is possible to recognize the Beta distribution from the last equation:

q(νj) ∼ Beta(νj|γ, β)

with

γ = 1 +Nj

β = β0 +N+
j .

Thus, the expectations over ln νj and ln (1− νj) are of the form:

E[ln νj] = ψ(γ)− ψ(γ + β)

E[ln (1− νj)] = ψ(β)− ψ(γ + β),
(11)

with ψ(x) being the digamma function. Like νj, the equations can be devel-

oped for all q(π
(k)
j ) (last term of q(t,ν,Π) and q(ν,Π)):

ln q(π
(k)
j ) =

N∑
i=1

Eti [1[ti = j]]ln π
(k)

j,c
(k)
i

+ p(π
(k)
j |α

(k)
0,j ) + c2

=
L∑
l=1

{N (k)
jl ln π

(k)
jl + (α

(k)
0,jl − 1)ln π

(k)
jl }+ c2.

(12)
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It is possible to recognize the Dirichlet distribution from the previous equa-

tion:

q(π
(k)
j ) ∼ Dirichlet(π

(k)
j |α

(k)
j1 , ..., α

(k)
jL )

with

α
(k)
jl = α

(k)
0,jl +N

(k)
jl ,

yielding to the following expectation:

E[π
(k)
jl ] = ψ(α

(k)
jl )− ψ(

L∑
m=1

α
(k)
jm). (13)

5.3. Variational Algorithm and Dirichlet Process

In this subsection, the variational algorithm is introduced based on the

previous equations.

First, equations (7) and (8) have an infinite loop, while ν and Π have

infinite dimensions. This is directly related to the Dirichlet process and it

makes their computations impossible, but fortunately this is neither wanted

nor required. Indeed, given a dataset of finite size, it is obvious that there

cannot be more labels than data items if each one is associated with a single

label. In other scenarios, the maximum number of possible labels can also

be the number of different annotator outputs. Like Blei and Jordan [4], let

us set an upper bound to the total number of possible labels. Let T denote

this upper bound, thus giving the following equations:

νT = 1

κT =
T−1∏
τ=1

(1− ντ ),
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which means that there is a probability of 1 that the label cannot have an

index superior to T .

Algorithm 1 describes the procedure developed from the circular depen-

dencies appearing in the previous equations. At line 1, all variables of the

model are initialized either randomly or with some prior knowledge. Random

initialization with a uniform prior requires that all annotators start with the

same or with a similar random confusion matrix. In a totally random initial-

ization with all annotators having a different random confusion matrix with

a uniform prior, the uniform distribution would arise after convergence, thus

leading to incorrect classification results.

The number of iterations set in Algorithm 1 can be either a fixed param-

eter or directly evaluated based on the variational method. We do not go

into further detail about the evaluation of the convergence in this paper, but

they are given in [23].

Algorithm 1: Running the variational Bayes algorithm

input : {c(k)
i }i∈1,...,N,k∈1,...,K , β

1 initialization;

2 for iteration in nb iteration do

3 estimate ln q(t) (Equation 7);

4 estimate ln q(ν) (Equation 11);

5 estimate ln q(π) (Equation 13);
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6. Prior over the Concentration Parameter

Although setting the correct value for the concentration parameter β is

less restrictive than setting the number of classes J , setting a prior over

its values to describe its uncertainty p(β|θ) might be beneficial. Figure 3

presents the Bayesian graphical model when the concentration parameter β

follows a distribution of parameter θ. Unfortunately, νj is drawn from a Beta

distribution (of parameter [1, β]), whose own conjugated prior is known to

be not in a closed form. Recall that conjugacy is a fundamental property

required to obtain a tractable variational approximation of the joint distri-

bution. As an alternative, Subsection 6.1 describes how to approximate the

variational equation for β using the Laplace method. Then Section 6.2 shows

the updated variational algorithm taking into account the β equation.

6.1. Approximating the Variational Equation for β

In order to approximate the variational equation for parameter β, we use

the Laplace method, which proposes a solution to evaluate integrals of the

form ∫ b

a

eMf(x)dx,

where f is a twice differentiable function, while M ∈ R and both a, b can be

infinite, such as used in [27].

Several assumptions are necessary:

1. β must be real valued. This is already the case.

2. p(β|θ) must be twice differentiable with respect to β. This is important

as in the following we do not restrict β to a specific distribution.
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Figure 3: Non-parametric Bayesian annotator combination with a prior over the concen-

tration parameter.

3. p(νj|φ) with φ = [1, β] must be in the exponential family. This is the

case as νj follows a Beta distribution, which can therefore be expressed

as follows [1]:

p(νj|φ) = h(νj)exp{η(φ)T t(νj)− a(η(φ))},

where h(νj) is a function called base measure, t(νj) is the sufficient

statistic, η(φ) is the natural parameter and a(η(φ)) is the log partition

function. η(φ) is assumed to be twice differentiable: this is the case

for the Beta distribution. In our context, as νj is drawn from a Beta

distribution, these elements take the following values:

• h(νj) = 1,
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• t(νj) = [ln νj , ln (1− νj)]T ,

• η(φ) = [φ1, φ2]T where φ = [1, β],

• a(η(φ)) = ln Γ(φ1) + ln Γ(φ2)− ln Γ(φ1 + φ2).

Let us estimate q(φ) using the Laplace method as

q(φ) ∝ exp{
∑
j

[η(φ)TEν [t(νj)]− a(η(φ))] + ln p(φ2|θ)} = exp{f(φ)}

f(φ) ,
∑
j

[η(φ)TEν [t(νj)]− a(η(φ))] + ln p(φ2|θ).

Function f can be approximated using the second-order Taylor approxi-

mation around φ? which denotes the value that maximizes the function, such

that

f(φ) ≈ f(φ?) +∇f(φ?)(φ− φ?) +
1

2
(φ− φ?)T∇2f(φ?)(φ− φ?).

Note that since φ? maximizes f , then ∇f(φ?) = 0, thus leading to

q(φ) ∝ exp{f(φ?) +
1

2
(φ− φ?)T∇2f(φ?)(φ− φ?)}

q(φ) ≈ N (φ?,−∇2f(φ?)−1). (14)

The Gaussian form of our approximation results from the Taylor series. The

vector φ? still needs to be computed. This is done by formulating f as

f(φ) =
T∑
j=1

{φ1Eν [ln(νj)] + φ2Eν [ln(1− νj)]−

(ln Γ(φ1) + ln Γ(φ2)− ln Γ(φ1 + φ2))}+ ln p(φ2|θ)

=
T∑
j=1

{Eν [ln(νj)] + β Eν [ln(1− νj)]−

(ln Γ(1) + ln Γ(β)− ln Γ(1 + β))}+ ln p(β|θ),

(15)
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where Eν [ln (1 − νj)] and Eν [ln (νj)] are updated from Equation (11). A

numerical method (e.g. Gradient Descent) can be used to find φ? = [1, β?].

6.2. The Variational Algorithm

Algorithm 2 presents the modified version of Algorithm 1, while taking

the estimation of β into account. In particular, note that at line 5 the

update procedure for β is not as simple as for the other variables and requires

maximization.

Algorithm 2: Running the variational Bayes algorithm

input : {c(k)
i }i∈1,...,N,k∈1,...,K , θ and p(β|θ)

1 initialization;

2 for iteration in nb iteration do

3 estimate ln q(t) (Equation 7);

4 estimate ln q(ν) (Equation 11);

5 estimate ln q(β) (Equation 15, through maximization);

6 estimate ln q(π) (Equation 13);

7. Experiments

In this section, the experimental evaluation of NPBAC is presented. First,

Subsection 7.1 describes the setup of our experiments. Then Subsection 7.2

presents and discusses the results.

7.1. Setup

To evaluate the NPBAC model, we compare it to the classical BAC model

that we built on [15, 23]. We do not evaluate other published Bayesian
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methods as they could also have benefited from a non-parametric distribution

over the possible true labels.

7.1.1. Datasets

Three datasets are used in our experiments. The first one is related to

dogs classification introduced in [29]. It contains images of four dog breeds

taken from the Stanford dogs dataset [9]. The classification task was achieved

through Amazon Mechanical Turk [6]. The two other datasets come from

Pl@ntnet [13], an innovative participatory sensing platform that relies on

image-based plant identification as a means to enlist non-expert annotators

and facilitate the production of botanical observation data. Pl@ntnet relies

on a mobile application available on iOS and Android, which enables users

to take images of plants and in return receive the most likely species. The

data stream generated through the mobile application consists of a set of

plant observations. These data can be used to monitor biodiversity, invasive

species and general plant population structure. However, although machine

learning might successfully identify some observations, the data stream is

highly noisy and therefore needs to be human validated.

With the aim of producing a clean dataset of French flora, the authors

have developed a crowdsourcing platform called The Plant Game [21]3. The

Plant Game addresses three issues. First, it offers a training module enabling

users to gain expertise and then become capable of recognizing species they

have been trained on. All users are trained on different plant species so that

they are complementary (on more or fewer species depending on their initial

3http://theplantgame.com
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expertise and learning capacity). Second, the Plant Game assigns plant

observations to users that are likely to identify them. Finally, identification

propositions are aggregated using a Bayesian model developed from that

proposed by Simpson et al. [23]. Part of The Plant Game dataset is derived

from the LifeClef challenge [7] and is therefore associated with a true label.

In summary, the main characteristics of the three datasets we use in our

experiments are:

• Dog Dataset: which contains 807 pictures of dogs belonging to 1 of

4 possible species, and 109 different annotators. There is a bijection

between the annotators’ propositions and the true labels.

• Plant Dataset 1: which consists of all observations from the 5 most

popular species/labels in The Plant Game. This subset contains 400

annotators and 155 items. For these items the annotators proposed 93

different labels, from which only 5 were correct.

• Plant Dataset 2: which consists of all observations from the 3 most

popular species/labels and all those from the 2 most confused ones by

the annotators in The Plant Game. Confusion here means that given

these two species A and B, A is often taken for B and reciprocally. This

subset contains 677 annotators and 200 items for which the annotators

proposed 95 different labels from which only 5 are correct. The goal

of this dataset is to determine if the non-parametric model is able to

model more complex confusion by dividing some classes into two sub-

classes, thus achieving a better accuracy.
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7.1.2. Experimental Scenarios

We study three different scenarios in which we could apply the NPBAC

model:

1. Closed-world classification: we use the Dog Dataset [29] where

the votes are a bijection with true labels,

2. Open-world classification: we use the two Plant Datasets [13, 21]

as the annotators are not obliged to answer within the set of true classes

of which they are not necessarily even aware,

3. Novelty detection: we use Plant Dataset 2 from The Plant Game.

In all experiments, we randomly remove 1 true class from the training

set and evaluate the different models on the test set (see below).

7.1.3. Protocol and Metrics

All scenarios are tested using a k-fold cross-validation method, assessing

various training and test set ratios. In addition, the first two scenarios are

also tested in an unsupervised manner (the training set has size 0).

We measure the resulting classification accuracy for each model. Since

those Bayesian models can divide the datasets into a large number of classes

– up to one label per data item –, we measure the resulting number of

predicted labels (at least one item associated with it). This avoids over-

fitting confirmation bias (e.g. splitting the dataset in too many classes).

Each experiment is run ten times and for each metric we show the mean, as

well as its standard deviation.
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7.1.4. Models Initialization and Parameters Choices

All models are randomly initialized. The annotators’ abilities are directly

derived from the data (possibly from the training set, if available). In partic-

ular, we consider each α(k) to be a matrix of 1.0, and ν to be a vector of 1.0

in the baseline parametric model (BAC). Then we sample a matrix following

a Dirichlet distribution of parameters α(k) and assign the same matrix for

all annotators. Moreover, in the baseline parametric model, κ is drawn from

a Dirichlet distribution of parameter ν, while in the non-parametric model

all νj are drawn from a Beta distribution of parameters 1 and β. We test

different β values in the experiments while setting a Gamma prior over it.

We choose a Gamma distribution with a very large standard deviation of 120

and a mean of 240. This corresponds to the previous manually set values of

β.

To set J in the parametric model, we consider two possible solutions.

First, the number of true labels is known and is the J value. Second, it

is unknown and we choose the number of different labels proposed by the

annotators.

To set the upper bound T , we choose the number of different labels for the

plant datasets and 10 for the dog dataset to give the model some flexibility.

7.2. Results

7.2.1. Closed-World Scenario

Table 1 presents an unsupervised classification on the dog dataset, which

consists of a closed-world scenario. On this dataset, the majority voting

obtains a precision of 0.82, as presented in [29]. In addition, while the para-

metric BAC tends to underestimate the true number of labels, the non-
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Model accuracy µ (σ) nb labels µ (σ)

Baseline parametric BAC (J=4) 0.796 (0.03) 3.7 (0.45)

Non-parametric BAC (β = 1) 0.83 (0.07) 4.6 (0.72)

Non-parametric BAC (β = 10) 0.857 (0.03) 5.9 (1.76)

Non-parametric BAC (β = 100) 0.826 (0.05) 6.2 (1)

Non-parametric BAC (prior Gamma) 0.81 (0.07) 4.5 (0.5)

Table 1: Dog dataset: votes over 4 possible labels, 4 true labels, sampling (train/test):

0%/100%.

parametric model, whatever the β value, tends to overestimate it. However,

the non-parametric model obtains consistently better accuracy compared to

the classical parametric model. In addition, setting a Gamma prior over

the concentration parameter β results in the worst accuracy for the non-

parametric model, even though it is still better than the parametric model.

Note however that both the parametric BAC with J = 4 and the Non-

parametric BAC with a gamma prior are both slightly outperformed by the

majority voting in this experiment.

Table 2 presents the results when the models are trained on 10% of the

dataset. Here all methods perfectly estimate the number of true labels and

the accuracy is almost always higher than in the unsupervised experiment.

The parametric and non-parametric models achieve similar accuracy. We also

tried with a training set of 50% and the results were identical – not shown

here for the sake of clarity. Note that both the parametric approaches and

non-parametric approaches largely outperform the majority voting approach

(0.8209) when training data are available.
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Model accuracy µ (σ) nb labels µ (σ)

Baseline parametric BAC (J=4) 0.842 (0.006) 4 (0)

Non-parametric BAC (β = 1) 0.837 (0.004) 4 (0)

Non-parametric BAC (β = 10) 0.84 (0.001) 4 (0)

Non-parametric BAC (β = 100) 0.839 (0.005) 4 (0)

Non-parametric BAC (prior Gamma) 0.841 (0.007) 4 (0)

Table 2: Dog dataset: votes over 4 possible labels, 4 true labels, sampling (train/test):

10%/90%.

In this context of closed-world scenarios, the use of NPBAC over the

parametric model is beneficial since the performances are improved or at

least stable, whatever the configuration tested.

7.2.2. Open-World Scenario

Tables 3 and 4 present the unsupervised classification in an open-world

scenario on the two datasets related to plant classification. In the follow-

ing experiments, we do not compare with the majority voting as there is no

bijection between the annotators’ outputs and the actual expected classes.

However, a detailed comparison between BAC and majority voting is avail-

able in our previous work [21]. Again, the parametric model (even when we

increase the number of possible labels) tends to underestimate the number

of true labels. This is slightly unexpected as we may intuitively assume that

the higher the number of possible true labels in the Dirichlet distribution,

the higher the probability of completely over-fitting the data. Note however

that Rasmussen and Gharhamani have shown that Bayesian models tend
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Model accuracy µ (σ) nb labels µ (σ)

Baseline parametric BAC (J=5) 0.86 (0.1) 3.5 (0.8)

Baseline parametric BAC (J=93) 0.934 (0.17) 4.3 (0.78)

Non-parametric BAC (β = 10) 0.98 (0.02) 5.4 (0.48)

Non-parametric BAC (β = 100) 0.95 (0.12) 5.4 (1)

Non-parametric BAC (β = 500) 0.95 (0.08) 5.7 (0.46)

Non-parametric BAC (β = 1, 000) 0.88 (0.13) 5 (1)

Non-parametric BAC (prior Gamma) 0.96 (0.03) 5.4 (0.91)

Table 3: Plant dataset 1: votes over 93 possible labels, 5 true labels, sampling (train/test):

0%/100%.

to not overfit the data [19]. Conversely, the non-parametric model slightly

overestimates the number of labels but obtains a better approximation of

this number and a better overall accuracy. For instance, when β = 10, the

accuracy is 12 points higher than the classical BAC model. Note also that

when β tends to get big values (e.g. 1, 000), the accuracy drops. This can be

explained by the upper bound T on the dimension of the Dirichlet process.

Indeed, when β is big, the items tend to easily obtain classes with a high

index j. Unfortunately, some items end up in class j = T , where νT = 1.

This means that there is a probability of 1.0 that if these items are not in a

class with index j < T , they can only be in a class with index T and get stuck

within it. Note in Tables 3 and 4 that when the concentration parameter β

follows a Gamma prior, the model achieve a very good accuracy as well as a

good approximation of the number of true labels.

Tables 5 and 6 present the results when the models have access to a
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Model accuracy µ (σ) nb labels µ (σ)

Baseline parametric BAC (J=5) 0.74 (0.11) 4.1 (0.83)

Baseline parametric BAC (J=95) 0.808 (0.14) 5.1 (0.93)

Non-parametric BAC (β = 500) 0.91 (0.07) 6.0 (1.0)

Non-parametric BAC (β = 1, 000) 0.86 (0.1) 6.8 (1.33)

Non-parametric BAC (prior Gamma) 0.84 (0.12) 5 (1.1)

Table 4: Plants dataset 2: votes over 95 possible labels, 5 true labels, sampling (train/test):

0%/100%.

training set of 10%. Again, the non-parametric model is better at estimating

the true number of labels. In addition, even though the training set contains

5 classes, the non-parametric model is still capable of creating new classes

from the test set. Finally, all methods now tend to have good accuracy.

Tables 7 and 8 present the results when using a training set of 50%. The

parametric model as well as the non-parametric model (when β = 10 and

when it follows a gamma prior) correctly estimate the real number of true la-

bels. When β has a bigger value, the model generally considers an additional

class but achieves better accuracy. In addition, the non-parametric model is

still better in terms of accuracy than the parametric model. For instance,

in Table 8, when β ∈ {500, 1000}, the non-parametric model estimates that

there are six types of confusion in the data (and therefore of labels) and

achieves 100% accuracy.

To sum up, these experiments show that the NPBAC model has stronger

abilities in open-world contexts, most notably when the classes are “con-

fused”.
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Model accuracy µ (σ) nb labels µ (σ)

Baseline parametric BAC (J=5) 0.96 (0.03) 4.6 (0.49)

Baseline parametric BAC (J=93) 0.96 (0.03) 4.7 (0.5)

Non-parametric BAC (β = 10) 0.97 (0.03) 4.7 (0.45)

Non-parametric BAC (β = 100) 0.98 (0.03) 5.2 (0.6)

Non-parametric BAC (β = 500) 0.93 (0.06) 5.3 (0.46)

Non-parametric BAC (β = 1, 000) 0.93 (0.07) 5.4 (0.48)

Non-parametric BAC (prior Gamma) 0.97 (0.08) 4.9 (0.46)

Table 5: Plant dataset 1: votes over 93 possible labels, 5 true labels, sampling (train/test):

10%/90%.

Model accuracy µ (σ) nb labels µ (σ)

Baseline parametric BAC (J=5) 0.95 (0.05) 4.6 (0.49)

Baseline parametric BAC (J=95) 0.95 (0.05) 4.7 (0.5)

Non-parametric BAC (β = 10) 0.97 (0.04) 4.7 (0.46)

Non-parametric BAC (β = 1, 000) 0.91 (0.07) 5.5 (0.5)

Non-parametric BAC (prior Gamma) 0.95 (0.05) 4.6 (0.48)

Table 6: Plant dataset 2: votes over 95 possible labels, 5 true labels, sampling (train/test):

10%/90%.
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Model accuracy µ (σ) nb labels µ (σ)

Baseline parametric BAC (J=5) 0.993 (0.04) 5 (0)

Baseline parametric BAC (J=93) 0.96 (0.03) 5 (0)

Non-parametric BAC (β = 10) 0.994 (0.03) 5 (0)

Non-parametric BAC (β = 100) 1.0 (0) 5.1 (0.3)

Non-parametric BAC (β = 500) 0.996 (0.04) 6 (0)

Non-parametric BAC (β = 1, 000) 0.995 (0.03) 6 (0)

Non-parametric BAC (prior Gamma) 0.995 (0.04) 5 (0)

Table 7: Plant dataset 1: votes over 93 possible labels, 5 true labels, sampling (train/test):

50%/50%.

Model accuracy µ (σ) nb labels µ (σ)

Baseline parametric BAC (J=5) 0.994 (0.005) 5 (0)

Baseline parametric BAC (J=95) 0.994 (0.006) 5 (0)

Non-parametric BAC (β = 100) 1.0 (0) 5.4 (0.49)

Non-parametric BAC (β = 500) 1.0 (0) 6 (0)

Non-parametric BAC (β = 1, 000) 1.0 (0) 6 (0)

Non-parametric BAC (prior Gamma) 0.999 (0.003) 5 (0)

Table 8: Plant dataset 2: votes over 95 possible labels, 5 true labels, sampling (train/test):

50%/50%.
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Model accuracy µ (σ) nb labels µ (σ)

Baseline parametric BAC (J=5) 0.89 (0.05) 4.2 (0.44)

Baseline parametric BAC (J=95) 0.904 (0.05) 4.2 (0.45)

Non-parametric BAC (β = 100) 0.98 (0.03) 4.8 (0.4)

Non-parametric BAC (β = 500) 0.96 (0.03) 5 (0)

Non-parametric BAC (β = 1, 000) 0.95 (0.04) 5 (0)

Non-parametric BAC (prior Gamma) 0.98 (0.03) 5 (0)

Table 9: Plant dataset 1: votes over 93 possible labels, 5 true labels, sampling (train/test):

10%/90% and one missing class in the training set.

7.2.3. Novelty Detection Scenario

In this last experiment presented in Table 9 and related to novelty detec-

tion, the training set only contains 4 classes while 5 are available in the test

set. Surprisingly, the parametric model is sometimes capable of estimating

over four labels. However, the non-parametric model is more flexible and

thus more capable of estimating the true number of labels. As expected,

since the non-parametric model is capable of discovering all labels most of

the time, it also achieves better accuracy than the parametric model. More-

over, we can observe that setting a Gamma prior enables us to obtain better

accuracy even though less prior knowledge is given to the model.

Here again, NPBAC outperformed the baseline parametric BAC when

considering novelty detection.
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8. Conclusion

In this paper, we have presented the NPBAC model to address the prob-

lem of combining annotators and learning their confusion when the number

of possible “true labels” is not known or when some of the classes are highly

confused. Most notably, we have proposed the following original contribu-

tions.

We show how the non-parametric model is related to the parametric

model through the Dirichlet process. We also show how to express the joint

probability of the NPBAC model using the “stick-breaking” construction of

the Dirichlet process.

We show how the variational equations of the non-parametric model can

be derived and present the variational algorithm to infer the joint probability

of the model given the observed data. In addition, we show how to set a

prior distribution over the Dirichlet process and how to infer its variational

equation using the Laplace method.

Overall, we compare the non-parametric model to the parametric model

on three datasets and three different scenarios in unsupervised, semi-supervised

and supervised classification. The first scenario is the typical closed-world

scenario where all labels are known and where the votes and labels form a

bijection. The second scenario is related to an open-world classification sce-

nario where the labels are no longer known and the votes no longer form a

bijection with the true labels. Finally, the last scenario is related to novelty

detection. Here the models are trained on a dataset that does not contain

all labels from the test set. In summary, our experiments show that in these

three scenarios the non-parametric model correctly approximates the number
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of true labels (even more than the parametric model) and largely outperforms

the parametric model in terms of accuracy, especially when no or few train-

ing data are available. Both models tend to converge to the same accuracy

when the training set is large (i.e. 50% of the total dataset).

Future studies could address the problem of scalability of the non-parametric

Bayesian annotator combination model. In particular, the equations model

all possible confusions that might exist given an annotator but only a subset

of those may actually appear.
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