E. B. Andersen, Sufficiency and Exponential Families for Discrete Sample Spaces, Journal of the American Statistical Association, vol.2, issue.331, pp.1248-1255, 1970.
DOI : 10.1214/aoms/1177700373

A. Bendale and T. Boult, Towards Open World Recognition, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1893-1902, 2015.
DOI : 10.1109/CVPR.2015.7298799

URL : http://arxiv.org/pdf/1412.5687

C. Bishop, Pattern Recognition and Machine Learning. Information Science and Statistics, 2006.

D. M. Blei and M. I. Jordan, Variational inference for Dirichlet process mixtures, Bayesian Analysis, vol.1, issue.1, pp.121-143, 2006.
DOI : 10.1214/06-BA104

URL : http://doi.org/10.1214/06-ba104

J. Bragg and D. S. Weld, Optimal testing for crowd workers, Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems, pp.966-974, 2016.

M. Buhrmester, T. Kwang, and S. D. Gosling, Amazon's mechanical turk a new source of inexpensive, yet high-quality, data? Perspectives on psychological science, pp.3-5, 2011.

J. Champ, T. Lorieul, M. Servajean, J. , and A. , A comparative study of fine-grained classification methods in the context of the lifeclef plant identification challenge 2015, CLEF: Conference and Labs of the Evaluation forum, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01182788

A. P. Dawid and A. M. Skene, Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm, Applied Statistics, vol.28, issue.1, pp.20-28, 1979.
DOI : 10.2307/2346806

T. S. Ferguson, A bayesian analysis of some nonparametric problems. The annals of statistics, pp.209-230, 1973.

L. Fortson, K. Masters, R. Nichol, E. Edmondson, C. Lintott et al., Galaxy zoo Advances in machine learning and data mining for astronomy, pp.213-236, 2012.

C. W. Fox and S. J. Roberts, A tutorial on variational Bayesian inference, Artificial Intelligence Review, vol.6, issue.2, pp.85-95
DOI : 10.1007/s10462-011-9236-8

A. Joly, P. Bonnet, H. Goëau, J. Barbe, S. Selmi et al., A look inside the Pl@ntNet experience, Multimedia Systems, vol.23, issue.1, pp.22751-766, 2016.
DOI : 10.1109/CVPR.2011.5995368

URL : https://hal.archives-ouvertes.fr/hal-01182775

E. Kamar, S. Hacker, and E. Horvitz, Combining human and machine intelligence in large-scale crowdsourcing, Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, pp.467-474, 2012.

H. Kim and Z. Ghahramani, Bayesian classifier combination, International conference on artificial intelligence and statistics, pp.619-627, 2012.

N. Littlestone and M. K. Warmuth, The weighted majority algorithm, Foundations of Computer Science 30th Annual Symposium on, pp.256-261, 1989.
DOI : 10.1006/inco.1994.1009

URL : https://doi.org/10.1006/inco.1994.1009

P. G. Moreno, A. Artes-rodriguez, Y. W. Teh, and F. Perez-cruz, Bayesian nonparametric crowdsourcing, Journal of Machine Learning Research, vol.16, pp.1607-1627, 2015.

G. Parisi, Statistical field theory, 1988.

C. E. Rasmussen and Z. Ghahramani, Occam's razor Advances in neural information processing systems, pp.294-300, 2001.

V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin et al., Learning from crowds, The Journal of Machine Learning Research, vol.11, pp.1297-1322, 2010.

J. Sethuraman, A constructive definition of dirichlet priors, Statistica sinica, pp.639-650, 1994.
DOI : 10.21236/ADA238689

E. Simpson, S. J. Roberts, I. Psorakis, and A. Smith, Dynamic bayesian combination of multiple imperfect classifiers. Decision making and imperfection, pp.1-35, 2013.

R. Simpson, K. R. Page, D. Roure, and D. , Zooniverse, Proceedings of the 23rd International Conference on World Wide Web, WWW '14 Companion, pp.1049-1054, 2014.
DOI : 10.1111/j.1365-2966.2012.20770.x

C. Wang and D. M. Blei, Variational inference in nonconjugate models, Journal of Machine Learning Research, vol.14, pp.1005-1031, 2013.

P. Welinder and P. Perona, Online crowdsourcing: Rating annotators and obtaining cost-effective labels, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Workshops, 2010.
DOI : 10.1109/CVPRW.2010.5543189

URL : http://vision.caltech.edu/publications/WelinderPerona10.pdf