
HAL Id: lirmm-01706074
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01706074v1

Submitted on 12 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recovering Runtime Architecture Models and Managing
their Complexity using Dynamic Information and

Composite Structures
Soumia Zellagui, Chouki Tibermacine, Ghizlane El Boussaidi,

Abdelhak-Djamel Seriai, Hinde Lilia Bouziane, Christophe Dony

To cite this version:
Soumia Zellagui, Chouki Tibermacine, Ghizlane El Boussaidi, Abdelhak-Djamel Seriai, Hinde Lilia
Bouziane, et al.. Recovering Runtime Architecture Models and Managing their Complexity using
Dynamic Information and Composite Structures. SAC: Symposium on Applied Computing, Apr
2018, Pau, France. pp.1454-1456, �10.1145/3167132.3167420�. �lirmm-01706074�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01706074v1
https://hal.archives-ouvertes.fr

Recovering Runtime Architecture Models and Managing
their Complexity using Dynamic Information and

Composite Structures

Soumia Zellagui1, Chouki Tibermacine1, Ghizlane El Boussaidi2, Abdelhak-Djamel Seriai1,
Hinde-Lilia Bouziane1 and Christophe Dony1

1LIRMM, CNRS and University of Montpellier, France
{zellagui,tibermacin, seriai, bouziane, dony}@lirmm.fr
2École de Technologie Supérieure, Montréal, Canada

Ghizlane.ElBoussaidi@etsmtl.ca

ABSTRACT
Program comprehension during software maintenance is a
difficult task, hence the need to support it by recovering the
as-built architecture of the system to be maintained. In this
paper, we propose a method to recover runtime architecture
models of object-oriented systems. The method combines
static and dynamic analysis to recover an Object Graph
(OG) and uses two techniques to manage the complexity
of this graph.

CCS Concepts
•Software and its engineering → Object oriented archi-
tectures;

Keywords
Architecture Recovery; Static and Dynamic analyses.

1. INTRODUCTION
Software systems are maintained throughout their opera-
tional life. When a software undergoes major changes, the
high level view of its structure and behavior, to which we re-
fer as software architecture, is required. Such view helps sup-
porting the developer in understanding and properly evolv-
ing the system. In practice, the continuous and cumulative
changes undergone by the system increase its complexity
and lead to a deviation from its intended architecture [7].
Thus, an architecture recovery process becomes inescapable
for understanding the as-built architecture of the system be-
fore initiating any modifications.

A number of software architecture recovery approaches were
proposed in the literature [4] but only few of them targeted
the recovery of runtime architecture models [1,3], which are
composed of the system’s runtime entities (objects) and de-
pendencies between them. Moreover, only few approaches

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC 2018, April 9–13, 2018, Pau, France
Copyright 2018 ACM 978-1-4503-5191-1/18/04. . . $15.00
https://doi.org/10.1145/3167132.3167420

provide strategies to manage the complexity of the recovered
architecture models, especially in the case of large systems.

In this paper, we propose an approach that recovers the run-
time architecture and helps managing the complexity of the
recovered architecture. To do so, we combine static (source
code) and dynamic (execution trace) analysis. In particu-
lar, we use static analysis to build OGs. Because the size of
such graphs is most of the time very large, we refine them
using information obtained through the analysis of execu-
tion traces. The information added to these graphs includes
the lifespan of each object and its probability of existence at
runtime. This information helps managing the complexity
of the resulting refined graph by allowing to visualize only
relevant parts of the graph according to the developer’s con-
cerns. Furthermore, to manage the complexity of the graph,
we use the ownership model introduced in [2] to identify
composite (internal) structures of objects in the graph. This
enables to organize the refined OG into a hierarchy of com-
posite structures/nodes that can be collapsed or expanded
to hide or show their internal structure.

The paper is organized as follows. Section 2 presents a gen-
eral overview of the approach which is defined as a multi-step
process and then details each step of the process. We discuss
briefly the results of a preliminary experiments in Section3.
We expose the related works in Section 4 and we conclude
in Section 5.

2. THE RECOVERY PROCESS
The proposed recovery process is depicted in Figure 1. The
first step is a static analysis of the source code from which
an initial OG, similar to the one introduced in [9], is recov-
ered. Once the OG has been obtained, the dynamic analysis
is prepared by instrumenting the source code of the system
under study. The execution of the instrumented code us-
ing a set of test cases produces logs, i.e. execution traces.
These generated traces are analyzed to extract information
to refine the preliminary OG. The final step of the approach
consists in managing the complexity of the refined OG using
two techniques: i) exploiting lifespans and probabilities of
existence, and ii) identifying the so-called composite struc-
tures, which enable to make the graph hierarchical and thus
reduce its complexity. The refined hierarchical OG can be
used by external tools for a visualization with a level of

https://doi.org/10.1145/3167132.3167420

detail. Developers can customize their visualization by fo-
cusing on the most durable objects or the most likely to
exist at runtime. They can also focus on particular objects
by unfolding hierarchical nodes to analyze their composite
structure, or to visualize a high level view of the architec-
ture (the graph hiding the internal composite structures).
In the following, we discuss in detail the different steps of
the process for recovering this refined hierarchical graph.

Figure 1: Process for creating the refined hierarchi-
cal object graph

• Source code static analysis: the purpose of this
first step is building a preliminary OG. An OG is a
directed labeled graph that represents the structure of
a given software system in terms of objects. In this
graph, nodes denote objects and an edge between two
nodes n1 and n2 indicates that there exists in the
source code an assignment through which n1 refer-
ences n2 via one of its fields. Edges are labeled with
fields names.

In order to build this OG, the flow of objects must be
captured from the source code. To do so, we rely on
an Object Flow Graph (OFG) built using the method
described in [9]. An OFG is a directed labeled graph
in which nodes represent objects or program variables1

(fields, local variables, methods’ parameters or meth-
ods’ arguments), and edges represent assignments be-
tween these variables. To build this OFG, we use three
kinds of statements: allocation, assignment and invo-
cation sites.

Objects in the OFG are collected from allocation sites
and the flow of each object is inferred by analyzing the

1We are only interested by those which are typed by user-
defined classes/interfaces

statements in which the reference of this object is used.
Once the OFG is obtained, the OG can be recovered
by analyzing the output sets of the OFG nodes that
correspond to fields.

• Source code instrumentation & instrumented
code execution: we instrumented the code by au-
tomatically adding statements that produce execution
traces which report the following: i) system start and
end timestamps. ii) object creation: creation times-
tamp, object identifier, the position (class name + line
number) of the allocation site responsible for creating
the object and the object hashcode. iii) object de-
struction: destruction timestamp, by overriding the fi-
nalize() method if it does not exist, and the hashcode
of the destroyed object. Then, to generate execution
traces, the instrumented code is executed using a set
of test cases.

• Object graph refinement: the purpose of this re-
finement is to add two kinds of labels on nodes of
the OG: probabilities and lifespans. Labels added on
nodes are of the form <probability, lifeSpan>. For
each object, its probability is the ratio of the number
of occurrences of this object in execution traces to the
total number of execution traces. Lifespans are mea-
sured using the creation and destruction timestamps,
which exist in the execution traces. First, we mea-
sure the average creation and destruction timestamp
for each node from all the execution traces where it
exists. Then, we scale each timestamp to the total
lifespan of the application (the difference between the
system’s start and end time). The lifespan of a node
is a range, having as a minimal value the scaled cre-
ation timestamp and as a maximal value the scaled
destruction timestamp.

• Managing the Complexity of the Refined Ob-
ject Graph: to manage the complexity of the refined
object graph, we use and combine two techniques. The
first technique exploits the information available in our
refined graph, namely the object lifespan and proba-
bility of existence. The second technique aims at iden-
tifying the composite structures of objects in the pre-
viously recovered graph.

Having an OG that includes the lifespan of each object
and its probability of existence at runtime, we can help
manage the complexity of the OG by allowing to visu-
alize only relevant parts of the graph according to the
developer’s needs. In fact, developers can set thresh-
olds for the values of the information added to the
graph in order to focus, for instance, on objects that
are the most durable or the most likely to exist at run-
time. In general, we expect the objects that constitute
the GUI to be the most durable; i.e., they are created
when the software system is launched. Conversely, de-
pending on the complexity of the application domain
of the system, some domain-specific (business) objects
may be more or less durable depending on the impor-
tance of the object in the domain.

The second technique identifies composite structures
in the refined OG based on the owners-as-dominators

ownership model [2]. In this model, an owner ob-
ject (the composite) should dominate an owned object
(component), that is, an object cannot be exposed out-
side of the boundary of its owner. In other words, all
access paths to the owned object should pass through
its owner. This technique enables to build the com-
posite structures of objects in the form of hierarchical
nodes in the graph, which helps managing the com-
plexity of the graph.

3. PRELIMINARY EXPERIMENTS
A prototype of the approach was implemented using Spoon
[6] which is a library for source code analysis and transfor-
mation. The visual output of our approach is generated us-
ing GraphVIZ2 which is an open source graph visualization
software.

We applied our approach on the Jext3 open source Java
project using 15 scenarios that exercise the main function-
alities described in Jext documentation.

For lack of space, we don’t discuss all the details of this pre-
liminary experiment. To summarize, using the composite
structures technique only, the OG displays 12 nodes at the
highest level and 203 nodes when fully expanded. Combin-
ing the composite structures with our technique for manag-
ing the OG’s complexity, the number of nodes is reduced in
a more substantial way. For example, if the user chooses to
display only the objects that have a probability of one and
a lifespan greater than 5%, the number of nodes of the OG
is reduced to 8 at the highest level and to 139 when fully
expanded (i.e., a total reduction of 46%).

4. RELATED WORK
A large body of research exists for supporting the reverse
engineering of the static and/or dynamic information needed
for architecture recovery. In this section, we discuss the
works that are the closest to our work

Both Spiegel et al [8] and Abi-Antoun et al [1] proposed
static analysis techniques, named Pangaea and SCHOLIA
respectively, in order to recover OGs of Java systems. The
analysis process in SCHOLIA is neither object, nor polymor-
phism nor flow sensitive. Flow sensitivity refers to the abil-
ity to capture information by considering conditional state-
ments (if-else statements, loops, etc). Polymorphism sensi-
tivity means that method invocation context is taken into
account and separate information is computed for different
invocations of the same method. Object sensitivity means
that objects are identified by their allocation points instead
of class names. On the other hand, the process in Pangaea
is object and polymorphism sensitive. The aspect of miti-
gating the complexity of the recovered graphs is not taken
into account in Pangaea, whereas, in SCHOLIA, architec-
tural extractors (developers) use ownership domain annota-
tions to annotate the Java code, then they use static analysis
to extract a hierarchical Ownership Object Graph (OOG).
Each of the works of de Brito et al [3] and Flangan et al [5]
recovers OGs dynamically. The analysis process in the two

2https://www.graphviz.org/
3https://sourceforge.net/projects/jext/

techniques is object, polymorphism and flow sensitive. To
promote the scalability of OGs, de Brito et al [3] use the
summarization by domain and Flangan et al [5] apply some
abstractions such as: defining ownership and containment
relations between objects. Wang et al [10] proposed an au-
tomatic recovery technique based on hybrid analysis. The
static analysis is used to build the OG. This graph is then
enhanced with dynamic profiling information such as allo-
cation frequency on nodes. Thereafter, this information is
used to reduce the OG to a tractable size. The analysis
process in this approach is object and flow sensitive.

Our approach combines a static and dynamic analyses. It
promotes automation and avoids to developers their involve-
ment in the recovery process. The proposed process is ob-
ject, polymorphism and flow sensitive, which guarantees a
more “precise” analysis of the source code, compared to ex-
isting works which consider these aspects only partially. The
recovered OG is refined with both: i) new labels and ii) a
hierarchical structure, in contrast to existing works. These
additional features enable to reduce the complexity of this
graph.

5. CONCLUSION
In this paper, we proposed an approach to recover refined
and hierarchical OGs of Object Oriented (OO) software sys-
tems. As proposed, these OGs have the following distin-
guishing features: i) Nodes are labeled with lifespans and
probabilities of existence that allow a visualization with a
level of detail. ii) They support the collapsing/expanding of
objects to hide/show their internal structure. Future works
will surely regard the application of the approach to sev-
eral systems and in the migration of OO systems towards
component based ones.

6. REFERENCES
[1] M. Abi-Antoun and J. Aldrich. Static extraction and

conformance analysis of hierarchical runtime architectural
structure using annotations. In OOPSLA, 2009.

[2] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types
for flexible alias protection. ACM SIGPLAN Notices, 1998.

[3] H. de Brito, H. T. Marques-Neto, R. Terra, et al.
On-the-fly extraction of hierarchical object graphs. Journal
of the Brazilian Computer Society, 2013.

[4] S. Ducasse and D. Pollet. Software architecture
reconstruction: A process-oriented taxonomy. In Trans on
Soft Eng, 2009.

[5] C. Flanagan and S. N. Freund. Dynamic architecture
extraction. In FATES & RV. 2006.

[6] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and
L. Seinturier. Spoon: A library for implementing analyses
and transformations of java source code. Software: Practice
and Experience, 2015.

[7] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture. SIGSOFT Software Engineering
Notes, 1992.

[8] A. Spiegel. Automatic distribution of object oriented
programs. PhD thesis, 2002.

[9] P. Tonella. Reverse engineering of object oriented code. In
ICSE, 2005.

[10] L. Wang and M. Franz. Automatic partitioning of
object-oriented programs for resource-constrained mobile
devices with multiple distribution objectives. In ICPADS,
2008.

	Introduction
	The Recovery Process
	Preliminary Experiments
	Related work
	Conclusion
	References

