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Abstract—In the context of biosensor as much as Built-In-Self
Test (BIST), on-chip sine-wave signal generation is a recurring
research topic. Considering the implementation constraints, it
implies a trade-off between the amount of resources and the
signal quality. An attractive solution consists in combining several
digital signals to build this analog sine-wave. The objective of
this paper is to give an analytic study of various potential digital-
based solutions. Thanks to this study, we prove that the technique
consisting in setting the phase shifts and various amplitude values
of the square-wave signals is the most efficient approach. This
study allows the selection of the optimal square-wave signal
parameters to cancel low-order harmonics of the generated signal.
We proposed a solution for specification-oriented definition of the
architecture.

Keywords—Harmonic cancellation, sine-wave generation, on-
chip signal generation

I. INTRODUCTION

The design of integrated sine-wave signal generator is a
long-term research topic. Such designs have several appli-
cations from the Built-In-Self Test (BIST) [1] to impedance
spectroscopy for biosensor application [2]. The main objective
of designing an integrated sine-wave signal generator is to
overcome the need for off-chip generation and drive the signal
to the internal node. The constraints to design such an inte-
grated generator are the required silicon area and the accuracy
of the generated sine-wave signal. In order to minimize the
generator size and its sensitivity to manufacturing process
variations, it is relevant to use digital resources to generate
the sine-wave signal.

An attractive solution consists in combining digital signals
to generate the analog sine-wave [1] [2] [3] [4] [5] [6] [7]. This
solution, illustrated in Figure 1, consists of a first digital block
generating square-wave signals with various characteristics
(amplitude and/or relative phase). Then, these signals are
provided to another block that performs a clever summing,
aiming at cancelling some harmonics on the output signal.
As square-wave signals have harmonics which amplitudes
decrease by 1/k (k is the order of the harmonic). The basic
principle of harmonic cancelling is to sum square-wave signals
with different characteristics in order to sum the fundamental

frequency bin while cancelling the harmonics. This process
allows low-order harmonic cancellation. Then, a low-pass filter
is used to remove residual high-frequency harmonics.

Fig. 1. Block diagram of low-distortion sine-wave generation using harmonic
cancellation

In order to implement such a solution, the number of
required signals, amplitudes, frequencies and relative phase-
shifts have to be defined. The architectures described in the
literature are strongly application-driven solutions. As a con-
sequence, there isn’t any theoretical analysis of the optimized
values of the required square-wave signal parameters.

This paper is an extension of [8] where an analytic study
of square-wave parameters for efficient sine-wave generation
is performed and focuses on performances in terms of linearity
of the generated sine-wave. This extension arbitrates on one
sine wave generation technique in-light of the novel presented
approach to mitigate mismatch issues.

In the second section, we define the parameters of the
square-wave signals to be tuned in order to perform the
harmonic cancellation. The third section provides the analytic
study of harmonic cancellation for two different approaches.
A solution to a mismatch issue during implementation is sug-
gested in the fourth section. Finally, a study of the robustness
of the best solution is provided in the fifth section.

II. BASIC PRINCIPLE AND CONSTRAINTS

A. Square-wave signal parameters

For changing the distortion of a generated sine-wave signal,
several square-wave signal parameters can be tuned. For each
square-wave signal m, these parameters are the amplitude Am,
the phase ϕm and the duty cycle rm. In order to optimize
the harmonic cancellation with M square-wave signals 3×M
parameters have to defined. It will be shown in the following



that it is possible to reduce this number of parameters that
needs to be considered.

B. Symmetry of generated square-wave signals

As illustrated in figure 2, using M square-wave signals
to generate the sine-wave signal, if M is an even number,
M/2 signals have symmetrical phase shift compare to the other
M/2 signals. In case of odd number of square-wave signals,
m = 0 signal is in-phase with the targeted sine-wave signal.
Then p = (M − 1)/2 signals have symmetrical phase shift
compared with the other p signals. Then, we define the square-
wave signal names m going from −p to p. Since the signals
are symmetrical Am = A−m and ϕm = −ϕ−m.
The duty cycle can be set aside. Indeed, two square-wave
signals with a ϕm symmetrical phase shift are two signals
with a duty cycle of rm = π−2ϕm

2 . As a consequence any
duty cycle can be generated with symmetrical signals.

Fig. 2. Symmetry of sine-wave signal generated by summing square-wave
signals

C. Constraints and objective

The objective of this paper is to evaluate the trade-off
between 3 constraints:

• Quality of generated signal

• Implementation effort

• Robustness of the solution

Quality and robustness of generator architecture depends
on hardware implementation limitations and constraints. For
instance, it is easier to generate a phase shift as a fraction
of the sine-wave period rather than an arbitrary phase-shift.
In addition it is easier to generate signals with identical
amplitudes rather than signals with arbitrary amplitudes.

Architecture implementation impacts on accuracy and ro-
bustness, but the linearity of the generated signal is also
strongly related to the chosen parameters of the digital based
generator.

III. HARMONIC CANCELLATION

Several options can be considered to define parameters of
the digital-based generator. Each option has to be considered
according to our objective and constraints (Quality, Implemen-
tation effort and Robustness).

• Is it efficient to strongly constrain the phase-shift
of the square-wave signals and precisely adjust their
amplitude?

• Is it more efficient to keep one amplitude for any
square-wave signal and adjust precisely their relative
phase-shift?

• Is adjusting precisely their phase-shift and amplitude
the ultimate solution?

These different case studies will be discussed in the following
sections.

A. Fixed phase-shifts and adjustable amplitudes of square-
waves

A possible solution for harmonic cancellation is to set the
phase-shifts ϕm as ratios of the sine-wave period (keeping in
mind implementation constraints) and adjust the amplitudes
Am arbitrarily of each square signal to sum. Such a solution
has been described in [7]. Values of phase-shifts ϕm and
amplitudes Am of each square-wave to sum are expressed in
Equation 1. {

ϕm = 2πmN
Am = cos(2πmN )

(1)

with N = 4(p+ 1) and m = J−p, pK

We can show that this solution cancels the first harmonics
analytically. Equation 2 gives the Fourier series of the sum of
the M square-wave signals.

y(t) =

p∑
m=−p

∞∑
k=−∞

Ck,me
ikωt (2)

The Fourier coefficients given by equation 3 are the sum
of the Fourier coefficients of the square-wave signals.

Ck(y) =

p∑
m=−p

cos(2πmN )

kπ
(1− eikπ)e−ikm2 2π

N (3)

Equation 4 is the development of equation 3.

Ck(y) =
2

kπ

p∑
m=−p

e2π
m
N + e−2π

m
N

2
e−ikm2 2π

N

=
1

kπ

p∑
m=−p

e2π
m
N (k−1) + e−2π

m
N (k+1)

valid for k odd and nil for k even

(4)
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Considering that the sum of the roots of unity is zero.

We can observe that
p∑

m=−p
e−2π

m
N (k+1) cancels when k is not

equal to N−1 (where, as defined previously, N = 4p+1). This
implies that Ck(y) is equal to zero except for k = {1; 4(p +
1)− 1; 4(p+ 1) + 1; 8(p+ 1)− 1; 8(p+ 1) + 1; ...}.

Thanks to this approach harmonics below 4(p+1)− 1 are
cancelled. Thus, M signals can cancel harmonics with order
below 2M + 1 for odd M.

Figures 3 and 4 provide respectively the temporal and
spectral representation of a sine-wave signal for five square-
wave signals M = 5.

Fig. 3. Sine-wave signal generated using square-wave signals with various
amplitudes for five signals M = 5

Fig. 4. Spectrum of sine-wave signal generated using square-wave signals
with various amplitudes for five signals M = 5

B. Fixed amplitudes and adjustable phase-shifts of square-
waves

The other option consists in setting the amplitudes to
the same value and adjusting the phase-shifts to cancel the

harmonics.

{
ϕm adjustable
Am = 1

(5)

Two approaches can be used:

• A minimization technique, with a search over the
phase shifts values for a minimum in the total har-
monic distortion (THD).

• An analytic study with a theoretical approach.

1) Minimization technique:

Let us consider the Fourier coefficients of the generated
signal:

Ck(y) =

p∑
m=−p

−i
kπ
e−ikϕm , for odd k (6)

To define the values of the ϕm phase-shifts, we propose to
minimize the harmonic distortion ratio provided by Equation 7

THDNhar =

√∑Nhar
m=2 |Ck|2

|C1|
(7)

Nhar is the number of harmonics to be cancelled. For the
first integer values of Nhar we run a search for a minimum
on THDNhar with equation 7. We observe that it is possible
to cancel THDNhar when Nhar is below M + 3 when the
number of signals M is even.

Figures 5 and 6 provide respectively the temporal and
spectral representation of a sine-wave signal generated for six
square-wave signals M = 6

Fig. 5. Sine-wave signal generated using square-wave signals with
various phase shifts for six signals M = 6 with [ϕ1;ϕ2;ϕ3] =
[0.2037; 0.4701; 0.9784]rads
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Fig. 6. Spectrum of sine-wave signal generated using square-wave signals
with various phase shifts for six signals M = 6

The approach proposed in chapter III.A (Fixed phase-shifts
and adjustable amplitudes of square-waves) can already be
considered more efficient because it cancels more harmonics
with less required square-wave signals. In addition, it seems
that the requested accuracy of the phase-shift is very constrain-
ing. Let’s consider the equation 8 that provides the Fourier
series coefficient affected by a phase-shift error.

Ck(y) =

p∑
m=−p

−i
kπ
e−ik(ϕm+2πdeviation), for k odd (8)

Figure 7 presents the harmonic distortion ratio variation for
a phase-shift deviation from 10−4 to 10−2 of a period.

As presented by Figure 7, we observe by simulation that
harmonic distortions affected by a phase-shift error of 10−3 of
a period, have an amplitude of −50dB.

Fig. 7. Harmonic distortion ratio variations due to varying phase-shift
error Monte-Carlo results for a sine-wave signal generated using square-wave
signals with various phase shifts for six signals M = 6

To give an example, as illustrated by figure 7, in order to
reach a harmonic cancellation of the order of -50dB when gen-
erating a sine-wave of frequency 10MHz, a digital frequency
higher than 10GHz is necessary. This number implied a very
high clock frequency generator involving high constraint.

2) Analytic approach:

[9] has developed analytically some solutions that cancel
the harmonics by summing square signals with unitary am-
plitudes. The values of phase shifts are therefore analytically
known and represent a reasonable fraction of the period of the
main signal to generate.

The analytic solutions, written as vectors, are :

{
ϕp =

[
ϕp−1 +

π
2(2p+1) ϕp−1 − π

2(2p+1)

]
where ϕ0 = []

A =
[
1 1 . . . 1

]
(9)

p is the number of odd harmonics cancelled. For example
to cancel harmonic 3 and 5{
ϕ2 =

[
π/6 + π/10 −π/6 + π/10 π/6− π/10 −π/6− π/10

]
A =

[
1 1 1 1

]
(10)

This method permits to have phase shifts that represent
an integer division of the period of the signal generated. This
permits a much simpler implementation as it is very difficult
to generate arbitrary phase shifts like it is requested in chapter
III.B.1). However the number of square signals that have to be
summed grows exponentially with the number of harmonics to
cancel.

C. Adjustable amplitudes and adjustable phase-shifts of
square-waves

Releasing the constraints on amplitudes and phase shifts
doesn’t seem to enable the cancellation of more harmonics.
Without an analytic theory it is impossible to conclude with
certainty on this fact. However, we have sought to minimize the
next harmonic with the minimization of THDNhar method in
simulation and have not found any improvement. Moreover,
an intuitive analysis of the number of parameters and the
number of harmonics to cancel leads us to think there is no
improvement possible. Indeed, taking five signals M = 5
as example, since amplitudes and phase shifts are relative to
other square waves added, the parameters permitted are the
amplitude ratio and the phase shift of 4 signals, adding up
to 8 parameters. Since the waveform is even, the parameters
are symmetric two by two, leading to only 4 parameters
adjustable. The adjustable amplitudes method already permits
to cancel the first 4 odd harmonics : 3, 5, 7 and 9. This does
not provide any more degrees of freedom for parameters to
cancel another harmonic. The default phase shifts used in the
adjustable amplitude method seem already optimum.

We conclude that in fact adding adjustable phase shifts
to the adjustable amplitude method does not provide any
improvement in the number of harmonics cancelled.
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D. Conclusion

As mentioned in section II-A one of the parameters to vary
is M , the number of square-wave signals to generate. M can
then be linked to the number of harmonics to cancel. The
number of square-wave generators to design will be thus linked
to the specification of the targeted application.

Fig. 8. Comparison of harmonic cancellation techniques

Figure 8 shows the performances of the various solutions
to cancel harmonics. Each one has pros and cons.

The fixed amplitudes with minimization technique has the
benefit of having equal amplitudes of square-wave signals but
the phase shift are not known with precision because they are
not determined analytically.

Fixing amplitudes and determining analytically the phase
shifts as described in [9] offers a reasonable division of the
main period. This allows a suitable implementation of the
clock generation. Theoretically, this technique only cancels
harmonics in a logarithmic fashion with the number of signals
but still stays as efficient as the minimization technique for 8
or less signals.

Among these techniques, the technique using real co-
efficients as ratios of amplitudes for the summed square-
wave allows to cancel the most harmonics. Moreover, the
phase shifts generated are the largest and thus the easiest to
implement. However, since the ratios are irrational numbers
this technique is hard to implement for matching purposes.

IV. IMPLEMENTATION

We seek to benefit from the technique that cancels the most
harmonics (i.e. Fixed phase shifts described in section III.A.)
without matching issues.

The generation of square-wave forms with ratio amplitudes
can be implemented through resistor voltage divider or current
mirrors.

In order to facilitate the matching of the devices (resistors
or transistors) in the implementation, it is required that the
ratios between the amplitudes of the signals to be added

are integer fractions. As illustrated in Figure 13, introducing
approximated ratios leads to harmonic distortions. Figure 9 has
been computed in the particular case as an example of:

{
ϕm = π

6 ,
π
3

Am = 1
2 ,

√
(3)

2

(11)

approximated to

{
ϕm = π

6 ,
π
3

Am = 1
2 , round(

√
(3)

2 d) 1d
(12)

We thus seek the integer fraction that introduces the lowest
error. We observe in Figure 9 that it is not necessarily the
integer fraction with the largest denominator that introduces
the lowest distortion.

Fig. 9. Harmonic distortion of a sine-wave generated using square-wave
signals with approximated amplitudes with fraction with denominator d

A better approach to approximate a real number with a
rational number is through continued fractions of the form
described in Equation 13. Indeed, if we take the continued
fraction expansion of an irrational number α and cut it off
after n iterations, this resulting rational number is known as the
nth convergent of α. From The Law of Best Approximates, a
theorem by Lagrange (Theorem 5.9 in [10]), these convergents
are precisely the best approximates of an irrational number.
Theses values are reported as red dots in Figure 9.

a = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

(13)

One can compute analytically the harmonic distortions gen-
erated with the signal composed of square-waves of amplitudes
with the approximation up to n iterations on the continued
fractions.
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Amn = am0 +
1

am1 +
1

am2 + ... +
1

amn

(14)

The more iterations we proceed on the continued fraction,
the more precise it becomes as illustrated in Figure 10 .

Fig. 10. Spurious Dynamic Range (SFDR) of a sine-wave generated using
square-wave signals with approximated amplitudes with iteration on continued
fraction

We can plot the THD in Figure 11 and SFDR in Figure 12,
where NHar = 11 in equation 7, and SFDR up to a given
harmonic in function of the number of signals used and the
number of iterations on the continued fraction. We can see
that, although the SFDR is linear with the number of iterations
on continued fraction (as shown in Figure 10), for any given
number of signals it varies from one number of square signals
to another.

Fig. 11. Total harmonic distortion (THD) up to harmonic 11 of a sine-wave
generated using square-wave signals with approximated amplitudes with n
iterations on continued fractions

Fig. 12. Spurious Dynamic Range (SFDR) of a sine-wave generated
using square-wave signals with approximated amplitudes with n iterations on
continued fractions

However, the number of iterations on continued fraction
does not necessarily represent the complexity of the current
mirror, or resistance bridge, that have to be implemented.
Indeed, the number of devices needed would rather be pro-
portional to the sum of the denominator and the numerator. It
is thus up to the designer to consider a solution with less square
signals to sum but lots of devices as suggested in this paper or
a solution with more signals to sum but a less complex design
on each of these and a faster clock generation as suggested in
[9].
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V. ROBUSTNESS STUDY

Even if robustness is implicitly high because of the digital-
based approach of the proposed methods, the impact of errors
on the linearity for the generation were studied using adjustable
amplitudes of square-wave signals. For this purpose, an exam-
ple was used with amplitudes defined as follows :

{
ϕm = π

6 ,
π
3

Am = 1
2 ,

√
(3)

2

(15)

approximated to
{
ϕm = π

6 ,
π
3

Am = 1
2 ,

13
15

(16)

In order to approximate
√
3
2 , we use the algorithm presented

in the previous section, with continued fraction expansion up
to the 3rd iteration, as it is a good compromise between
precision and design complexity. Possible variations are phase-
shift error, jitter and gain error on amplitude. Jitter is a random
value normally distributed added to the time variable in the
simulation.

Figure 13 presents the spectrum of the sine-wave generated
with p = 2, this is five square signals summed up : M = 5.
This sine-wave signal is affected by jitter and/or gain error of
the amplitude of the square-wave signals. We observe that the
error on the amplitude of the square-wave induces an amplitude
increase of the harmonics initially cancelled. The jitter induces
an increase of the noise level. The study in [11] presents
a sinusoidal signal synthesizer architecture based on a fixed
phase shifts with a similar approach. A robustness study has
also been conducted by sweeping the amplitude and phase
errors using transistor level monte-carlo simulation data. It
is interesting to note that the HD3 transistor-level simulation
results are similar to the harmonic distortion results of our
analytic model.

Fig. 13. Spectrum of a sine-wave signal affected by amplitude error and/or
jitter on the square-wave signals for sine-wave signal generated using square-
wave signals with various amplitudes five signals M = 5

Figure 14 presents the computation of the harmonic distor-
tion for various values of jitter. The jitter has also an impact
that is significant on the harmonic distortion ratio. When the
jitter is large, the noise floor created dominates the distortions
due the amplitude deviation.

Fig. 14. Harmonic distortion ratio of a sine-wave generated using square-
wave signals with various amplitudes deviations and affected by various level
of jitter

According to the analytic study and simulation results we
propose some features for an efficient implementation. Using
five sine-wave signals, we can cancel harmonics below the
eleven order. To generate 10 MHz sine-wave signal, a 120
MHz clock frequency is needed. The architecture with fixed
phase shift and variable amplitudes is optimally demanding for
its digital clock as it is a multiple of the generated frequency.
In order to have harmonic distortions at a maximum of -50 dB,
jitter should be below 0.1 ns and the amplitude error should
be limited to 1%. This approach can be used in any other
combination of frequency, amplitudes and precision needed.

VI. CONCLUSION

This work is in the field of generating sine-wave signals
by summing square-wave signals in order to cancel low-order
harmonics. The effectiveness of the harmonic cancellation is
related to the characteristics of the square-wave signals. Two
approaches are generally implemented. The first approach con-
sists in setting the phase shifts according to the implementation
technique and setting various amplitude values of the square-
wave signals. The second approach is the inverse. It consists in
setting the different amplitudes at the same value and setting
various phase shifts of the square-wave signals. We have
analytically proven that for a given number of square-wave
generators, the first approach allows to cancel a higher number
of harmonics. In addition, considering targeted specifications,
we have proven by simulation that the first approach is less
constraining in terms of clock generation. We have also offered
a solution to the matching issue due to the irrational nature
of the ratios. Thanks to a continued fraction development
of the ratios computed analytically, a satisfying sine-wave
approximation can be generated.
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