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Abstract

Architecture constraints are components of design documentation. They enable

designers to enforce rules that architecture descriptions should respect. Many

systems make it possible to associate constraints to models at design stage

but very few enable their association to code at implementation stage. When

possible, this is done manually, which is a tedious, error prone and time con-

suming task. Therefore, we propose in this work a process to automatically

generate executable constraints associated to programs’ code from model-based

constraints. First, the process translates the constraints specified at design-time

into constraint-components described with an ADL, called CLACS. Then, it cre-

ates constraint-services which can be registered and later invoked to check their

embedded constraints on component- and service-based applications. We chose

to target components and services in order to make architecture constraints

reusable, searchable in registries, customizable and checkable at the implementa-

tion stage. The generated constraint-services use the standard reflective (meta)

layer provided by the programming language to introspect elements of the ar-

chitecture. We experimented our work on a set of 15 architecture constraints

and on a real-world system in order to evaluate the effectiveness of the process.
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1. Introduction: Context and Problem Statement

Software architectures play an important role in the software development

process. They are specified or reconstructed and maintained throughout the life

cycle in order to make persistent user requirements and to ease development.

Documenting architectures provides a preliminary comprehensive view of the

software structure and behavior of the software. This documentation may in-

clude various kinds of constraints, such as: i) functional constraints, which are

predicates on the states of the running components constituting the architec-

ture, and ii) architecture constraints, which are specifications of invariants on

the structure of these components.

For example, if we consider a UML model (an architecture description) con-

taining a class Employee (a component in that architecture) which defines an

integer attribute age, a functional constraint representing an invariant in this

class could impose that the values of this attribute be included in the range

[16-70] for all instances. Such a constraint is said to be dynamic, it can only be

verified at runtime. Architecture constraints deal with architecture descriptions

and not with component states. As an example, a constraint representing the

layered architecture style [1], states that “components in non-adjacent layers

must not be directly connected together”.

Both kinds of constraints can be specified using standard languages, like OCL

(Object Constraint Language), which is an OMG’s (Object Management Group)

standard 1. In this case, functional constraints can be written as predicates that

navigate at the model level (M1) in the OMG’s modeling stack2. Architecture

constraints navigate however at the metamodel level (M2).

Many existing works [2, 3, 4] propose solutions to express at design time

constraints representing architectural patterns. But unfortunately, these con-

straints are generally ignored at the implementation stage. They are statically

checked on design artifacts (models). The question of translating architecture

1OCL specification: http://www.omg.org/spec/OCL/2.4/
2MDA (Model-Driven Architecture) Website: http://www.omg.org/mda/
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constraints to become checkable at runtime is globally open. Architecture con-

straints should be associated with the architectures’ representation available in

programs codes and at runtime. Any modification of an architecture on the

code or at runtime entails that the constraints should be checked again.

Furthermore, in a previous work [5], we have demonstrated that certain

quality attributes may be weakened due to architecture constraint violation

during software evolution. In other works [6, 7], the authors exemplify how

structural constraints or design rules are violated in source code level. They

also detail the consequent effects of these violations like technical dept, quality

attribute losing, etc. It is thus important to be able to check them at that

(implementation) level of the software’s life-cycle.

Manually writing all the constraints defined at design time into executable

programs is a tedious and error prone task. Besides, implementing a new in-

terpreter for the architecture constraint language (like OCL), making it able to

analyze (source code) programs, is obviously not a natural solution since it is a

time-consuming task. In addition, this solution would require programmers to

learn another language (the one used to specify constraints in the design phase)

to specify new architecture constraints, in the implementation phase. For these

reasons, we propose in this paper a process to automatically generate executable

programs from architecture constraint specifications.

Instead of generating monolithic blocks of code that do not offer any reuse or

customization possibilities, the proposed process transforms architecture con-

straint specifications, before code generation, into more structured assets in

order to facilitate their reuse. Our process decomposes therefore architecture

constraints into entities embedded in a special kind of software components.

These components can be reused, assembled, composed into higher-level ones

and customized using standard component-based techniques. These “constraint-

components” are defined using an ADL (Architecture Description Language),

called CLACS that we have developed in the past [8]. This ADL allows specify-

ing the constraints in this new kind of components in order to reinforce reuse and

composition. After that, the process translates automatically these components
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into “executable programs” at the implementation stage. These programs take

the form of components defined using the OSGi framework3. The generated

“bundles” (components) provide services, “constraint-services”, that can be in-

voked to check architecture constraints. In this way, architecture constraints

become not only reusable, but also searchable in a service registry. Constraint-

services publish operations that are able to check architecture constraints. These

operations are implemented using the reflective (introspection) mechanism pro-

vided by the programming language (Java, in the current implementation) and

the OSGi runtime, in order to analyze architecture descriptions and to examine

the structure of “business” (functional) bundles at runtime. Architecture con-

straints can thus be checked after a dynamic reconfiguration of the architecture.

We used this reflective capabilities, in order to exploit a standard mechanism

provided by the programming language and the framework runtime, without

having to use external libraries or tools.

An alternative solution to our method can be designed without transforming

constraints: models of the analyzed application should be recovered or recon-

structed and an OCL compiler is simply used to check architecture constraints.

There are many drawbacks to this solution. First, each time the constraints

should be checked, models have to be recovered, which is a costly task. Second,

these models have to be always compliant with what the OCL compiler requests

for the evaluation of constraints. Third, the OCL checking should be upgraded

with the challenging task of dynamically evaluating constraints on the running

system. At last, reuse and search of architecture constraints become difficult

without the additional support provided by the solution that we propose in this

paper.

This paper is an extension of a previous communication [9] at ECSA (the

European Conference on Software Architecture) 2015. In this paper, we have

particularly :

3OSGi Alliance Website: https://www.osgi.org/
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• added a new step to the process, for generating executable programs,

making thus possible the checking of architecture constraints on programs

and at runtime

• extended the process by generating constraint-services

• illustrated the process with other richer examples

• conducted a new experiment and made additional measurements

• applied our process in a real-world system and showed the usability of our

approach

• largely extended the related works

This paper is accompanied by appendices 4. In Section 2, we give an illus-

trative example of the inputs and the outputs of the proposed process. This will

serve as a running example throughout the paper. In Section 3, we expose our

approach in a nutshell. Sections 4 to 7 describe the steps of the approach in de-

tail. In Section 8, we present an evaluation of the approach. Before concluding

and presenting the future work, we discuss the related work in Section 9.

2. Illustrative Example

To better understand the context of this work, we introduce an example of

an architecture constraint (Listing 1) enabling to check the topological condi-

tions imposed by the “Service Bus Pattern”. The constraint is originally written

by an architect according to her/his architecture description. The architecture

imposes the existence of three kinds of components: the customers (cust1, cust2,

cust3), the producers (prod1, prod2, prod3) and the bus. This later is defined as

an adapter that establishes the communication between customers and produc-

ers which may have mismatching interfaces. The architecture constraint which

specifies the conditions imposed by this pattern is expressed in OCL using the

UML metamodel (Figure 1) in Listing 1.

4These appendices are available here https://seafile.lirmm.fr/f/2faaa66069/
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Figure 1: An Excerpt from the UML metamodel

The UML metamodel in which the constraint navigates is depicted in Fig-

ure 1. In UML, a component is a specialization of a class. It inherits all class

capabilities, it can own attributes (properties), declare operations, participate

in associations or inheritance relations, etc. In addition, it can have ports, with

required and provided interfaces, and can define connectors. For more details,

see the UML specification: http://www.omg.org/spec/UML/2.5/.

1 context Component inv :

2 l e t bus : Component

3 s e l f . r e a l i z a t i o n . r e a l i z i n g C l a s s i f i e r

4 −>s e l e c t ( c : C l a s s i f i e r | c . oclAsType (Component ) . name=’esbImpl ’ )

5 −>c o l l e c t ( oclAsType (Component ) )−>asOrderedSet ( )−> f i r s t ( ) in

6 l e t customers : Set (Component )

7 = s e l f . r e a l i z a t i o n . r e a l i z i n g C l a s s i f i e r

8 −>s e l e c t ( c : C l a s s i f i e r | c . oclAsType (Component ) . name=’ cust1 ’

9 or c . oclAsType (Component ) . name=’ cust2 ’

10 or c . oclAsType (Component ) . name=’ cust3 ’ )

11 −>c o l l e c t ( oclAsType (Component ) )−>asSet ( ) in

12 l e t producers : Set (Component )

13 = s e l f . r e a l i z a t i o n . r e a l i z i n g C l a s s i f i e r

14 −> s e l e c t ( c : C l a s s i f i e r | c . oclAsType (Component ) . name=’prod1 ’

15 or c . oclAsType (Component ) . name=’prod2 ’

16 or c . oclAsType (Component ) . name=’prod3 ’ )

17 −>c o l l e c t ( oclAsType (Component ) )−>asSet ( )

18 in

19 −− The bus should have at l e a s t one input port

20 −− and one output port
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21 bus . ownedPort−>e x i s t s (p1 , p2 : Port |

22 p1 . provided−>notEmpty ( ) and p2 . requ i red−>notEmpty ( ) )

23 and

24 −−Customers should have only output por t s

25 customers−>f o rA l l ( c : Component |

26 c . ownedPort−>f o rA l l ( requ i red−>notEmpty ( ) and provided−>isEmpty ( ) ) )

27 and

28 −−Customers should be connected to the bus only

29 customers−>f o rA l l (com : Component | com . ownedPort

30 −>f o rA l l (p : Port | p . end−>f o rA l l ( con : ConnectorEnd | bus . ownedPort

31 −>e x i s t s (pb : Port | con . ro l e−>i n c l ude s (pb) ) ) ) )

32 and

33 −−Producers should have only input por t s

34 producers−>f o rA l l ( c : Component |

35 c . ownedPort−>f o rA l l ( provided−>notEmpty ( ) and requ i red−>isEmpty ( ) ) )

36 and

37 −−Producers should be connected to the bus only

38 producers−>f o rA l l (com : Component | com . ownedPort

39 −>f o rA l l (p : Port | p . end−>f o rA l l ( con : ConnectorEnd | bus . ownedPort

40 −>e x i s t s (pb : Port | con . ro l e−>i n c l ude s (pb) ) ) ) )

Listing 1: Service Bus Pattern Constraint in OCL/UML

This constraint searches first for components representing the bus, the cus-

tomers and the producers (let expressions, in Lines 2 to 17 in Listing 1). This

search is performed by analyzing the architecture description of their encom-

passing component, which is the context of the constraint. This analysis is per-

formed by navigating in the metamodel of Figure 1 (by following the relations

between meta-classes, using the "." OCL operator for example). The topologi-

cal conditions of the pattern are presented as comments in Listing 1. The same

OCL navigation mechanism is used here to analyze the architecture description.

It is obvious that this is a simple variant of the Service Bus Pattern (where

customers and providers should be connected to the bus only, and not to other

components). We can choose other more complex (potentially more realistic)

variants to illustrate our work, but we used this example for simplicity reasons,

to focus more on our contributions.

The result of the transformation of this constraint using the proposed pro-

cess are two OSGi bundles. The first is a query-bundle. It provides services

7



generated from the let expressions. The second one is a constraint-bundle.

It provides services to check the 5 sub-constraints that compose the OCL con-

straint. Two of these services are presented in Listings 2 and 3:

1 pub l i c c l a s s Bus Iden t i f i c a t i on Imp l implements IBu s I d e n t i f i c a t i o n {

2 pub l i c Bundle getBus ( St r ing busName){

3 Bundle [ ] bundles=Act ivator . bc . getBundles ( ) ;

4 for ( Bundle aBundle : bundles ){

5 i f ( aBundle . getSymbolicName ( ) . equa l s (busName) )

6 return aBundle ; }

7 return nu l l ; }

8 }

Listing 2: A sample of OSGi code generated for the Service Bus Pattern Constraint (query-

bundle)

1 pub l i c c l a s s BusStructureImpl implements IBusStructure {

2 pr i va t e IBu s I d e n t i f i c a t i o n bi ;

3 pub l i c boolean i sBusSt ruc ture ( S t r ing busName){

4 Bundle b= bi . getBus (busName) ;

5 Se rv i c eRe f e r ence [ ] r e f s 1=b . g e tReg i s t e r edSe r v i c e s ( ) ;

6 Se rv i c eRe f e r ence [ ] r e f s 2=b . ge tSe rv i c e s InUse ( ) ;

7 i f ( r e f s 1 != nu l l && r e f s 2 != nu l l ) return true ;

8 return fa l se ;

9 }

10 pub l i c s e t S e r v i c e ( IBu s I d e n t i f i c a t i o n b){ bi=b ; }

11 }

Listing 3: A sample of OSGi code generated for the Service Bus Pattern Constraint

(constraint-bundle)

Listing 2 presents the implementation of a service provided, among oth-

ers, by the query-bundle component. This service implementation is defined

as a class which implements the interface IBusIdentification. The method

getBus (operation of the service and whose signature is part of the aforemen-

tioned interface) returns a Bundle object representing the bus (an OSGi reifi-

cation of the Bus component). In this code generation, we rely on the intro-

spection mechanism provided by the OSGi runtime by using getBunldes() and

getSymbolicName() to introspect the architecture of the business bundles, on

which the constraint is checked, and to select the Bundle whose name corre-

sponds to the value of busName parameter.
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Figure 2: The Generation Process

Listing 3 shows an example of a service provided, among others, by

the constraint-bundle component. This service provides an operation

(isBusStructure) which checks if the bus has input and output ports. It uses

getServiceInUse() and getRegisteredServices() methods from the OSGi

runtime to analyze the architecture of the bus component. The Bundle ob-

ject representing the bus component is obtained using the getBus operation

invoked on an object, of type IBusIdentification, whose reference (assigned

to bi field) is injected (via the setService method) by the declarative services

mechanism of the OSGi runtime.

In the following section, we describe the process that we propose for gener-

ating these OSGi bundles from OCL architecture constraints.

3. The Process in a Nutshell

Figure 2 depicts the main steps of this generation process. The input of the

process is an architecture constraint specified with standard languages: OCL

and UML (the constraint is written with OCL, and navigates in the UML meta-

model to analyze architecture descriptions defined with UML components). In

the first step, we transform the input constraint into another constraint which

navigates in the CLACS metamodel. This transformation is needed to make the
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constraint checkable at design-time. In the second step, the constraint is decom-

posed from a textual “gross” specification 5 (see Listing 1) into sub-constraints

in order to make them parameterized and reusable. The third step consists in

changing the format of these sub-constraints into an architecture description

made of “constraint-components”. In the fourth step the constraints embedded

in CLACS components are transformed into constraints specified on the OSGi

metamodel. This transformation facilitates code generation. Finally, we obtain

a service-based executable architecture description made of OSGi components.

All these steps are detailed in Sections 4 to 7.

We did not perform a direct translation from OCL/UML to OSGi since

this translation includes several transformations at the same time: changing

the syntax of constraints, decomposing them, shifting to a new metamodel,

introducing a structure around the constraints, among others.

In our approach, we use two main languages: CLACS, an architecture de-

scription language, and Java together with its component-oriented program-

ming framework, OSGi. In the literature, there are many languages enabling

the specification of architecture constraints (see [10] for a survey). Each one has

its advantages and its particular application context. However, CLACS is the

only language that provides a component model for software architecture con-

straint specification. The architecture constraints modeled with this language

are constraint-components in which the checked invariants are still specified us-

ing OCL and navigate in CLACS metamodel. The choice of UML is motivated

by the fact that it is an industrial standard 6, and that OCL is its original

constraint language. We consider here a repository of architecture constraints

that can be fed by the software architecture community, by using these general

modeling languages (easy to learn, as was experimented in [12]), which are UML

5By “gross” specification, we mean a specification that does not offer enough structure,

reusability and parameterization.
6Even if a recent empirical study [11] found out that UML is not fully (but selectively)

used by developers in industry, and that it is used informally, there is a general agreement

that UML is the de facto standard modeling language known by a large number of developers.
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and OCL.

OCL (we used version 2.4) has a simple and intuitive concrete syntax which

enables to write expressions using first order logic, and set operations. Even

if the transformations presented in this paper apply on OCL, the proposed

work can be generalized to any equivalent predicate logic language. This is

not demonstrated experimentally in our work, but as the reader can notice, the

syntactic tokens handled in our transformations are general to predicate logic.

The choice of OSGi is motivated by the fact that it provides a concrete

component-oriented programming framework with a support for service-oriented

architectures. It includes a service registry and a simple way of publishing and

consuming services, with the declarative services mechanism. It is nowadays

a specification adopted by a large number of industrials, and there are many

implementations of this specification which are widely used in practice.

4. Metamodel Migration

The first step in our process consists in transforming constraints written

in OCL/UML into OCL/CLACS. This is performed using a set of declarative

mappings that we have specified between the two metamodels (UML – Figure 1

and CLACS – Figure 3). This mapping is shown in Appendix A.1. A CLACS

component is an instance of a component descriptor (a dichotomy like in object-

oriented development, where an object is an instance of a class). A component

declares ports, which are characterized by a direction and a visibility. Each

port has an interface which specifies a set of service signatures. Ports are linked

via connectors. A connector receives service invocations through its source port

and transmits them through its target port.

OCL transformation is based on the Abstract Syntax Tree (AST) generated

from the initial constraint. The transformation of the OCL constraint (meta-

model migration) is automatically performed with an ad-hoc manner. This

means that we “programmatically” analyze the OCL’s AST in depth and for

each matched node (the meta-class to map) we transform the corresponding
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Figure 3: CLACS metamodel

part of constraint into the appropriate part based on the predefined mapping

between the two meta-models. We start with the navigation patterns, then the

roles and finally the meta-classes. We modify step-by-step the AST and then

we generate from it the new constraint that navigates in the target metamodel.

After each modification, we evaluate the constraint with an OCL compiler that

validates it according to the two metamodels (UML and CLACS).

We have used XML to implement the mappings, and we have written a pro-

gram for implementing the transformation instead of using an existing model

transformation language like Kermeta 7 or ATL [13]. In fact, architecture con-

straints are not models. We might have generated models from constraints,

but this process is complex to implement. It requires to transform the text of

the constraint in models, to use a transformation language to transform these

models and then generate again the text of the new constraint from the newly

generated model. We opted for a simple solution that consists in exploiting an

OCL compiler.

After applying the mappings, the resulting constraint of our example is pre-

7www.kermeta.org
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sented in Listing 4:

1 context ComponentDescriptor inv :

2 l e t bus : ComponentInstance

3 = context . internalComponent

4 −>s e l e c t ( c : ComponentInstance |

5 and c . oclAsType ( ComponentInstance ) . name=’esbImpl ’ )

6 −>c o l l e c t ( oclAsType ( ComponentInstance ) )−>asOrderedSet ( )−> f i r s t ( ) in

7 l e t customers : Set ( ComponentInstance )

8 = context . internalComponent

9 −>s e l e c t ( c : ComponentInstance |

10 and c . oclAsType ( ComponentInstance ) . name=’ cust1 ’

11 or . . . )−>c o l l e c t ( oclAsType ( ComponentInstance ) )−>asSet ( ) in

12 l e t producers : Set ( ComponentInstance )

13 . . . .

14 in

15 −− The bus should have at l e a s t one input port and one output port

16 bus . port−>e x i s t s (p1 , p2 : Port |

17 p1 . d i r e c t i o n=Di r e c t i on : : provided and

18 p2 . d i r e c t i o n=Di r e c t i on : : r equ i r ed )

19 and

20 −−Customers should have only output por t s

21 customers−>f o rA l l ( c i : ComponentInstance |

22 c i . port−>f o rA l l (p : Port | p . d i r e c t i o n=Di r e c t i on : : r equ i r ed

23 and not (p . d i r e c t i o n=Di r e c t i on : : provided ) ) )

24 and

25 −−Customers should be connected to the bus only

26 customers . port . inConnector−>union ( outConnector )

27 . toPort−>union ( fromPort ) . ins tance−>asSet ( )=Set{bus}

28 and

29 . . . . .

Listing 4: Service Bus Pattern Constraint in OCL/CLACS

5. Constraint Transformation

At this level, our process is composed of three steps. The first step consists

in extracting variable declarations from the constraint. The second one consists

in decomposing the invariant of the constraint into sub-constraints. In the third

step, these sub-constraints are specified as parameterized OCL definitions.

13



5.1. Variable declaration extraction

In our process we extract let expressions from our textual constraint specifi-

cation and define them as definitions (constraints stereotyped with def). In our

case, these OCL definition constraints return a value whose type is different

from Boolean. At the same time, we modify the textual constraint, i.e, the

constraint undergoes changes to call these generated OCL definitions in the

appropriate places. An excerpt of the result of the transformation is presented

in Listing 5:

1 context ComponentDescriptor

2 −− l e t e xp r e s s i on s ex t r a c t i on

3 def : getBus ( ) : ComponentInstance = context . internalComponent

4 −>s e l e c t ( c : ComponentInstance | c . oclAsType ( ComponentInstance )

5 . name=’esbImpl ’ )−>c o l l e c t ( oclAsType ( ComponentInstance ) )

6 −>asOrderedSet ( )−> f i r s t ( )

7 def : getCustomers ( ) : Set ( ComponentInstance ) =

8 context . internalComponent−>s e l e c t ( c : ComponentInstance |

9 c . oclAsType ( ComponentInstance ) . name=’ cust1 ’

10 or c . oclAsType ( ComponentInstance ) . name=’ cust2 ’

11 or c . oclAsType ( ComponentInstance ) . name=’ cust3 ’ )

12 −>c o l l e c t ( oclAsType ( ComponentInstance ) )−>asSet ( )

13 def : getProducers ( ) : . . .

14 inv :

15 . . .

Listing 5: Constraint after extracting let expressions

5.2. Decomposition and Refactoring

In this step, we first extract the sub-constraints as OCL definitions and

then we identify potential parameters for them to obtain at the end an invariant

which uses these definitions. These definitions are parametrizable and will

be registered in a repository to be used by other constraints. This step uses as

input the abstract syntax tree of the initial constraint.

We decompose automatically the obtained constraint into a set of sub-

constraints. This decomposition is primarily based on logical operators used

at the top level. Operands of these operators are considered here as sub-

constraints. This set of sub-constraints is refined recursively into a tree of sub-
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constraints if these sub-constraints can be decomposed again. The recursive pro-

cess will stop when no logical operator is found in the sub-constraint. All these

sub-constraints are represented as OCL definition constraints. The refactor-

ing of the constraint is performed every time we generate a new definition.

At this level, we obtain a bag (multi-set) of OCL definition constraints that

return a Boolean value. Listing 6 represents an excerpt of our constraint during

the decomposition stage.

1 context ComponentDescriptor

2 def : getBus ( ) : . . .

3 . . .

4 def : de f1 (p : Port ) :Boolean= p . d i r e c t i o n=Di r e c t i on : : provided

5 def : de f2 (p : Port ) :Boolean= p . d i r e c t i o n=Di r e c t i on : : r equ i r ed

6 def : part1 ( ) : Boolean = getBus ( ) . ownedPort

7 −>i n c l ude s (p1 , p2 : Port | def1 ( p1 ) and def2 ( p2 ) )

8 def : de f3 (p : Port ) :Boolean= p . d i r e c t i o n=Di r e c t i on : : provided

9 def : de f4 (p : Port ) :Boolean=not (p . d i r e c t i o n=Di r e c t i on : : r equ i r ed )

10 def : part2 ( ) : getCustomers ( )−>f o rA l l ( c i : ComponentInstance |

11 c i . port−>f o rA l l (p : Port | def3 (p) and def4 (p) ) )

12 def : part3 ( ) : . . .

13 . . . .

14 inv :

15 part1 ( ) and part2 ( ) and part3 ( ) and part4 ( ) and part5 ( )

Listing 6: Service Bus Pattern constraint during the decomposition stage

In Listing 6, the constraint is composed of five “main” OCL sub-constraints

(part1(), part2(), part3(), part4() and part5()). These sub-constraints can be

decomposed again into other sub-constraints with this recursive process 8. For

instance getCustomers()( see Listing 5) contains the operator or, so it will be

decomposed again. All these sub-constraints are defined as OCL definitions

presented before the inv: stereotype (Line 14). We can observe that there

are some OCL definitions that have parameters. The reason to declare these

parameters at this stage (of decomposition) is to have the possibility to define all

the generated OCL definitions with the same context as that of the constraint

(Line 1).

8In Listing 6, the decomposition is stopped in part3().
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After the constraint decomposition, we obtain a bag of OCL definitions. We

remove then all redundant definitions and we update the constraint. For

instance, in Listing 6 def1() and def3() are syntactically identical.

5.3. Constraint Parameterization

When creating the signature of the operation that wraps a constraint, we

add a parameter in this signature everywhere we find a literal value of a given

data type. The type of these parameters is obtained from the abstract syntax

tree of the constraint. For instance, we obtain the following getBus() definition:

1 context ComponentDescriptor

2 def : getBus (name : St r ing ) : ComponentInstance =

3 context . internalComponent−>s e l e c t ( c : ComponentInstance |

4 c . oclAsType ( ComponentInstance ) . name=name)

5 −>c o l l e c t ( oclAsType ( ComponentInstance ) )−>asOrderedSet ( )−> f i r s t ( )

Listing 7: Parameterized OCL definition constraint

In this stage, we need to measure the similarity between the OCL definitions.

This measure enables us to optimize the process, i,e. remove some redundant

OCL definitions (obtained in the parameterization stage). An example is

presented in Appendix B.1.

Concerning how we measured the similarity between OCL definitions, we

implemented a simple solution which consists in analyzing the abstract syntax

trees of definitions body. Each pair of trees is compared. These should share

a common root and a minimal sub-tree (obtained in a breadth-first traversal).

This ensures, to some extent, that constraints define predicates on the same

kind of architectural elements, which are obtained through navigations in the

OCL definition (reflected by these sub-trees). For the sub-tree, an edit dis-

tance [14] is measured between each pair of sub-trees. If this measure is less

than a threshold9, we consider that the two definitions are similar.

At the end of this step, our invariant is completely decomposed in OCL

definition constraints that can be reused to create other invariants (a first

9The value of this threshold is fixed empirically.
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step towards reuse).

6. Generation of CLACS components

After constraint transformation, we generate our CLACS architecture de-

scription that corresponds to the initial constraint. We generate the component

operations that wrap the extracted OCL definitions and then we create the

component descriptors and their connected instances.

6.1. Operation grouping

First, we describe the transformation of OCL definitions generated in the

first step into CLACS components. Each CLACS query-component descriptor

will embed an OCL definition which returns a value whose type is differ-

ent from Boolean and each CLACS constraint-component will embed an OCL

definition which returns a Boolean value. In addition, among the generated

OCL definitions, each one that corresponds to a let in the constraint will

be embedded in a query-component descriptor and the others will be embed-

ded in a constraint-component. In this case, we can obtain a large number of

components. Therefore, we put together OCL definitions that check simi-

lar “aspects” in the same component descriptors. By checking similar aspects,

we mean checking the connection, testing the kind, or some other property of

a given architectural element (a port or a connector for example). For that,

we use the same technique of similarity measurement than previously. For ex-

ample, the OCL definitions part2() and part4() check the same aspect

which is the kind of an architectural element (a Port). The two trees of these

two sub-constraints have a common root which is a componentInstance and

a common sub-tree generated from the expression .port->forAll(p:Port| ).

For the remaining sub-trees generated from the remaining expressions of the

two sub-constraints, we can observe that there is a similarity between them

(only two edit operations (node substitutions): required and provided tokens

are inverted). So these are grouped as two operations in the same component

descriptor.
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6.2. CLACS architecture description generation

Starting from the tree obtained in the first step, a component-based archi-

tecture description in CLACS is generated. This architecture description con-

tains all the necessary constraint-components and query-components (instances)

connected together. These components embed the refactored 10 architecture

constraints that navigate henceforth in CLACS metamodel. These generated

components will be instantiated and then connected to the business components

in order to be checked.

Figure 4: Sample of CLACS architecture description generation

Figure 4 shows the CLACS architecture description generated from Service

Bus Pattern constraint. The query-components BusIdentification and

ParticipantsIdentification encompass the let expressions. Besides, there

are two constraint-components on the right of the figure. These components

represent the OCL definitions that are extracted from our initial constraint

and then parameterized. These definitions are called throughout the con-

straint and will potentially serve other constraints.

There are in total five sub-constraints in the architecture constraint. Each

10A constraint is refactored when the different steps described above have been applied on

it.
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one is supposed to be defined basically in a separate component descriptor. But

in this example, sub-constraints 2 and 4 (part 2() and part4() in Listing 6) can be

grouped in the same component descriptor (ParticipantsPortConstraint) be-

cause they check similar “aspects”(Port kind). ParticipantsPortConstraint

descriptor provides two operations which enable the checking of these two sub-

constraints. On the other side, sub-constraints 3 and 5 check exactly the same

invariant, except that they apply on different sets of components. Thus, there is

a single component descriptor (ConnectToBusConstraint) which is generated

for these two sub-constraints. This constraint-component provides a single oper-

ation which is parameterized with the set of components on which the constraint

should be checked. (See Appendix B.2 for constraints’ bodies)

Through this “componentization”, constraint and query components can be

reusable (instantiated many times in different contexts), composable (instances

of them can be connected together or connected within a composite compo-

nent to build complex constraint-components), parameterizable and checkable

at design time.

To make these constraints checkable at the implementation stage, we trans-

late them into constraint-services. Section 7 presents how we generate auto-

matically services provided by OSGi bundles from CLACS constraint and query

components.

7. Generation of Constraint-services

We translate the result of the previous step into a set of services published

in an OSGi registry. The business bundles (that constitute the components on

which the constraint is checked) can lookup for these services in order to verify

the constraint after customizing it (i.e. passing the appropriate arguments). At

this level, we have a multi-step micro-process to build constraint-services.

7.1. Generation of Constraint-service Structure

In this step, we generate the configuration of the bundles which correspond to

the constraint-service structure. Indeed, we prepare all the necessary elements
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for the implementation of a bundle (packages, Java interfaces and classes, bundle

configuration (XML and Manifest) documents, among other elements). Figure 5

shows the outputs of this step.

Figure 5: Structure Generation

Two packages are generated in the constraint-bundle . The package “con-

straint bundle.service” which contains all the generated interfaces provided by

all the constraint-components (Input). The parent package contains the imple-

mentation of these interfaces, which is hidden (not exported) to the other com-

ponents. The constraint-bundle requires the interfaces of the query-bundle.

In addition, configuration files are generated for each bundle. The Manifest file

includes the imported and the exported packages (on the bottom right of the

Figure) and the file constraint.xml (top right) as a component definition in the

OSGi’s Declarative Services mechanism. In this definition we specify the

provided and required interfaces.

We have used a parser to implement this structure generation. All the needed

information is extracted from the obtained CLACS architecture description as

an XMI document. We parse this document and we generate automatically the
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necessary configuration documents that compose the structure of our bundles.

After the structural translation, we generate Java code from the component

operations that wrap the constraints.

7.2. Generation of Constraint-service Implementation

As done previously, we begin by translate the constraints from the CLACS

metamodel into the OSGi one. Then, we generate the corresponding code.

7.2.1. Metamodel Migration

In order to make a smooth transition towards OSGi, OCL definitions ob-

tained from the previous steps are first transformed into constraints that navi-

gate in the OSGi metamodel. This metamodel is shown in Figure 6.

Figure 6: OSGi metamodel

A bundle is the main element in the OSGi metamodel. It represents a com-

ponent in an OSGi application. One bundle can publish a set of services (its

registered services). A bundle which requires services holds ServiceReference

objects of its services in use (the two roles between Bundle and ServiceReference
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metaclasses in Figure 6). Using a BundleContext, one can obtain all the run-

ning bundles and can also register a service and get a reference to an existing

one. A service is an object, which is instantiated from an existing class which is

hidden (whose package is not exported) in the bundle. It can be identified using

a registrationKey, which is the (fully qualified) name of the main interface im-

plemented by the class of the object. Besides, each bundle has a configuration,

in which are declared a set of (imported and exported) packages that contain

Java interfaces and classes.

We have implemented this translation using the same process as explained

in Section 4 (UML to CLACS migration) and we have defined mappings be-

tween the two metamodel elements. Appendix A.2 details this mapping and an

example is shown in Appendix B.3.

7.2.2. Code generation

For constraint-service code generation, we have implemented an auto-

matic process which relies on String Templates 11. The generated code makes

invocations to introspection methods offered by the OSGi runtime. We used

String Templates because of their flexibility (easy evolution), simplicity and the

existence of a good tool support.

Figure 7 presents the mechanism used for the generation of the constraint

services’ code.

The starting point to generate the code is the Abstract Syntax Tree (AST)

of the OCL definitions (which navigate in the OSGi metamodel).

The CodeGenerator is the central element in this mechanism. Environment

and CodeStacker are simple elements, which are used to save information (re-

spectively, variables and filled templates). The CodeGenerator reacts only to

the node that it must process. For every type of node (ex. ArrowrightIter-

atorPostfixExp, FormalParameter, DotPropertyCallPostfixExp, etc.) we have

defined a common default processing. There is a small set of nodes (compara-

11http://www.stringtemplate.org/
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Figure 7: Code Generation Process

tively to the large set of OCL node types) for which we have defined a different

processing. These are the leaves in the AST.

The CodeGenerator reads the type of the node from the AST. According to

its type, it obtains the template associated to this node. It saves it in a list in the

CodeStacker and receives its position. Then, it launches the same procedure

for its descendant nodes. This procedure is stopped when leaves are found.

After the generation of its descendants, it can use every template positioned

after it in the CodeStacker. The templates obtained are used to fill its own

template. In the fulfillment of the template, it uses the introspection methods

according to the AST node. After that it removes all the templates that it has

used. The CodeGenerator has also a map that contains for each used template

the associated result. This serves for the complex or the repetitive expressions.

When it fills each template, the CodeGenerator checks if it has an existing result

(a variable) for the template which it uses. If yes, it uses the existing variable, if

not, it creates one and uses it. An excerpt of the CodeGenerator implementation

when it processes the node whose type is InitializedVariable is detailed in

Appendix C.1. This mechanism is based on the DepthFirstAdapter pattern

proposed in the DresdenOCL parser. The OCL parser 2.0 and the graphical

user interface we have used are from Dresden OCL. The templates created have

been created using StringTemplate 4.0.8.

One of the limitations of our approach is the fact that it does not consider
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all OCL expressions such as OCLIsNew, OclAny, OclVoid and OclInvalid. From

the one hand, these operations are mainly used in OCL post conditions and not

in OCL invariants adopted by our approach. From the other hand, our approach

currently covers the mostly used OCL expressions in invariants. Besides, our

tool is flexible, in order to integrate a new OCL expression. We just need to

write a specific String Template and to implement a Java method that initializes

the String template.

Listing 8 shows an excerpt of the generated code for the implementation of

the service IBusStructure. The remaining of the code is illustrated in Ap-

pendix C.2. Note that this service has references to IBusIdentification

and IPortConstraint to invoke respectively getBus(), isProvided() and

isRequired() operations.

1 pub l i c c l a s s BusStrutureImpl implements IBusStructure {

2 // Reference to IBu s I d e n t i f i c a t i o n

3 IBu s I d e n t i f i c a t i o n i b i ;

4 // Reference to IPor tD i r e c t i on

5 IPo r tD i r e c t i on ipd ;

6 pub l i c void synchronized s e t S e r v i c e ( IBu s I d e n t i f i c a t i o n bi ){

7 i b i=bi ; }

8 pub l i c void synchronized b indServ i c e ( IPor tD i r e c t i on pd){

9 ipd=pd ; }

10 pub l i c boolean i sBusSt ruc ture ( S t r ing name){

11 Bundle bus=i b i . getBus (name) ;

12 boolean bool1=ipd . i sProv ided ( bus ) ;

13 boolean bool2=ipd . i sRequ i red ( bus ) ;

14 boolean bool3=bool1 && bool2 ;

15 return bool3 ; }

16 }

17 pub l i c c l a s s Bus Iden t i f i c a t i on Imp l implements IBu s I d e n t i f i c a t i o n {

18 pub l i c Bundle getBus ( St r ing name){

19 Bundle bus=nu l l ;

20 Bundle [ ] bndl = Act ivator . bc . getBundles ( ) ;

21 ArrayList<Bundle> bndls = new ArrayList<Bundle>() ;

22 for ( Bundle b : bndl ) {

23 boolean bool = b . getSymbolicName ( ) . equa l s (name) ;

24 i f ( bool ) bndls . add (b) ; }

25 Bundle [ ] bndls2 = new Bundle [ bndls . s i z e ( ) ] ;

26 i n t s e l e c t i t e r a t o r = 0 ;

27 for ( Bundle b : bndls ) {

28 bndls2 [ s e l e c t i t e r a t o r ] = b ;
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29 s e l e c t i t e r a t o r++; }

30 bus = bndls2 [ 0 ] ;

31 return bus ;

32 }

33 }

Listing 8: Example of a generated code

It is worth noting that this code is syntactically different from the optimal

code presented at the beginning of the paper (see Listings 2 and 3) but they are

semantically equivalent. It is obvious that the automatic translation does not

allow to obtain a code having an optimal complexity. However, it is a valuable

tool for developers who will rather focus on implementing the business logic of

their application.

7.3. Registering and Looking-up Constraint-Services

We have added a set of properties for each service to be published in the

registry. These properties contain all the OCL constraints that are embedded

in the CLACS component operations which correspond to this service. This

is done by generating a set of “property” tags in the component definition file.

Besides, when we generate the OSGi code associated to this CLACS component,

we annotate each operation, in each interface, with the corresponding OCL

constraint as a string value, in order to know what is the operation that should

be invoked by the business bundle.

To illustrate these modifications, we present an example of an architecture

description and the associated architecture constraints of the layered architec-

ture style [1]. An architecture constraint, among others, of this architecture style

is that, “components in non-adjacent layers should not be directly connected

together”.

We would like to check this architecture constraint, embedded in the constraint-

component, at the implementation stage of an OSGi component/service-based

application. Therefore, we follow the proposed process of constraint-service gen-

eration. But before generating code as described previously, our process checks
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if there is a service, registered in the service registry, which checks the same lay-

ered architecture constraint or a part of it. For that, it searches all the services

that are registered in the OSGi service registry. It looks for the properties of

these services and it compares the layered architecture constraint with the OCL

constraints that exist in the properties. If it finds one which is equivalent to the

constraint, then it is not necessary to generate the corresponding service. The

name of the interface of the service and the signature of the operation which

is annotated with the searched OCL constraint are retrieved. If not, then the

process follows the previous steps of constraint-service generation.

The layered architecture constraint above is the same as the one which is

embedded in the ConnectToBusConstraint component-constraint. In order

to lookup the registered service (generated from IConnectToBus interface),

the process adds automatically a reference tag in the Component Defini-

tion file in the constraint-bundle which corresponds to the layered architecture

pattern. This tag needs the name of the service interface (IConnectToBus)

and also two operation names to bind and unbind the service. The bind op-

eration has as a parameter IConnectToBus ictb. Then we are able to in-

voke ictb.areConnectToBus(...) in the implementation of the newly generated

constraint-bundle for the layered architecture pattern.

8. Process Evaluation

The experimentation presented in this paper complements the one we ex-

posed in our previous work [9]. In the latter experimentation, we evaluated the

reuse brought by the decomposition of constraints and their parameterization.

We focused on measuring reusability in the generated CLACS components, us-

ing a well-know metric [15].

In this paper, the experimentation’s goal is to answer the following research

question: What is the performance of the generation process and to what extent

the output of this process (the concept of “reusable, searchable and executable

constraint as a service”) is useful in a real-world scenario?
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We decompose this research question in two sub-questions:

• RQ1: What is the performance of our constraint-component and constraint-

service generation process, compared to a manual design and coding of

these artifacts?

• RQ2: How can we use our approach in a real-life scenario and what is the

overhead when applying it in such a scenario?

8.1. Comparison of manual constraint specification and automatic generation:

To answer RQ1, we need to compare the automatic process presented in

this paper with a “traditional” manual specification of constraints. For this

purpose, we invited some external users.

Data Collection. We invited 8 Ph.D students to collect our experimentation

data and to evaluate the process. All of these students work on software archi-

tecture in their thesis.

From the literature [2, 3, 4] a set of architecture patterns and styles has

been collected. Only those related to the structural aspect of the architecture

have been selected. 15 patterns including their variants have been identified. We

choose architecture patterns as data, because they are widely used as a means to

characterize an architecture, and are considered as a suitable way to document

a part of design decisions. For each pattern, the group of students involved in

the evaluation specified their architecture constraints 12 as the topological con-

ditions that an application’s design and implementation should respect. These

constraints have been specified on the UML metamodel.

We have also used in this experimentation a set of CLACS constraint-

components which have been manually designed in [16] by another Ph.D student,

who did not participate in this experimentation.

12These constraints are available in the following website: https://seafile.lirmm.fr/d/

2b7cf7c85c
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Table 1 shows the description of the experimentation data. The first column

presents the architecture patterns while the second column shows the size (in

terms of number of tokens in the AST) of the architecture constraints that

formalize them. We have chosen constraints with different sizes, ranging from

434 tokens for the smallest to 2511 for the largest one.

Table 1: Size of pattern architecture constraints

Pattern Size (# tokens in AST)

Service Bus 1423

Layered Architecture 503

Client-Server 507

Broker 733

Layered Architecture - Hybrid 1426

Pipe-Filter 512

Pipe-Filter - Group not Layered 2511

Pipe Filter - Layered 834

Pipe Filter - Layered (2)13 1810

Pipeline 869

Pipeline (2) 955

MVC 434

Facade 650

Microkernel 826

Legacy Wrapper 518

Each Ph.D student was asked to write all the constraints with OCL and

give a difficulty coefficient in a scale ranging from 1 to 5. We measured the time

spent to write them.

Figure 8 depicts the average time in minutes spent to write OCL architecture

constraints by following the chronological order of the patterns appearance (from

left to right). We can observe a downward trend, the first constraint took

more time to be specified than the others (more than 3 hours), the overage

time decreases when specifying more constraints despite of their size variance

(For instance, Pipeline(2) and Microkernel). Indeed, the Ph.D students have

naturally acquired experience when specifying each time a new constraint. This

13Another variant of the pattern.
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Figure 8: Average time spent to write OCL architecture constraints

Figure 9: Average difficulty coefficient to specify OCL architecture constraints

natural acquisition of knowledge is explained also by the decrease of the average

of difficulty coefficient depicted in Figure 9. OCL is a language easy to learn and

to use [12]. The students need only to know for each constraint the appropriate

navigation in the UML metamodel and use always the same OCL expressions

that are naturally clear like forAll, exists and select.

Protocol. The experimentation protocol consists of two steps. In the first step,

we measured precision and recall by comparing CLACS constraint-components
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manually designed in [16] with those generated using our process. This has

been performed on a subset of the catalog of constraint-components in [16]. The

selected constraint-components are those which formalize the patterns presented

in Table 1.

In the second step of this experimentation, we defined manually for each

constraint its corresponding constraint-services, and then we generated them

using our process. In the manual coding of these constraint-services, we used

the same service interfaces (their qualified names and operation signatures)

than in the generated ones. The reason behind this choice is to focus on the

comparison of the generated code and not on the structure around it. At the

end, we compared the two source code artifacts (the manually written one and

the generated one). It is obvious that an exact matching of these two types of

code artifacts provides false results (it is impossible to produce exactly the same

code following the two procedures). Then, we decided to use “Clone Detection”

techniques. We relied in this evaluation on some metrics presented in [17]. These

metrics measure the distance between two portions of source code and enable

us to calculate the recall and the precision (by considering the relevant code,

the one which was manually written).

Metric used in the First Step. Precision and recall metrics are calculated

as follows:

(1) Precision = tp
tp+fp (2) Recall = tp

tp+fn

where: tp (true positives): are the generated constraint-components which

are equivalent to the constraint-components which have been manually designed

in the catalog or which are reusable, fp (false positives): are the constraint-

components which do not exist in the catalog manually designed and which can

not be reusable and fn (false negatives): are the constraint-components designed

manually but which have not been generated by the proposed process.

We observed that all the generated constraint-components exist in the cat-

alog. This means that the false negatives are equal to 0. So, recall is always
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equal to 1. (This will not be taken into consideration in the results later.)

Metric used in the Second Step. In this step, we use a metric for clone

detection defined in [17]. We call each Java program in the OSGi source code

written manually, a reference R. Besides, we call the generated program a

candidate C. A pair of clones here is a couple formed by a candidate and

a reference, known a priori to be the programs that correspond to the same

constraint. To compare R and C, we decompose each program into fragments.

The size of a Java fragment do not exceed 6 lines14. During the analysis of

our data, we observed in some cases that we can not decompose programs into

fragments respecting the size condition because the “cutting” of constraints

did not occur at the right place. So, we decided to manually adjust the size of

fragments, case by case. Before comparison, C and R should be normalized [17].

The metrics used in this evaluation process are:

(3) Contained (fR, fC) =
|lines (fR) ∩ lines (fC) |

|lines (fR) |

(4) Ok (R,C) = min (Contained (fRi, fCi) , i < numberOfFragmentsIn(R,C))

where:

fR: a code fragment in a manually written program

fC: a code fragment in an automatically generated program

For the same OCL constraint, the size of a generated program is higher

than the size of the manual code. For this reason, we calculated the ratio

of code of each manual code fragment contained in the automatic one. We

evaluated Metric (3) above in calculating the number of common lines in each

code fragment in R and C and then we divided the result by the total number

of code fragments in R. These C and R belong to clones of type 2. Then,

we calculated the minimum of these values in the same pair of clones (R,C) to

14The choice of this size was taken after having analyzed the generated code of constraints.

Indeed, this size corresponds to the smallest generated code. The generated code have a size

which is roughly a multiple of 6.
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obtain the Ok values (Metric (4)). In other words, the Ok(R,C) is the minimum

of the Contained values for the fragments which constitute R and C. After that,

we measured precision and recall as previously.

To calculate the precision and recall in this step, we have identified the true

positives, the false positives and the false negatives as follows:

tp: true positives are candidates that are correct and which have Ok >= 0.715.

Candidates are correct when they return correct results in the test cases applied

on them. Each candidate is checked on several variants of applications we have

developed. In these applications, patterns are instantiated (in one variant) and

partially invalidated (in each other). By partial invalidation, we mean that the

evaluation of one of the sub-constraints returns false.

fp: false positives are candidates that are correct and which have Ok < 0.7

fn: false negatives are candidates that are not correct.

Results and Discussion. For the first part of our experimentation, we ob-

tained the results which are presented in Table 2

Table 2: Precision values in the first step

Pattern tp fp Precision

Service Bus Pattern 9 0 1

Layered Architecture Style 5 0 1

Client-Server 5 1 0.83

Broker 6 3 0.66

Layered Architecture-Hybrid 4 1 0.8

Pipe-Filter 4 2 0.66

Pipe Filter- Group not Layered 11 10 0.52

Pipe Filter- Layered 7 3 0.7

Pipe Filter- Layered (2) 7 0 1

Pipeline 11 1 0.91

Pipeline (2) 15 5 0.75

MVC 3 0 1

Facade 4 0 1

Microkernel 6 2 0.75

Legacy Wrapper 8 5 0.61

15The choice of the threshold is explained in [17]
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We observe that there are 5 patterns among 15 that have precision equal to 1

and 10 patterns that have precision > 0.7. The decrease of the precision value for

the Pipe Filter-Group not Layered pattern is due to the decomposition in

depth of this very large constraint, which provides a large number of low-level

constraint-components that are unexploited in terms of reuse. Pattern Pipe

Filter- Layered (2) has also a large size (1800 tokens) but it has precision

equal to 1. This is explained by the fact that all of the obtained OCL constraints

after decomposition are reusable in other constraints in our data set.

For the second step of our experimentation, we present in Table 3 the mea-

sures obtained after applying the evaluation protocol on the selected architecture

constraints. Note that the number of the interfaces is not included in the num-

ber of candidates. All the generated interfaces are identical to those written

manually.

Table 3: Experimentation values in the second step: Precision and Recall

Patterns #C tp fp fn Precision Recall

Service Bus Pattern 9 6 3 0 0.66 1

Layered Architecture 5 3 2 0 0.6 1

Client-Server 5 4 1 0 0.8 1

Broker 9 4 3 2 0.57 0.66

Layered Architecture - Hybrid 5 3 2 0 0.6 1

Pipe Filter 8 4 2 2 0.66 0.66

Pipe Filter - Group not Layered 21 7 11 3 0.388 0.7

Pipe Filter - Layered 10 3 3 4 0.5 0.42

Pipe Filter - Layered (2) 7 2 2 3 0.5 0.4

Pipeline 12 7 4 1 0.63 0.87

Pipeline (2) 19 9 8 2 0.53 0.81

MVC 7 5 2 0 0.71 1

Facade 9 7 2 0 0.77 1

Microkernel 9 6 1 2 0.85 0.75

Legacy Wrapper 9 4 3 1 0.57 0.8

As we can observe in Table 3, the generated constraint-services are pertinent

(in half of the cases, Recall > 0.7) compared with the constraint-services man-

ually coded. We have 13 patterns with precision > 0.6 and 6 that have recall

=1. The high values of precision and recall for some patterns are explained
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by the fact that the architecture constraints of these patterns are decomposed

into sub-constraints (OCL definitions in our approach) with a small size and

they are simple in terms of number of navigations and OCL quantifiers. The

pattern Pipe Filter Group not Layered has a low precision (≈0.39) because

its generated constraint-services have many candidates and some of them are

very complex (with many nested quantifiers).

Table 4: Measures of time (in seconds) spent in process steps

Transformation Coding Execution

Patterns TT (M) TT (A) TC(M) TC(A) TE(M) TE(A)

Service Bus Pattern 2460 0.118 4205 0.531 0.450 0.583

Layered Architecture 1502 0.087 4380 0.501 0.380 0.433

Client-Server 2456 0.073 3960 0.430 0.200 0.290

Broker 2700 0.106 4380 0.456 0.307 0.468

Layered AH 3402 0.148 7298 0.691 0.506 0.601

Pipe Filter 2400 0.066 4385 0.511 0.248 0.354

Pipe Filter - GNL 3422 0.199 8580 0.861 0.640 0.823

Pipe Filter - Layered 3300 0.076 5526 0.583 0.327 0.478

Pipe Filter - Layered (2) 2400 0.253 8400 0.654 0.654 0.780

Pipeline 2400 0.093 5842 0.431 0.376 0.444

Pipeline (2) 3209 0.166 4231 0.743 0.870 0.996

MVC 1460 0.088 4688 0.467 0.487 0.482

Facade 1202 0.088 4390 0.497 0.621 0.762

Microkernel 1800 0.101 4980 0.670 0.675 0.777

Legacy Wrapper 1760 0.111 4354 0.501 0.544 0.564

Table 4 presents the measures of time of different steps of the process, manu-

ally operated (by the Ph.D students) and automatically performed. We present

the average of the measures for each step. Column 2 presents the time spent

in manually transforming CLACS constraints into constraints that navigate in

OSGi metamodel, while Column 3 presents the time spent in the automatic

transformation. The fourth column depicts the time in manually coding the

constraints into Java/OSGi while the fifth depicts the same step in automatic

manner. Finally, the two last columns present respectively the execution time

(in milliseconds) of the manually created and the generated source code.
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As we can observe, it takes for a developer an average of 2.5 hours to code

manually a Java OSGi source code that allows to check an architecture con-

straint without considering the time spent to configure the OSGi bundles. It

is obvious that the manual tasks need more time than the automatic ones (au-

tomation reduces time to 98% in code generation, and thus in maintenance in

our case (constraint checking)), but the interesting aspect in these results is

when we compare the values in the two last columns. We can notice that the

execution time of the generated source code is higher than the execution time

of the manual one, in all cases. This is explained by the fact that the gener-

ated code is longer than the manual one and this latter is more optimal. The

average overhead of the generated code is +22,15% (in milliseconds). But this

is negligible and does not affect much the overall process.

8.2. Case study:

In this subsection, we present an example of a real system on which we ap-

plied our approach. We present first the application of the concept of “reusable,

searchable and executable constraint as a service” in this example and then

we measure the overhead of producing these constraints and the overall sys-

tem performance overhead in terms of execution time using these constraints as

services.

Our example is a dynamic and extensible ambient assistive living framework

called Ubiquitous Service Management ARchiTecture (UbiSMART) developed

by a research team in our research institute (LIRMM). This framework enables

to develop applications which allow to detect unusual behavior of senior persons

who live alone or in a nursing home 16.

UbiSMART is structured as a web application implemented as OSGi services,

on a cloud server connected to many assisted houses. It is composed of two

essential parts. The first part, Sensing part, is located in the patient residence

16UbiSMART is deployed in Saint Vincent De Paul Nursing home in Argentan, Normandie,

France and in a Peacehaven nursing home in Singapore since 2012 [18]
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and is composed of multiple sensors, a gateway, and communication devices.

It is in charge of pre-processing the raw data from the sensors, converting it

into events that are sent to the server via Internet. The second part is a Web

platform, which handles the communication with the Sensing part through the

MQTT communication protocol17. It also manages the platform storage, rea-

soning and the service provisioning that will be explained later. The reasoning

part determines the activity and acts of senior persons as a trigger for the service

provisioning [18].

Component Diagram

Sensor OSGi Container

< < c o m p o n e n t > >
Sensor Gateway

< < c o m p o n e n t > >
Sensor_i

< < c o m p o n e n t > >
Sensor Management

System

< < c o m p o n e n t > >
SensApp_i

< < c o m p o n e n t > >
Functional Param_i

< < c o m p o n e n t > >
Uncertainty Measurement

Device OSGi Container

< < c o m p o n e n t > >
Device Management

System

< < c o m p o n e n t > >
InteractionDevice_i

OSGi Assistive Service Container

< < c o m p o n e n t > >
Euler Reasoner

< < c o m p o n e n t > >
Configuration Tool

< < c o m p o n e n t > >
DST Decsion Making

< < c o m p o n e n t > >
Assistive Service_i

< < c o m p o n e n t > >
Thought  Interpreter

< < c o m p o n e n t > >
Service Gateway

< < c o m p o n e n t > >
Semantic Model  Updater

< < c o m p o n e n t > >
Reasoning Engine

SemanticUpdater

SensorConfiguration

Reasoning

Reasoning

Thought Interpreter

DecisionMaking
ServiceRender

ServiceProvision

ServiceRegister

DeviceRegister

FunctionalParamCalculator

SensorEventReceiver

UncertaintyCalculatorEnventDecoder
SensorController

Visual Paradigm for UML Community Edition [not for commercial use] 

Figure 10: Component Diagram of the UbiSMART framework [18]

The component diagram of UbiSMART depicted in Figure 10 represents the

different modules of the framework that have been implemented and the interac-

tions between them. In the OSGi implementation, each module exports one or

more services (interfaces) which are imported and consumed by other modules.

17http://mqtt.org/
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The main parts of the UbiSMART components are the following:

• “Sensor i” is an abstraction of all the sensors’ modules. Each of them has

an exposed service ”SensorEventReceiver” used by the ”Sensor Manage-

ment System” (SMS) to send new sensors’ events.

• “Thought Interpreter” (TI) decodes the reasoning engine output. This

module updates the semantic model through the “SemanticUpdater” (SMU)

service and starts the selected service through the “serviceProvision” in-

terface.

• “Service Gateway” (SG) is responsible of registering the different assistive

services. It uses the “semanticUpdater” interface to register new assistive

services to the semantic model.

• “InteractionDevice i” is an abstraction of all the detected interaction de-

vices in the environment.

• “Device Management System” (DMS) uses the “SemanticUpdater” service

to update the semantic model with the newly detected devices description.

We have realized an interview with UbiSMART developers to give us the struc-

tural conditions which UbiSMART architecture should respect at runtime. Here

is the list of the main architecture constraints of the framework:

1. UbiSMART architecture should respect the Layered pattern; the Sensor part

should work the first, then the Reasoning part and finally the Device part

in order to get low uncertainty results.

2. (SG, SMS and Sensor-i) and (SG, Assistive Service-i and InteractionDevice-

i) should respect the Service Bus pattern. This constraint is necessary to

safely transmit for each sensor or each device the corresponding data or

events.

3. Sensor-i and SMU should be directly connected in order to notify the

reasoning engine of a new discovered sensor in the environment. The same
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condition should be respected for DMS and SMU to notify the apparition

of a new device.

4. A unidirectional connection should be maintained between some UbiSMART

components such as (DST,TI), (TI,RE), etc

To apply our approach in this real system, we need to specify these textual

conditions with OCL on UML metamodel. We asked one of the framework

contributors to write the conditions 1 and 4 with OCL knowing that he is a

non-specialist in OCL but as a computer scientist he knows first order logic 18.

It took him approximately 230.66 minutes for the specification of the first con-

straint and 97.85 minutes for the second knowing that the later one is more

complex. It is trivial that a non specialist takes more time to specify an OCL

constraint (if we compare these values with those of Figure 8). The first value

has decreased to 113.97 minutes when we provided some architecture constraints

to the contributor.

UbiSMART is a dynamic framework allowing to present as a service any sensor

or device discovered at runtime in the environment. Even UbiSMART allows the

integration and representation of sensors and devices as services, they are still

not integrated in the reasoning process. Thus, it is not possible to use them

in the selection of the end-user service and the interaction device. To solve

this problem, the contributors introduce semantic Plug&Play to register these

bundles (2-6 in Figure 3.8 in [18]). To ensure the integration of these generated

bundles in the system at runtime, the framework needs to respect Constraint

3 to guarantee the connection between each discovered sensor and SMU, and

between each discovered device and SMU at runtime. This constraint needs to

be executable at runtime to check the integration process. Here, we apply our

approach to generate the constraint 3 as a service. We choose to generate it as a

service to guarantee a loose coupling and easy connection and/or disconnection

with the business services (SMU, sensor-i bundles). In addition, Constraint 3

18The constraints are presented in Appendix B.4
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should be applied for two pairs of bundles. First, we applied our approach’s steps

on the constraint starting with the decomposition, the generation of constraint-

components to reach constraints as services registered in the OSGi runtime.

Then, as the generated constraint has already been registered, we search the

appropriate service and we reuse it by passing the appropriate parameters during

its invocation (here, the names of the DMS and SMU bundles).

Constraint-services production time. The production of the constraint-bundle

that provides the constraint-services took 0.887 seconds, i,e the constraint-

services structure (the bundle, the configuration files, the interfaces, the classes,

...). Our approach produces 20 constraint-services, i,e the Java code elements

generated from the OCL definitions obtained after applying our approach on

the UbiSMART constraints. These code portions needed 4.943s to be generated.

The production of our constraint-services in terms of structure and code took in

overall 5.83s. Constraint-service production is statically performed and it does

not influence on the system reaction time.

Constraint-service execution time. In UbiSMART, in both the static and dynamic

configurations, an average time of 0.224s is needed for starting the real sensor

and for the communication required to detect the sensor presence in the environ-

ment by the framework. In addition, for the dynamic configuration, we observed

an additional average time of 0.373s needed to represent an ultrasound sensor

as a service in the framework. This is the time required for generating and

starting the bundle representing the ultrasound sensor on the gateway and for

updating the environment description with the sensor information. After that,

the system’s reaction time, calculated between the time a service is needed and

the time it is delivered in the environment, has an average of 2.713s, which has

been refined in 1.226s for the reasoning engine module’s processing itself, 0.735s

for the communication between modules and 0.752s for the processing due to

other miscellaneous bundles [19].

In the other hand, the 20 constraint-services took in overall 2.787s to execute.

The overhead is 50.15%. Indeed, using our approach, the UbiSMART reaction
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time increases to 5.777s instead of 2.770s. But this high percentage is inherently

related to the nature of the system (UbiSMART), whose services execute in very

short times. In other kinds of systems (business applications with data access

layers, for instance), we are quite confident that the overhead of constraint

checking at execution time is marginal.

8.3. Threats to validity

We discuss two kinds of threats: to the internal validity and to the external

one.

8.3.1. Internal validity

In our evaluation process, we have used architecture patterns that are spec-

ified from several sources to mitigate the risk of forgetting some patterns condi-

tions. Besides, in our selected architecture patterns, we can find several variants

for a given pattern like the Pipe-Filter. This increases reuse of the decom-

posed constraints as well as their relevance. But, we have mitigated this threat

by choosing patterns of different sizes and by involving different persons in their

specification and transformation.

The constraints that formalize our patterns are specified by participants who

have experience with OCL. We have involved 8 persons to perform different

tasks in the evaluation. We have invited also a non expert participant in OCL

language to write architecture constraints and we have compared the results.

8.3.2. External validity

The architecture patterns used in our experimentation have been collected

from the literature. We can obviously think that the proposed process works

only for this kind of component-based architecture patterns or that only con-

straints written in OCL can be evaluated as input and Java/OSGi as output.

Any kind of architecture constraints can be considered, including GoFs object-

oriented design patterns or SOA patterns. It suffices to specify them in UML

metamodel. For any kind of predicates analyzing architecture descriptions, a

parser should exist for their specification language. Constraint transformation
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step is applicable with any metamodels because it uses external mapping in

XML and the AST as output of the parser. The code generation step takes into

consideration each node of the AST and uses the corresponding String Tem-

plate. These String Templates can be written in any language that provides a

reflective API. The reflective methods provided by this language are mandatory

during the use of String Templates.

9. Related Works

Works related to our approach can be classified in different categories: i) lan-

guages and tools for the specification of architecture constraints, ii) methods for

predicate/constraint transformations, iii) methods for OCL constraint refactor-

ing, iv) methods for constraint reuse, v) methods and tools for code generation

from OCL, and vi) works about architecture constraint checking for design pat-

terns/styles.

A state of the art on languages used for the specification of architecture

constraints at design and implementation stages is presented in [10]. These

languages vary from embedded notations in existing ADLs, like Armani for

Acme, FScript19 for Fractal ADL or REAL for AADL, to notations with a

logic programming style, like LogEn or Spine, or notations with an object-

oriented programming (OOP) style or for OOP languages, like CDL, DCL or

SCL. In practice there are several tools for static code quality analysis that

enable the specification of architecture constraints, like Sonar, Lattix, Architexa

and Macker, among others. All these languages and tools do not provide any

way for transforming or generating code starting from specifications in OCL or

any other predicate language. In addition, they provide either no or a limited

parameterization and reusability of architecture constraints.

Hassam et al. [20] proposed a method for transforming OCL constraints

during UML model refactoring, using model transformations. Their approach

19A tutorial for this language is available in the following SVN repository:

svn://forge.objectweb.org/svnroot/fractal/tags/fscript-2.0
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uses first an annotation method for marking the initial UML model in order

to obtain an annotated target model. Then, a mapping table is created from

these two annotations in order to use it for transforming OCL constraints of

the initial model into OCL constraints of the target one. Their solution of

constraint transformation cannot be used straightforwardly because it needs

some knowledge about model transformation languages and tools. In our work,

constraint transformation is performed in a simple and ad-hoc way without

using additional modeling and transformation languages.

In [21], the authors propose an approach for generating (instantiating) per-

tinent models from metamodels taking into account OCL constraints. Their

approach is based on a CSP (Constraint Satisfaction Problem) solver. They

defined formal rules to transform models and constraints associated to them.

Cabot et al. [22] worked also on UML/OCL transformation into CSP in or-

der to check quality properties of models. These approaches are similar to our

transformation process since the transformed/handled artifacts are the same

(OCL specifications and metamodels). They use the same OCL compiler as us

(DresdenOCL [23]) to analyze constraints. In contrast to CSP, our work does

not require an external tool for the interpretation of constraints. In addition,

in our approach, we transform only constraints. In the other approaches, ev-

erything should be transformed into a CSP to be solved (the constraints + the

models/metamodels). Moreover, in [24], Cabot and Teniente proposed a trans-

formation technique of OCL constraints into other simpler OCL constraints se-

mantically equivalent using transformation rules. The paper addresses endoge-

nous transformations, it does not propose constraint transformations expressed

in different metamodels. Bajwa and Lee presented in [25] a two-step process

for transforming SBVR rules (Semantics of Business Vocabulary and Business

Rules) into OCL constraints. The first step consists in defining a mapping be-

tween SBVR rules elements and UML model elements. This step ensures that

the OCL constraint that will be generated is semantically checkable in a UMl

model. The second step consists in transforming into an OCL model instance

an SBVR model instance using a mapping between the two metamodels (OCL
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and SBVR). This paper uses model transformation techniques. Their process is

troublesome when the constraints have a gross specification (very large models).

The generated constraints are complex, not reusable and parameterizable.

OCL refactoring consists in simplifying the constraints and making them

more optimized. In [26], the method proposed by Correa et al. has as a goal

to improve the readability and the comprehensibility of constraints. Therefore,

they prepared a catalog of smells. They proposed refactorings for removing a

given smell in a constraint. It is true that this refactoring improves comprehensi-

bility of the constraints (validation in the paper) but these do not consider reuse.

Besides, the authors consider in their approach only the functional constraints

and not architectural ones. In [27], Reimann et al. complete the previous work

of Correa et al.. They proposed new smells and new refactorings like a decom-

position of OCL constraints in atomic sub-constraints. These new refactorings

does not address the parameterization of the constraint which enables more

reuse.

In the practice of model-driven engineering, there exist several tools to trans-

late OCL constraints in Java source code, like Eclipse OCL 20, Octopus 21, and

DresdenOCL. They however transform constraints which are functional and not

architectural. These tools translate this kind of constraints into object-oriented

programs which do not use the introspection mechanism. Other works in the

literature deal with code generation for functional constraints too. Briand et al.

in [28] proposed an approach to transform functional constraints into Java using

aspect-oriented programming. Another work [29] proposed a method for trans-

lating functional constraints in JML (Java Modeling Language). In a previous

work [9], we developed a method for transforming OCL architecture constraints

into Java metaprograms. But in this work, the transformation result is not an

easily reusable and customizable architecture constraint, that is why we pro-

posed in this paper to translate constraints into constraint-components then

20http://www.eclipse.org/modeling/mdt/?project=ocl
21http://octopus.sourceforge.net
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into services.

There are many works ([30] for a survey) that propose methods to validate

constraints on several kinds of applications. In most of cases, these constraints

are not architectural. We can find functional and reconfiguration constraints.

For the few works that consider structural constraints they discuss only depen-

dencies between components and not the conditions imposed by the application

architecture. In [31], the authors insert skeleton code in user source code to

verify functional constraints. Besides, the user is involved in all the process

steps whereas our verification process is fully automatic and user source code is

not affected.

The authors in [7] introduced design rule spaces, a new form of architecture

representation that uniformly captures both architecture and evolution relations

using design structure matrices. They proposed that software architectures

should be viewed and analyzed as multi-layered overlapping DRSpaces, because

each DRSpace, formed using different types of primary and secondary relations,

exhibits meaningful and useful modular structures. They were able to identify

structural and evolutionary problems. This work has the same goal as us but

our approach focuses on the internal problems within a file, rather than the

structure among files.

In the same context of architecture constraints, Fowler [32] describes the

concept of a “bad smell” as a heuristic for identifying refactoring opportunities.

Others [33] have extended this notion to include architecture-level bad smells.

Automatic detection of bad smells has been widely studied. For example, Moha

et al. [34] presented the Decor tool and language to automate the construction

of design defect detection algorithms. There is a number of proposals for au-

tomatically detecting bad smells which may lead to refactorings. For example,

Tsantalis and Chatzigeorgious study [35] presented a static slicing approach

to detect and extract method refactoring opportunities. Our approach is dif-

ferent. First, it focuses on architecture constraints and not on “bad smells”.

Our constraints target the structure of the application and are related to the

architecture decisions taken on the design stage. Second, existing research on
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bad smells has focused on analyzing a single version of the software, while our

approach examines the application’s evolution.

In [36], the authors propose a method for extracting models from the source

code of an application and check functional constraints by using an OCL inter-

preter. We can not apply this approach for our problem, because architecture

constraints use meta-level constructs and not model-level ones. Besides, in our

approach, we can check constraints at run-time using the reflective layer and

service registry access methods and we obtain reusable and customizable con-

straints contrary to their method.

PEC [37] is a pattern enforcing compiler for Java. Using interfaces to identify

the intended design pattern, the tool combines static testing, dynamic testing

(unit testing), and code generation to verify that the pattern is implemented

according to a specification. Since it obliges to add some interfaces and more

statements in client source code in order to enforce the implementation of design

patterns, the code will be difficult to understand and maintain. It is impossible

to apply PEC in service-based applications because it is difficult to manage

these injected interfaces throughout the code.

Experienced developers apply design patterns in software development to

solve design problems and reduce software maintenance cost. However, soft-

ware systems evolve over time, increasing the chance that the design patterns

in their original form will be broken. To verify the original intent of the design

patterns, Blewitt, Bundy and Stark [38] presented a pattern specification lan-

guage Spine that allowed design patterns to be defined in terms of constraints

on their implementation in Java. In our work, we have used the same language

for coding the application to express constraints at implementation stage. Our

goal is to use the standard mechanisms offered by Java, such as introspection.

10. Conclusion and Future Work

Architecture constraints are predicates that bring a valuable help for pre-

serving design rules, like the instantiation of architecture styles or patterns
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in a given application, after having evolved its architecture description. We

have presented in this paper a process for generating code starting from archi-

tecture constraint specifications. Our process is composed of two main steps.

The first one consists in generating constraint-components from “gross” textual

constraint specifications. These components provide operations for checking

constraints. They are specified in an ADL named CLACS. The second step

generates services, which can be invoked: i) at the implementation stage to

check architecture constraints on source code, ii) at runtime to check these con-

straints after a dynamic evolution of the architecture, and iii) by any external

application to check constraints on its architecture, simply by making a lookup

in the service registry of the runtime environment in which the services have

been published.

In the near future, we plan to work on lightweight instrumentation of source

code, using annotations and aspects, to statically and dynamically check “ar-

chitecture constraints as services”. As a perspective to this work, we envision to

generalize this approach, i.e. to specify architecture constraints in a paradigm-

and language-independent way, by using predicates on graphs and operations

on them, and then to make automatic transformations towards object-oriented,

component-based or service-oriented architectures, using feature models that

specify the variability between these paradigms.
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[19] T. Tiberghien, M. Mokhtari, H. Aloulou, J. Biswas, Semantic reasoning in

context-aware assistive environments to support ageing with dementia, in:

International Semantic Web Conference, Springer, 2012, pp. 212–227.

[20] K. Hassam, S. Sadou, R. Fleurquin, et al., Adapting ocl constraints after a

refactoring of their model using an mde process, in: BElgian-NEtherlands

software eVOLution seminar (BENEVOL 2010), 2010, pp. 16–27.

[21] A. Ferdjoukh, A.-E. Baert, A. Chateau, R. Coletta, C. Nebut, A csp ap-

proach for metamodel instantiation, in: ICTAI 2013, IEEE Internationnal

Conference on Tools with Artificial Intelligence, 2013, pp. 1044,1051.
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[33] J. Garcia, D. Popescu, G. Edwards, N. Medvidovic, Identifying archi-

tectural bad smells, in: Software Maintenance and Reengineering, 2009.

CSMR’09. 13th European Conference on, IEEE, 2009, pp. 255–258.
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