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Abstract. A new directed interval-based tomographic reconstruction algorithm,
called Non-additive Interval Based Expectation Maximization (NIBEM) is
presented. It uses non-additive modeling of the forward operator that provides
intervals instead of single-valued projections. The detailed approach is an
extension of the Maximum Likelihood - Expectation Maximization (ML-EM)
algorithm based on intervals. The main motivation for this extension is that
the resulting intervals have appealing properties for estimating the statistical
uncertainty associated with the reconstructed activity values. After reviewing
previously published theoretical concepts related to interval-based projectors,
this paper describes the NIBEM algorithm and gives examples that highlight
the properties and advantages of this interval valued reconstruction.

Emission tomography, uncertainty quantification, statistical estimation, image
reconstruction, system matrix, non-additive modeling. Submitted to: Phys. Med. Biol.

1. Introduction

In emission tomography, and particularly in Positron Emission Tomography
(PET), tomographic reconstruction algorithms implemented by medical imaging
manufacturers estimate the 3D map of a radio-tracer concentration without systematic
estimation of the uncertainty associated with the reconstructed voxel activities. Yet
decision procedures based on quantitative analysis of images would benefit from such
uncertainty estimates. The methods currently used for comparing activity values in
different Regions Of Interest (ROI) are mostly empirical. Associating a confidence
interval with each estimated value would enable a statistical comparison based on
hypothesis testing. For instance, in the context of patient monitoring, a physician
would be able to perform an objective statistical analysis to compare two ROIs in the
same image or in two images reconstructed at two different time points.

Uncertainties associated with reconstructed activity values can actually be
estimated using numerous approaches. The first set of approaches consists of
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propagating the known variance of measurements to the variance and covariance of the
reconstructed values. This is usually based on the assumption that the measurements
follow a Poisson distribution. Methods have been described in (Fessler, 1996, Qi
and Leahy, 2000, Stayman and Fessler, 2004, Li, 2011) for the Penalized Likelihood
Maximization (PLM) algorithm, or equivalently for the Maximum A Posteriori (MAP)
algorithm; (Barrett et al., 1994a,b) for the Maximum Likelihood - Expectation
Maximization (ML-EM) method; (Higdon et al., 1997, Sitek, 2012) for Bayesian
estimates; (Sitek, 2008) for the origin ensembles method and (Soares et al., 2000,
2005) for block-iterative methods. The second set of approaches does not require any
assumption regarding the statistical properties of the measured data. It uses bootstrap
resampling to produce replicates that are then used to determine the statistical
properties of the activity values (Buvat, 2002, Dahlborn, 2001, Lartizien et al., 2010).
The common point between these methods is that they usually describe the statistical
variability using the variance or standard deviation estimate. As the statistical
distribution of the reconstructed image is not necessarily Gaussian, confidence intervals
cannot be constructed in a straightforward way from these estimates. Moreover, all of
these approaches are computationally demanding and difficult to implement in routine
clinical applications.

The approach presented in this paper involves direct estimation of confidence
intervals associated with activity values. Note that here we only focus on providing
an estimate of the uncertainty induced by statistical variations in the measurements.
Other sources of uncertainty (eg, associated with the scatter estimate) are not
addressed in this paper. We describe a new reconstruction paradigm in which the
error is estimated as part of the reconstruction process. Our algorithm, called Non-
additive Interval Based Expectation Maximization (NIBEM), is an extension of the
usual ML-EM algorithm. It uses non-additive modeling of the measuring process
to build a forward projection operator that generates intervals instead of precise
values. This operator has already been described in (Rico et al., 2009). In the
aforementioned paper, the authors stressed that using this kind of projection operator
leads to projected intervals whose width is closely correlated with the level of noise
of the projected central image. Here we extend the work of (Rico et al., 2009) to
make those operators compatible with a multiplicative reconstruction algorithm such
as ML-EM, which is, with its variants, the most widespread algorithm in PET clinical
routine, by using directed interval arithmetic (Markov, 1996). Some very preliminary
results were briefly presented in the abstract (Loquin et al., 2014). In this paper,
using analytical simulations and GATE (Jan et al., 2004) simulations, we show that
NIBEM provides a practical approximation of confidence intervals associated with
reconstructed values.

2. Radon Matrix modeling and imprecision

The approach we present here is formulated for 2D reconstructions. The extension to
3D is straightforward when ignoring border effects due to the limited field of view of
the tomograph.

Reconstructing a tomographic image involves inverting a model that projects
the values of each pixel of the unknown image to the measured projections. As this
projection model is usually supposed to be linear, this involves a system matrix R, also
called a Radon matrix, whose (i, j)th element can be interpreted as the probability of a
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photon emitted in the ith pixel to reach the jth detector‡. Let f be the n×1 vector of
the pixel values of the image to be reconstructed and let p be the m× 1 measurement
vector, then the linear projection operator P based on the system matrix R is defined
by:

p̂j = P(f)j =

n∑
i=1

Ri,jfi, (1)

Most reconstruction methods make use of the dual operator of the projection
operator called the back-projection operator B defined by:

f̂i = B(p)i =

m∑
j=1

Ri,jpj . (2)

Many different models of the system matrix have been proposed in the relevant
literature that account for different ways of modeling the interplay (Unser et al.,
1993) between the discrete reconstruction space and the continuous space, where
the problem can be formulated. On one hand, continuous-to-discrete interplay is
modeled by describing how the detector measures the projected activity. We call this
the measurement model (MM). On the other hand, discrete-to-continuous interplay
involves interpolation kernels. For example, a nearest neighbor interpolation kernel
associated with a Dirac MM leads to the line-length model (Wernick and Aarsvold,
2004), while rectangular modeling of the measurement with the same interpolation
leads to the concave disk model (Huesman et al., 1977).

In this section, we highlight how the choice of the interplay modeling between the
discrete image and its underlying continuous image impacts the resulting projected
values. For the sake of simplicity, we choose a rectangular MM to illustrate the
proposed method. More complex MM, e.g. taking the detector point spread function
(PSF) into account, could also be used with the new framework we present here.
Projecting the activity value associated with each pixel on the jth dexel requires
computation of the value pj as a weighted sum (1). This weighted sum involves an
interpolation kernel κ. Fig. 1 illustrates the fact that using the same rectangular MM
with three different interpolation kernels leads to three different projected values (p̂1

j ,

p̂2
j and p̂3

j ), i.e. a projected value highly depends on the choice of the interpolation
method.

In (Rico et al., 2009), the authors assumed that the appropriate model (i.e. the
appropriate kernel) to be used to ensure the discrete-to-continous interplay is usually
unknown and therefore used a convex set K of bounded interpolation kernels. They
thus propose to use this convex set K to define a new interval-valued projection
operator that can be expressed as: pj = [min{pκ∈K

j };max{pκ∈K
j }]. One appealing

property is that, since the spread of the resulting intervals reflects the consensus
between the different possible projections, it is thus linked to local variations in the
projections. As pointed out in (Loquin et al., 2010), poor consensus in the projected
values, i.e. a wide spread in the intervals, is a marker of the effect of noise in the
projections.

Computing this interval-valued projection can appear to be computationally
complex since no pair of interpolation kernels can provide the extreme values of

‡ by analogy with the term pixel (for picture element) we call dexel a detector element
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(a) Discrete image (b) Continuous image
for nearest neighbor
interpolation

(c) Continuous image
for bilinear interpola-
tion

(d) Continuous image
for bicubic interpola-
tion

Figure 1: Different interpolation kernels lead to different projected values

every set pj . A Monte-Carlo-like approach could be used, however, this would be
very time consuming and would only provide an inner approximation of the two
extreme points. The solution proposed in (Rico et al., 2009) uses the notion of concave
capacities. We explain in Section 3 how this solution can be used to define an interval
valued projection operator that accounts for the supposed imprecise knowledge on this
appropriate interpolation kernel.

3. Non-additive construction of the forward projection operator

This section explains how a concave capacity (Denneberg, 1994) can be used to model
imprecise knowledge regarding the most appropriate interpolation model (Rico et al.,
2009). As previously, we choose a rectangular MM for didactic purposes and show
that the method can be seen as a non-additive extension of the concave disk model.

3.1. A concave capacity to define the geometric interaction between pixels and dexels

Let Ω be a reference set (e.g. {1, . . . , n}). A concave capacity ν is a non-additive
confidence measure, i.e. a weight associated with any subset of Ω. It extends the notion
of probability measure since it does not follow the additive axiom, i.e. ∀A,B ⊆ Ω,
ν(A) + ν(B) ≥ ν(A ∪ B) + ν(A ∩ B), while a probability measure P would verify
P (A)+P (B) = P (A∪B)+P (A∩B) : a probability measure is an additive confidence
measure. Let Λ(Ω) be the set of all probability measures on Ω. It has been shown
in (Denneberg, 1994, Schmeidler, 1986) that a concave capacity ν encodes a convex
subset of Λ(Ω) called the core of ν and is denoted M(ν):

M(ν) = {P ∈ Λ(Ω) | ∀A ⊆ Ω, P (A) ∈ [νc(A), ν(A)]}, (3)

where νc is the dual capacity of ν defined by : ∀A ⊆ Ω, νc(A) = ν(Ω) − ν(Ac), with
Ac being the complementary set of A in Ω. By construction, νc is convex (Rico and
Strauss, 2010) (i.e. νc(A) + νc(B) ≤ νc(A ∪B) + νc(A ∩B)).

Let us now call Tj the Tube Of Response (TOR) associated with the jth dexel of
the measurement vector (i.e. the MM is assumed to be a rectangular function). Then,
the confidence measure (i.e. the weight) associated with the interaction between the
ith pixel and the jth dexel can be expressed as:

Ri,j =| Ci ∩ Tj |, (4)
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where | · | is the Lebesgue measure. This is the concave disk model. Let A be a
subset of Ω. The confidence measure Pj(A) associated with the interaction between
A and the jth dexel is defined by Pj(A) =

∑
i∈ARi,j . The thus-defined confidence

measure is additive, since ∀i 6= i′, Ci ∩ Ci′ = ∅.
Let us consider the four pixel discrete image depicted in Fig. 2(a) with Ω =

{1, 2, 3, 4}. With the usual (additive) modeling of the interaction between pixels
and dexels, the domain Ci associated with the ith pixel is obtained by partitioning
the continuous domain as illustrated in Fig. 2(a). With this partitioning, ∀i 6= i′,
Ci ∩ Ci′ = ∅ and

⋃
i∈Ω Ci covers the entire continuous domain. Each domain Ci can

be considered as being generated by the rectangular kernel κr that defines the nearest
neighbor interpolation: let ωi be the center of Ci, then Ci = {ω ∈ R2, κr(ω−ωi) = 1}.
Thus, the continuous value f̂(ω) associated with a location ω in the continuous domain
is defined by f̂(ω) = fi, where i is the only value of Ω such that ω ∈ Ci (i.e.
κr(ω − ωi) = 1).

We now show how a concave capacity can be used to compute the bounds of the
jth interval-valued projection pj defined in Section 2. The approach proposed in (Rico
et al., 2009) allows us to define an interval-valued extension of the concave disk model.
Let us replace the usual partitioning of Fig. 2(a) by a partitioning including overlaps as
depicted in Fig. 2(b). We still have

⋃
i∈Ω Ci covering the entire continuous domain, but

now ∃i 6= i′, Ci∩Ci′ 6= ∅. This partitioning can be considered as being generated by a
rectangular kernel ηr that is larger than κr. This leads to an imprecise extension of the
nearest neighbor interpolation: the interpolated continuous activity values at location
ω is interval-valued and defined by f(ω) = [mini∈N (ω) {fi}; maxi∈N (ω) {fi}], where
N (ω) ⊆ Ω is the set of neighbors of ω defined by: N (ω) = {i ∈ Ω | ηr(ω − ωi) = 1}.
f(ω) is the set of all the values that can be obtained by a normalized weighted sum of
the nearest neighbors of ω. The proposed model no longer coincides with the concave
disk model but defines a concave capacity νj that can be considered as its imprecise
extension. The core M(νj) of νj contains any classical (Radon-matrix based) model
that could have been defined by considering any four-neighbor weighted based linear
interpolation operator.

1# 2#

3# 4#

(a) Usual partitioning

C1# C2#

C4# C3#

1# 2#

3#4#

2#

3#

1#

4#

(b) Overfilled partitioning

Figure 2: Partitioning the continuous space for nearest neighbor interpolation (a) and
any 4-neighbor based interpolation (b)

We now graphically illustrate that the above defined capacity is a concave capacity
(this property has been proved in (Rico et al., 2009)). Let us consider A = {1, 3} and
B = {2, 3} and the jth TOR Tj illustrated in Fig. 3. Computation of the values
νj(A), νj(B), νj(A ∪B) and νj(A ∩B) is based on the Lebesgue measures of the blue
areas depicted in Figs. 3(a), 3(b), 3(c) and 3(d).
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(a) νj(A) (b) νj(B) (c) νj(A ∩B) (d) νj(A ∪B)

Figure 3: Weight interaction computation

In this particular example,

νj(A) + νj(B) ≥ νj(A ∪B) + νj(A ∩B). (5)

It is easy to check that the difference between νj(A) + νj(B) and νj(A ∪ B) +
νj(A ∩B) is the area of the triangle with red borders in Fig. 3a.

3.2. Interval-based forward projection operator construction

A concave capacity, as defined in Section 3.1, can be used to define an interval-valued
projection operator as defined in Section 2. This is illustrated here using a concave
disk model but can be performed with any other model constructed in the same way
(i.e. involving an MM and an interpolation kernel).

The conventional projection of pixel activities on the jth dexel (1) can be rewritten
as:

p̂j = P(f)j = EPj
(f), (6)

with E being the linear expectation operator and Pj being the jth additive
confidence measure associated with the Radon matrix defined by Equation (4).

Now let us consider a concave capacity measure νj as defined in Section 3.1 with
an overlapping partition as depicted in Fig. 2(b). The concave capacity theoretical
framework allows us to keep the computational complexity as low as possible. It
consists of replacing the linear expectation operator E by its interval-valued extension
E, as defined in (Rico and Strauss, 2010), based on the use of the Choquet integral
(Denneberg, 1994):

[p
j
, pj ] = P(f)j = Eνj (f) = [Eνj (f),Eνj (f)], (7)

with Eνj (f) = Cνc
j
(f) and Eνj (f) = Cνj (f), Cνj (f) being the discrete Choquet

integral with respect to the capacity ν defined by:

Cνj (f) =

n∑
i=1

f(i)(νj(A(i))− νj(A(i+1))), (8)

where (·) is the permutation of n pixel values, such that f(1) ≤ ... ≤ f(n).
A(i) = {(i), ..., (n)} is the set of pixels whose values are greater than or equal to
f(i). By convention A(n+1) = ∅. P defined by (7) is an interval-valued extension of
the projection operator defined by Equation (1).
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The fact that the obtained interval [p
j
, pj ] is exactly the interval of all projected

values that could have been obtained by considering the convex set of all four-neighbor
based linear interpolation kernels, derives from the property proved in (Rico and
Strauss, 2010): if P ∈ M(νj), then EP (f) ∈ Eνj (f) and conversely if g ∈ Eνj (f),
then ∃P ∈M(νj) such that g = EP (f).

Moreover, it has been proven in (Strauss and Rico, 2012) that this imprecise
projection operator can easily be extended to an interval-valued function [f ] = [f, f ].
We can thus define the imprecise projection of an imprecise image by:

[p
j
, pj ] = P([f ])j = Eνj ([f ]) = [Eνj (f),Eνj (f)]. (9)

Finally we denote P([f ]) the interval-valued vector of all the interval-valued
projections of the interval-valued image [f ]. This vector pools all projections that
would have been obtained by using all possible four-neighbor based interpolations.

3.3. Calculation of a non-additive projection

This section gives an example of how the Choquet integral defined by Equation (8)
can be used to compute the upper projection of a four-pixel image. The capacity that
we use in this example is the imprecise extension of the concave disk model presented
in Section 3.1. The different values of the capacity are illustrated in Fig. 4. The
intersection of each pixel group with the TOR Tj is calculated as a pseudo-code and
represented by the same color in Fig. 4 and Procedure 1. The output of Procedure
1 is the upper bound pj of the interval-valued estimate. The lower bound can be
computed in a similar way.

Procedure 1 Computation of the upper projection pj
Input: Image f considering f1 < f4 < f3 < f2

νj(A(1)) =
∣∣ (C1 ∪ C4 ∪ C3 ∪ C2) ∩ Tj

∣∣
νj(A(2)) =

∣∣ (C4 ∪ C3 ∪ C2) ∩ Tj
∣∣

νj(A(3)) =
∣∣ (C3 ∪ C2) ∩ Tj

∣∣
νj(A(4)) =

∣∣ C2 ∩ Tj
∣∣

pj = Cνj (f) =
∑4
i=1 f(i)(νj(A(i))− νj(A(i+1)))

= f1(νj(A(1))− νj(A(2))) + f4(νj(A(2))− νj(A(3))) + f3(νj(A(3))− νj(A(4)))
+ f2(νj(A(4)))

= 0 + 0 + f3(
∣∣ (C3 ∪ C2) ∩ Tj

∣∣ − ∣∣ C2 ∩ Tj
∣∣) + f2

∣∣ C2 ∩ Tj
∣∣

Output: pj

4. Generalization of ML-EM to intervals

The NIBEM algorithm can be seen as an interval-valued extension of the ML-EM
iterative algorithm (Shepp and Vardi, 1982). Each iteration of this reconstruction
algorithm can be written as:
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f1 f2

f3 f4

pj
_

Tj

(a) Upper bound (b) Lower bound

Figure 4: Non-additive projection with f1 < f4 < f3 < f2

fk+1
i = fki ×

1
m∑
j=1

Ri,j

×
m∑
j=1

pj
n∑
l=1

Rl,jfkl

Ri,j , (10)

where fk is the image reconstructed at iteration k and × stands for the term by
term product.

To facilitate the extension of ML-EM to intervals, let us rewrite the iterative
scheme of Equation (10) as follows:

fk+1/fk = B∗
(

p

P(fk)

)
with B∗(e) =

1

B(1)
×B(e). (11)

where / stands for the term by term division and B∗ is a normalized back-
projection operator defined for any vector e of Rm, with 1 being the unit vector of

Rm. Thus fk+1 = fk ×B∗
(

p

P(fk)

)
is the iterative solution of the iterative gradient

descent expressed by Equation (11). In this solution, the role of the back-projection
operator is to transfer the error from the projection space to the image space. Its
normalization ensures energy conservation throughout the reconstruction process.

4.1. Directed intervals

The ML-EM tomographic reconstruction algorithm requires vector element-wise
multiplications and divisions. Since the operator P is replaced by its imprecise
extension P , extending the MLEM algorithm requires interval-valued arithmetical
operations.

Like the extension proposed in (Strauss et al., 2009), we worked in the framework
of directed intervals (Markov, 1996) to ensure the consistency of this extension. A
directed interval [a] = [a, a] is an interval whose bounds are not always properly
directed. An interval is properly directed if a ≤ a. Such an interval is called a real
interval. An interval is not properly directed if a > a.

Since the values involved in the reconstruction process are always positive, we
considered positive intervals. In the directed interval framework, each arithmetic
operation has two Minkowsky extensions.
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The first Minkowsky extensions of product (⊗) and division (�) are defined for
any strictly positive intervals [a] = [a, a] and [b] = [b, b] by

[a]⊗ [b] = [ab, ab],

[a]� [b] = [a/b, a/b]. (12)

If [a] and [b] are proper intervals, [a] ⊗ [b] and [a] � [b] are also proper intervals.
Moreover [a] � [b] ⊗ [b] = [ab/b, ab/b] 6= [a] in general, and the following inclusion is
always true: [a] ⊆ ([a]� [b]⊗ [b]).

The second Minkowsky extensions of product (�) and division (�) are defined
by:

[a] � [b] = [a]⊗ [b]− = [ab, ab],

[a] � [b] = [a]� [b]− = [a/b, a/b]. (13)

Those operators are built to be the dual operators of the first extensions. We
have: [a]� [b]� [b] = [a] and [a]⊗ [b] � [b] = [a]. Those operators do not fit in the real
interval framework since, if [a] and [b] are proper intervals, [a] � [b] and [a] � [b] are
not always proper intervals.

Thus, in the directed interval framework, the following interval-valued equations:

[x]⊗ [a] = [b], (14)
[x]� [a] = [b], (15)

where [a] and [b] are given and [x] is the unknown, always have a solution:

[x]� [a] = [b] =⇒ [x] = [b] � [a],

[x]⊗ [a] = [b] =⇒ [x] = [b] � [a]. (16)

Interpreting those solutions is not straightforward. In the positive real interval
framework, let [a] and [b] be two positive real intervals and let us consider the solution
of Equation 14. If [x] = [b] � [a] is proper, then ∀a ∈ [a],∃b ∈ [b],∀x ∈ [x] such
that a.x = b. If [x] is improper, then ∃a ∈ [a],∀b ∈ [b],∀x ∈ [x]− such that a.x = b,
[x]− is the dual of [x] defined by [x]− = [x, x]. When [x] is proper [x]− is improper
and vice versa. These semantics were formalized in (Gardenes et al., 2001). All those
Minkowsky extensions of product and division can easily be extended to interval-valued
vectors like any other arithmetic operators (see e.g. (Strauss and Rico, 2012)).

4.2. NIBEM algorithm

NIBEM can be viewed as a straightforward interval-based extension of the iterative
ML-EM algorithm corresponding to Equation (11). Shifting directly from the precise
framework to an interval-valued framework using the projectionP and back-projection
B∗ operators, (15) gives:

[fk+1]� [fk] = B∗
(
p�P([fk])

)
, (17)

where applying the linear operator B∗ to the interval
(
p�P([fk])

)
simply consists of

applying this operator to each of its bounds (see Fig. 5).
Solving Equation (17) is similar to solving Equation (15). The final expression of

the NIBEM iterative scheme is:
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[fk+1] = B∗
(
p�P([fk])

)
� [fk], (18)

where p are the measured projections and k the current iteration. Note that, even
if image [f0] used for initialization is precise, image [f1] is likely to be imprecise.

(a) (b)

Figure 5: Schematic comparison of ML-EM (a) and NIBEM (b).

5. Experimental assessment of NIBEM

This section aims at testing the ability of the NIBEM algorithm to estimate the
statistical variability of the measurements in the reconstructed images.

The first experiment, based on simulated statistical repetitions, aims at testing
whether intervals produced by the NIBEM algorithm could be considered as statistical
confidence intervals (Li, 2011). This experiment, presented in Section 5.1, uses noisy
realizations of a simulated Jaszczak-like phantom. The second experiment, presented
in Section 5.2, aims at comparing the interval-based statistical estimation produced
by NIBEM to the one relying on the bootstrap approach described in (Buvat, 2002).
Finally, the third experiment, presented in Section 5.4, aims at investigating the
estimated uncertainty as a function of the number of counts.

5.1. NIBEM intervals as confidence intervals

5.1.1. Simulation setup A modified Jaszczak-like phantom with a similar setup like
that used in (Li, 2011) was used. It consisted of a 2D uniform disk of diameter 160
mm including six hot regions with diameters of 9.5, 11.1, 12.7, 15.9, 19.1 and 25.4
mm. The hot region concentration was 3-fold greater than the concentration of the
background. The phantom was digitalized into a 64x64 image with 3.125 mm pixel size.
The sinograms were simulated with 64 linearly sampled detector bins and 64 angular
views evenly spaced over 180o. The Radon matrix was computed using the rectangular
MM model, implemented as described in (Fessler, 1995). Photon attenuation and
scatter were not simulated. Three different noise levels (high, medium and low) were
simulated using a Poisson random generator on noise-free projections (50k, 250k and
1250k expected events in the projection data).
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5.1.2. Data analysis We performed NIBEM reconstructions of q = 1000 simulations
for the three noise levels. For each pixel i, we computed how many times the true
activity Ai was included in the rth estimated interval [fri ] corresponding to pixel i.
The Confidence Level (CL) of the interval corresponding to the ith pixel is defined

by: CLi =
1

q

q∑
r=1

1[fr
i ,f

r
i ](Ai). The mean CL of a region (hot regions or background)

is estimated by averaging the CL of all pixels belonging to it.

Figure 6: (a) Vertical profile through the NIBEM reconstruction and ground truth, (b)
lower, (c) upper, and (d) interval length (difference between the interval upper bound
and lower bound) images at iteration 25 for 50k expected events in the projection
data.

Region Background Hot regions

Noise level High Medium Low High Medium Low

Mean CL 0.868 0.897 0.899 0.919 0.932 0.937

Table 1: Quantitative assessment of NIBEM - The mean CL is the average CL value
over all hot regions or over the whole background region in the phantom image.

5.1.3. Results Table 1 shows the mean CL of all interval-valued activity in each of
the two considered regions (background and hot spots). CL of the background and
the hot regions was close to 0.9. Whatever the noise level, the confidence level did not
depend on the reconstructed value or on the level of noise. This experiment showed
that the reconstructed intervals could be considered as having the same CL.
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5.2. NIBEM intervals as a statistical variability estimator

This experiment aimed at testing whether the information contained in the interval-
valued images reconstructed by the NIBEM algorithm could be considered as a
statistical variability estimator or not. The NIBEM image statistical properties were
compared with those obtained using the bootstrap approach (Buvat, 2002).

5.2.1. Cylinder phantom PET data were simulated using a GATE model of the
Siemens Biograph PET scanner (Jan et al., 2004). The PET acquisition of a 25 cm
high cylindrical phantom (50 cm diameter) including three smaller cylinders (16 cm
high, 8 cm in diameter) filled of water was simulated. Each cylinder was simulated
with different fluoro-deoxyglucose (18FDG) concentrations. The activity ratios in the
three cylinders c1,2,3 with respect to c1 were 2:1 (200kBq for c2) and 3:1 (300kBq
for c3). The activity ratio of the background cylinder cbg was 0.5:1 with respect to
c1. Only one cross-section was considered for this experiment and only coincidences
located within that cross-section were registered. Scatter was not simulated. An
acquisition of 180 s was simulated and detected coincidences (about 217k) were sorted
to obtain 30 sub-sinograms, where each sub-sinogram corresponded to a 6 s acquisition.
For the boostrap approach, we created 15k bootstrap sub-sinograms based on the 30
sub-sinograms of 6s, that we grouped 30 by 30 to obtain 500 bootstrap sinograms
(Buvat, 2002). Sinograms had 276 bins of projections and 276 angular views. The
reconstructed images were 276x276. As visual inspection of the ML-EM and NIBEM
reconstructed images suggested a similar convergence rate of the two algorithms,
an implicit regularization was obtained by stopping ML-EM and NIBEM iterative
processes at the same 20 iteration for the cylinder phantom reconstruction. A typical
reconstructed slice is presented in Fig. 7.

(a) (b) (c) (d)

Figure 7: a) NIBEM lower image, b) NIBEM upper image - same colorscale as a),
c) NIBEM standard deviation estimate (radius of the reconstructed intervals), d)
Bootstrap standard deviation estimate - same colorscale as c). All figures for 20
iterations of ML-EM and NIBEM.

5.2.2. Hoffman phantom To test the ability of the proposed method to estimate
statistical variability in more complex objects, we performed a similar experiment on
128x128 sinograms of a slice of a Hoffman phantom simulated using GATE (Fig. 8(a)).
For the boostrap approach, we created two series of 15k bootstrap sub-sinograms
based on the 30 sub-sinograms of approximately 100k and 300k counts. We grouped
those sub-sinograms 30 by 30 to obtain 500 bootstrap sinograms (Buvat, 2002) for
each count level (respectively 3M and 9M counts). Acquisitions were pre-corrected
for attenuation, normalization, scatter and random. We performed 120 iterations for
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NIBEM and ML-EM reconstructions. Activity ratios and typical reconstructed images
of the Hoffman phantom for 3M and 9M counts are presented in Fig. 8.

(a) (b) (c)

Figure 8: (a) Simulated Hoffman phantom activity distribution with activity ratios,
(b) Reconstructed NIBEM central image when 3M counts were simulated, (c)
Reconstructed NIBEM central image when 9M counts were simulated.

5.2.3. Results In this experiment, we investigated whether the NIBEM radius

ri =
1

2
| f i− f i | of the i

th reconstructed interval [f
i
; f i] was related to the variability

estimated by the bootstrap standard deviation or not. For the cylinder phantom, we
computed the Spearman correlation coefficient r in each cylinder between the NIBEM
and bootstrap statistical variation estimates. The corresponding scatter plots are
shown in Fig. 9. The Hoffman phantom results are displayed in Fig. 10.

(a) rcbg = 0.986 (b) rc1 = 0.990 (c) rc2 = 0.985 (d) rc3 = 0.986

Figure 9: Cylinder phantom - Comparison of statistical variability predictions between
NIBEM and the bootstrap approach on cbg, c1, c2 and c3 from left to right.

In the cylinder phantom experiment, we observed that the NIBEM statistical
variability estimate was highly correlated with that obtained with the bootstrap
approach, independently of the activity level in the considered regions. Indeed,
Fig. 9 shows that the correlation coefficient was around 0.99 for the four cylinders
of the phantom. The amplitudes of the bootstrap standard deviation and NIBEM
radius were consistent, as highlighted by the identity line shown in red in Fig. 9.
This experiment suggests that the NIBEM statistical variability estimated by the
reconstructed radius matches the bootstrap standard deviation.

In the Hoffman phantom experiment, the Spearman correlation coefficient
remained high (around 0.97) for both 3M and 9M counts. However the plots in
Fig. 10 highlighted that the dependency was not linear. We also observed that the
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(a) r3M = 0.974 for 3M counts (b) r9M = 0.964 for 9M counts

Figure 10: Hoffman phantom - Comparison of statistical variability estimates between
NIBEM and the bootstrap approach on the Hoffman phantom for (a) 3M and (b) 9M
counts.

amplitudes of the NIBEM and bootstrap statistical variation estimates were different
and dependent on the number of counts. This result suggests that the NIBEM interval
radii cannot be considered as direct estimates of the standard deviation. In fact,
bootstrap and NIBEM estimates are correlated because they both provide an estimate
of the statistical variability. But while bootstrap technique yields an estimate of the
standard deviation of this variability, the NIBEM approach rather yields an estimate
of confidence intervals. Confidence intervals could be easily constructed by using the
mean and standard deviation if the statistical distribution is Gaussian. Yet, in our
Hoffman phantom experiment, we tested whether the statistical distribution computed
from the bootstrap replicates followed a Gaussian distribution or not, for both the 3M
and 9M counts simulations. The null hypothesis of normality of the distribution at a
5% significance level was always rejected by the Kolmogorov Smirnov test whatever
the considered region of interest and number of counts.

Both information items - NIBEM confidence intervals and bootstrap standard
deviations - can potentially lead to more reliable comparisons between regions of
interest, and thus to more reliable diagnosis based on this comparison. But while
the bootstrap approach requires generation of 15k sub-sinograms in order to make
500 bootstrap sinograms, the algorithmic complexity of the NIBEM approach is
comparable to that of the MLEM approach. For example, a bootstrap reconstruction
using 120 iterations of an MLEM algorithm lasted 1989 sec, while, with the same setup
and the same number of iterations, the NIBEM algorithm lasted only 18.4 sec. i.e.
100 times faster§. Note also that the NIBEM computation time could still be reduced
by paralleling some operations. In addition, as NIBEM is an extension of ML-EM, an
accelerated ordered subset version of NIBEM can be straightforwardly deduced from
OSEM (Hudson and Larkin, 2002). Preliminary tests (results not shown) showed that
the ordered subset NIBEM reconstructions had properties very similar to those of
NIBEM in terms of computation time and statistical variability estimation.

5.3. Statistical uncertainty estimation as confidence level estimator

What NIBEM provides is an estimation of a confidence interval associated with the
statistical variability of the reconstructed activity, while state of the art methods are

§ experiments have been carried out on a MacBook Pro, 2,8 GHz Intel Core i7
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devoted to estimating the standard deviation associated with this variability. Since
it has been proven that this variability cannot be modeled by a normal variable,
comparing the two approaches can be challenging (i.e. we cannot assume that the
confidence of an interval centered on the mean and whose radius is proportional to the
standard deviation has a known confidence). In this section, we propose to investigate
the consistency between the bootstrap approach (considered as a gold standard (Buvat,
2002, Lartizien et al., 2010)) and the NIBEM approach, by considering the ratio of
bootstrap values included in the NIBEM intervals. This Inclusion Rate (IR) is known
to be highly dependent on the confidence level of the considered interval.

5.3.1. Data analysis A setup as presented in Section 5.2.2 was used, where a Hoffman
phantom was simulated using GATE for 3M and 9M counts. For both 3M and 9M
counts, we considered the 3 regions of interest of ratio 1:1, 1.5:1 and 2:1 of Fig. 8
a). On one hand, for each 3M and 9M count and each region, we estimated the mean
CL for the NIBEM approach assuming that all pixels in the considered region had
the same statistics. This estimate was computed with the ratio of NIBEM interval-
valued estimates that contained the true value. This result is reported in the first two
columns of Table 2 (NIBEM CL). On the other hand, we computed, for each pixel of
each region, the proportion of the 500 bootstrap values included in the corresponding
interval-valued NIBEM estimate. The average of these values within a region is
reported in columns 4 and 5 of Table 2 (IRbootstrap). The statistical distribution is
not Gaussian, but since it is unimodal it could be naively tempting to build confidence
intervals using the mean and standard deviation estimated with bootstrap approach.
We tested, whether or not, intervals constructed as mean ± 1.96 standard deviations
estimated from the bootstrap replicates could be considered as confidence intervals.
In the last two columns of Table 2, we reported the CL of these intervals (Naive CL).

NIBEM CL IRbootstrap Naive CL

Number of counts 3M 9M 3M 9M 3M 9M

Region 1:1 0.940 0.920 0.920 0.979 0.761 0.669

Region 1.5:1 0.963 0.975 0.932 0.986 0.716 0.580

Region 2:1 1.0 1.0 0.965 0.989 0.757 0.595

Table 2: Quantitative comparison of mean CL of NIBEM, mean IR from NIBEM
intervals set on the bootstrap estimated distribution and mean CL of naive intervals
calculated as mean± 1.96 standard deviations estimated from the bootstrap replicates.

5.3.2. Results Table 2 shows that the mean CL estimated by NIBEM was very
stable and independent of the overall number of counts. This statement is also true
for the ratio of the bootstrap estimated values included in the NIBEM estimated
interval. IRbootstrap is over 0.9 for the three investigated regions and both 3M and 9M
cases. Those results highlight the link between the NIBEM and bootstrap statistical
variability estimates. As expected, we also found that intervals built on the basis of
the Gaussian hypothesis had unstable CL depending on the overall number of counts,
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so they could not be considered as confidence intervals. NIBEM does not produce
direct estimates of standard deviation like bootstrap does, but instead provides direct
stable and reliable estimates of confidence intervals, which is not possible with other
state of the art methods. This property is particularly relevant for ROI comparison.

5.4. Estimated statistical variability as a function of the number of counts

This experiment illustrates the behavior of NIBEM confidence intervals for different
number of counts.

5.4.1. Experimental setup We simulated 100 acquisitions of the Hoffman phantom
presented in Fig. 8(a) using GATE. Simulations corresponding to different number
of counts were performed, from 100k to 10M with a step of 100k counts between
each. The simulated data were pre-corrected for attenuation, normalization, scatter
and random. Sinograms had 128 bins of projections and 128 angular views.
Reconstructions of 128x128 images were performed using 120 iterations of NIBEM.

5.4.2. Data analysis Fig. 11(a) plots the mean NIBEM central value versus the
number of counts and Fig. 11(b) plots the average NIBEM radius versus the numbers
of counts, both for the region with a 1.5:1 activity ratio. Fig. 11(c) plots the mean
CL in 3 regions with 1:1, 1.5:1 and 2:1 activity ratios versus the number of counts.

(a) (b) (c)

Figure 11: (a) Mean NIBEM central value in the 1.5:1 region as a function of the
simulated number of counts, (b) Radius of the NIBEM reconstructed interval in the
1.5:1 region as a function of the simulated number of counts, (c) Mean CL in the 1:1,
1.5:1 and 2:1 regions.

5.4.3. Results Fig. 11(a) suggests that the mean central value in the 1.5:1 region
increased linearly with the number of counts. Fig. 11(b) suggests that the mean
NIBEM statistical variation estimate (radius) follows the same trend. Fig. 11(c)
highlights the fact that the NIBEM reconstructed intervals estimated stable and
reliable confidence intervals for the 3 investigated regions. However, Fig. 11 c)
shows that if the number of counts (i.e. the signal-to-noise ratio) is high enough
(approximately 1M here), then the mean CL remains stable and higher than 90%,
whatever the activity level and size of the ROI in the object.
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6. Discussion

We have proposed here a new original reconstruction algorithm for Positron Emission
Tomography. NIBEM is an adaption of the widely used iterative reconstruction
algorithm ML-EM based on a directed interval arithmetic. One of its specificities
lies in the fact that the projection operator used is interval-valued because it is based
on a non-additive aggregation operator.

The main advantages of reconstructing interval-valued instead of precise activity
values concern the properties of the reconstructed intervals. Indeed, we showed that
the radius of these intervals can be used as a statistical variation predictor. In other
words, it is now possible to replace the high number of statistical repetitions of ML-EM
needed to estimate the reconstruction uncertainty by only one NIBEM reconstruction.
The simulations also suggest that the reconstructed intervals might be interpreted as
confidence intervals associated with the true value of the activity of each pixel. It
is also important to underline that the presented method only focuses on providing
an estimate of the statistical uncertainty. However, if uncertainties associated with,
for instance, injected activity, scanner sensitivity, patient physiology, scatter estimate,
can be quantified, they could also be integrated in the proposed framework. NIBEM
is also fully compatible with Time-of-Flight (ToF) framework (Lewellen, 1998). This
would result in a reduction in the estimated uncertainty represented by the interval
lengths.

NIBEM has a potential scope of applications in patient monitoring in oncology
and in neurodegenerative disease early diagnosis. Indeed, comparing two image
values at two different times, or comparing the reconstructed activities of two ROI
in the same image would be greatly facilitated by the availability of confidence
interval associated with each reconstructed voxel value, combined with a procedure
for comparing intervals. Such procedures have already been proposed in the relevant
literature (Perolat et al., 2015, Denœux et al., 2005). Further studies are now necessary
to thoroughly investigate the behavior of reconstructed intervals provided by NIBEM,
to develop appropriate statistical tests in order to decide whether two sets of intervals
measured in two different ROI are different, and to model effects beyond noise and
image discretization in the NIBEM framework.
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