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Une contrainte de circuit adaptée aux tournées multiples

Il existe de nombreuses applications réelles contenant un problème de tournées de véhicules. La programmation par contraintes permet d'aborder ces problèmes de façon efficace. Des contraintes de circuits ont été définies pour traiter du problème de voyageur de commerce (TSP) ou de tournées de véhicules (VRP). Ces contraintes sont basées sur la recherche d'un circuit hamiltonien dans un graphe. Dans cet article, nous nous intéressons au problème plus général de tournées multiples dans lequel on cherche à couvrir une partie du graphe par un ensemble de circuits de coût minimal. Nous proposons une nouvelle contrainte globale basée sur la recherche de circuits élémentaires disjoints dans un graphe. Contrairement aux contraintes existantes, on ne cherche pas un circuit hamiltonien mais un ensemble de circuits de Steiner. Après avoir défini cette contrainte, nous montrons que le filtrage au bornes est NP-difficile. Nous proposons donc une méthode de filtrage incomplète basée sur la recherche d'une borne inférieure d'un circuit de Steiner.

De nombreux problèmes réels peuvent être ramenés à des problèmes de tournées. Les problèmes de tournées forment une grande famille dont les deux représentants les plus connus sont le problème du voyageur de commerce (TSP ) et le problème de tournées de véhicules (VRP ). Le premier consiste à trouver un circuit hamiltonien de coût minimum dans un graphe et le second est sa généralisation à plusieurs circuits avec un sommet dépôt commun. Ces problèmes se déclinent souvent avec d'autres contraintes comme par exemple, des fenêtres de temps ou des précédences sur les sommets du graphe ou encore des contraintes de taille sur les circuits. Tous ces problèmes sont NP-difficiles.

Les problèmes de base (sans contraintes particu- * Papier doctorant : Nicolas Briot 1 est auteur principal.

lières) ont été étudiés de manière intensive en recherche opérationnelle. Ainsi, les méthodes de résolution exactes les plus efficaces actuellement sont basées soit sur la programmation dynamique soit sur la programmation linéaire en nombres entier (ILP ). L'ajout de contraintes spécifiques au problème peut rendre l'approche ILP insuffisante du point de vue de l'expressivité ou de la résolution. La programmation par contraintes (CP ) offre un cadre général plus à même de capturer et exploiter ces contraintes spécifiques pour résoudre le problème. Pour les problèmes de tournées, des contraintes de recherche de circuits dans un graphe ont été créées, mais elles ne suffisent pas toujours. Comme pour le problème du circuit de Steiner où l'ensemble de sommets à couvrir n'est pas fixe.

Après un rapide survol des principes de la programmation par contraintes, cet article énumère les contraintes de circuits ainsi que les principaux algorithmes de filtrage qui existent à ce jour. Nous étudions leurs limites et proposons une nouvelle contrainte capable d'y répondre. Nous montrons la complexité de la nouvelle contrainte et nous donnons les premiers algorithmes de filtrage.

Préliminaires

En CP, chaque variable x ∈ X est associée à un domaine dom(x) qui correspond à l'ensemble des valeurs que peut prendre la variable. Les domaines sont restreints par un ensemble de contraintes C. Une contrainte est une relation qui porte sur un ensemble de variables et qui définit l'ensemble des valeurs que peuvent prendre simultanément les variables. Une so-lution au problème est donnée quand tous les domaines sont réduits à un singleton (les variables sont alors instanciées) et quand toutes les contraintes sont satisfaites. Une contrainte est satisfaite si l'ensemble des valeurs prises par les variables satisfait la relation.

En CP, des contraintes dites globales permettent de capturer une partie de la structure combinatoire d'un problème. Chacune de ces contraintes est associée à un algorithme de filtrage qui va détecter des valeurs impossibles dans le domaine des variables. Il est important que le filtrage soit rapide et efficace. Pour cela, plusieurs niveaux de filtrage ont été définis. La cohérence d'arc généralisée (GAC) est un haut niveau de filtrage qui traite les contraintes indépendamment.

Définition. Étant donné une contrainte c ∈ C qui porte sur les variables (x 1 , ..., x n ) de domaines respectifs dom(x 1 ), ..., dom(x n ), la contrainte c est cohérente d'arc généralisée (GAC) si et seulement si

∀x k k ∈ 1..n et ∀v ∈ dom(x k ), il existe un tuple (v 1 , ..., v, ..., v n ) avec v i ∈ dom(x i ) qui satisfait la contrainte.
Appliquer GAC peut être exponentiel sur certaines contraintes globales. Moins forte, la cohérence aux bornes (BC) peut être une option plus abordable.

Définition. Étant donné une contrainte c ∈ C qui porte sur les variables (x 1 , ..., x n ), la contrainte c est cohérente aux bornes (BC) si et seulement si ∀x i ∈ c : les tuples (v 1 , ..., LB(v i ), ..., v n ) et (v 1 , ..., U B(v i ), ..., v n ) satisfont la contrainte avec LB(x k ) (resp. U B(x k )) la valeur minimale (maximale) de dom(x k ) et v j , v j (j = i) des nombres dans l'intervalle [LB(v j ), ..., U B(v j )].

Les contraintes de circuit

Considérons un graphe orienté G = (V, A, c), avec V = {1, ..., n} l'ensemble des sommets et A l'ensemble des arcs valués par une fonction de coût c.

En CP, la recherche de circuits hamiltoniens dans G peut être modélisée en posant des contraintes globales sur un ensemble de variables décrivant le successeur de chaque sommet.

Pour tout sommet i ∈ V , notons N ext i , la variable qui représente le sommet successeur du sommet i. Le domaine dom(N ext i ) correspond à l'ensemble des sommets adjacents à i dans le graphe, c'est-à-dire j ∈ dom(N ext i ) si et seulement si (i, j) ∈ A.

Par définition, les variables successeurs N ext i décrivent un sous-graphe orienté. Pour les graphes non-orientés, une arête peut être représentée par deux arcs entre les deux sommets. Dans ce cas, la recherche d'un cycle dans un graphe non-orienté correspond à la recherche d'un circuit dans le graphe orienté équivalent. Dans la suite, nous désignerons indifféremment par TSP le problème du voyageur de commerce orienté (symétrique) ou non-orienté (asymétrique).

La contrainte

Circuit(N ext 1 , ..., N ext n ) [START_REF] Beldiceanu | Introducing global constraints in CHIP[END_REF] est satisfaite si et seulement si l'ensemble des arcs définis par {(i, N ext i ) ∈ A} forme un circuit hamiltonien dans G.

Établir la GAC pour cette contrainte est NP-difficile puisque cela revient à chercher des circuits hamiltoniens dans un graphe.

Des approches incomplètes ont donc été proposées pour le filtrage de la contrainte Circuit. Premièrement, la contrainte requiert que deux sommets n'aient pas le même successeur. Cette propriété correspond à la contrainte AllDifferent(N ext 1 , ..., N ext n ) qui possède un filtrage GAC efficace. Deuxièmement, l'élimination des sous-circuits a été proposée dans Pesant et al. [START_REF] Pesant | An exact constraint logic programming algorithm for the traveling salesman problem with time windows[END_REF] et Caseau et al. [START_REF] Caseau | Solving small tsps with constraints[END_REF]. L'algorithme interdit les affectations du type N ext i = j si l'arc (i, j) provoque un sous-circuit dans le sous-graphe induit par les arcs {(i, N ext i ) | N ext i est instanciée}. Il existe aussi un algorithme de filtrage moins utilisé basé sur la recherche de séparateur de graphes (voir [START_REF] Latife | A filter for the circuit constraint[END_REF]).

Une version de la contrainte prenant en compte le coût du circuit a été proposée en premier par Focacci et al. [START_REF] Focacci | Solving TSP through the integration of OR and CP techniques[END_REF][START_REF] Focacci | Cost-based domain filtering[END_REF][START_REF] Focacci | Embedding relaxations in global constraints for solving TSP and TSPTW[END_REF] Les contraintes de circuit présentées ici sont limitées à la recherche d'un circuit hamiltonien. Elles s'appliquent donc assez bien à des problèmes comme le TSP, le TSP avec fenêtres de temps, etc. Modéliser un problème plus général comme le VRP avec une contrainte de circuit nécessite une modélisation plus complexe. La figure 1 illustre la transformation nécessaire pour passer d'un VRP à un TSP et pouvoir ainsi utiliser une contrainte de circuit. Cette modélisation impose d'avoir au moins un sommet fixé dans chaque circuit (ici, le sommet dépôt), ce qui n'est pas forcément le cas pour certains problèmes de couverture de sommets.

Les contraintes de circuit hamiltonien ne peuvent 3 La contrainte WeightedSubCircuits Dans cette section, nous proposons une nouvelle contrainte qui répond aux limites des contraintes de circuit présentées précédemment. La nouvelle contrainte cherche au plus K circuits élémentaires disjoints de coût minimum couvrant une partie du graphe. Un circuit élémentaire est un circuit qui passe une et une seule fois sur chaque sommet du circuit. Dans la suite, nous admettons qu'une boucle sur un sommet est un circuit élémentaire (composé d'un arc).

Soit G = (V, A, c) un graphe orienté avec V = {1, . . . , n} l'ensemble des sommets, A = {(i, j) | i, j ∈ V } l'ensemble des arcs et la fonction de coût c : A → N associée à chaque arc de G.

Définition. Étant données les variables :

-Set k ∀k ∈ {1, .., K}, une variable ensembliste représentant les sommets de G qui sont dans le k ème circuit. On a dom(Set k ) = 2 V (l'ensemble des parties de V ). -Set dummy , la variable ensembliste représentant l'ensemble des sommets exclus de tous les circuits.

dom(Set dummy ) = 2 V -N ext i ∀i ∈ V , représente le sommet successeur du sommet i. dom(N ext i ) ⊆ V . -Z et Cost k ∀k ∈ {1, .
., K} des variables entières qui représentent respectivement le coût total des circuits et le coût du circuit k.

La contrainte WeightedSubCircuits, notée

WSC[G]({Set k } k=1..K , Set dummy {N ext i } i=1..n , {Cost k } k=1..K , Z) (1)
est satisfaite si et seulement si les conditions suivantes sont respectées :

1. ∀k, k ∈ 1..K ∪ dummy, (k = k ⇒ Set k ∩ Set k = ∅) ; 2. Set 1 ∪ ... ∪ Set K ∪ Set dummy = V ; 3. ∀k ∈ 1..K : -si Set k = ∅ alors Cost k = 0.
-sinon, G[Set k ] le sous-graphe de G induit par l'ensemble de sommets Set k et par l'ensemble d'arcs {(i,

N ext i ) | i ∈ Set k } est un circuit élémentaire de G de coût ≤ Cost k . 4. ∀i ∈ V , i ∈ Set dummy ⇔ N ext i = i ; 5. K k=1 Cost k ≤ Z ;
La contrainte WSC impose un ensemble d'au plus K circuits élémentaires disjoints dans G de coût total ≤ Z. Les conditions 1 et 2 correspondent à une partition des sommets dont certaines parties peuvent être vides. La condition 3 autorise des circuits vides dont le coût associé vaut 0. Si l'ensemble possède au moins un sommet, alors le sous-graphe induit par les sommets de Set k et les arcs {(i, N ext i ) | i ∈ Set k } est un circuit élémentaire de G dont le coût ne dépasse pas Cost k . S'il n'y a qu'un seul sommet i, le circuit est réduit à une boucle de coût c(i, i).

Il faut noter qu'un sommet i est exclu des K circuits si et seulement si la valeur i est dans l'ensemble Set dummy et la condition 4 associe la valeur i à N ext i . À l'inverse, si Set dummy = ∅ alors tous les sommets sont impliqués dans les circuits. De même, si i / ∈ D(N ext i ) alors i doit être dans un circuit. Enfin, Exemple 2. Reprenons le graphe de la figure 2. Pour K = 1 on modélise le problème du circuit de Steiner par le réseau de contraintes suivant : 

-LB(Set 1 ) = {1, 2, 3, 4}, U B(Set 1 ) = V ; -LB(Set dummy ) = ∅, U B(Set dummy ) = V ; -N ext 1 = 2, N ext 2 ∈ {4, 5}, N ext 3 ∈ {1, 6}, N ext 4 ∈ {7, 8}, N ext 5 ∈ {3, 5}, N ext 6 ∈ {4, 6}, N ext 7 ∈ {1, 7} et N ext 8 ∈ {1, 8} ; -Cost 1 , Z ∈ N ; -WSC[G](Set

Décomposition

Pour implémenter le filtrage de la contrainte WeightedSubCircuits, une première approche consiste à remplacer la contrainte par un ensemble de contraintes équivalentes en termes d'expressivité. Cela permet de bénéficier directement des filtrages associés à ces contraintes. Nous verrons par la suite que cet ensemble de contraintes n'est pas équivalent à la contrainte WeightedSubCircuits au niveau du filtrage.

Proposition 1.

WSC[G]({Set

k } k=1..K , Set dummy , {N exti}i=1..n, {Cost k } k=1..K , Z) ≡ AllDifferent(N ext1, ..., N extn) (2) 
∧ Partition(Set1, ..., SetK , Set dummy )

∧ ∀i ∈ V, i ∈ Set dummy ⇔ N exti = i (3) 
∧ ∀i ∈ V, ∀k = 1..K, dummy, i ∈ Set k ⇔ N exti ∈ Set k (4) 
∧ ∀k = 1..K, NoSubTours(Set k , N ext1, ..., N extn) (6)

∧ ∀k = 1..K, i∈Set k c(i, N exti) = Cost k (7) ∧ K k=1 Cost k ≤ Z (8) 
La première contrainte impose que deux variables successeurs ne peuvent pas avoir la même valeur.

La deuxième contrainte concerne uniquement les variables ensemblistes. Rappelons que chaque variable Set k ∀k ∈ 1..K représente l'ensemble des sommets de G présents dans le k ème circuit élémentaire (ou boucle) et la variable Set dummy est l'ensemble des sommets exclus des circuits. Ainsi, chaque sommet est associé à un unique ensemble. La contrainte Partition utilisée ici n'est pas une partition au sens mathématique car elle autorise des ensembles vides.

Les contraintes de channelling (4) et (5) assurent la cohérence entre les variables ensemblistes Set k et les variables de successeurs N ext i .

La contrainte (6) garantit que les sommets de chaque ensemble Set k font partie d'un circuit élémentaire décrit par les variables de successeurs N ext i . Nous utilisons ici une version adaptée de la contrainte de Pesant et al. [START_REF] Pesant | An exact constraint logic programming algorithm for the traveling salesman problem with time windows[END_REF] vue plus haut. Notre contrainte interdit les affectations N ext i = j si l'arc (i, j) provoque un sous-circuit de taille strictement inférieure à

|Set k | dans le sous-graphe induit G[Set k ].
La contrainte [START_REF] Focacci | Solving TSP through the integration of OR and CP techniques[END_REF] garantit que le coût du circuit associé à chaque Set k est majoré par la variable Cost k . On peut définir une contrainte globale dont la portée sera (Set k , {N ext i }, Cost k ) et dont le filtrage correspond à une somme partielle. La contrainte (8) garantit que la somme des coûts des circuits ne dépasse pas Z.

La proposition 1 permet de propager la contrainte WeightedSubCircuits en se basant sur des contraintes existantes ou des variantes relativement proches. Néanmoins, cette approche ne permettra pas d'atteindre le niveau de filtrage équivalent à celui de la contrainte WeightedCircuit. Dans la prochaine section nous montrerons comment améliorer ce filtrage en tenant compte des coûts des circuits.

Filtrage basé sur les coûts

Caseau et Laburthe [START_REF] Caseau | Solving small tsps with constraints[END_REF] ont été les premiers à proposer un algorithme de filtrage basé sur le coût du circuit. Depuis, plusieurs travaux [START_REF] Focacci | Embedding relaxations in global constraints for solving TSP and TSPTW[END_REF][START_REF] Benchimol | Improved filtering for weighted circuit constraints[END_REF] ont montré l'intérêt d'avoir ce filtrage complémentaire. À partir d'une instanciation partielle des variables, le but de cet algorithme est d'avoir une meilleure estimation de LB(Cost k ), de LB(Z) et de détecter certains arcs obligatoires ou interdits dans les circuits.

Les algorithmes de filtrage présentés dans cette section sont appliqués lorsque le graphe G = (V, A, c) respecte la propriété d'inégalité triangulaire faible : Propriété 1. Nous dirons qu'un graphe G(V, A, c) respecte l' inégalité triangulaire faible ssi ∀(i, j) ∈ A, c(i, j) ≤ coût de tout chemin entre i et j dans G. Deuxièmement, si Set k n'est pas instanciée alors les sommets de U B(Set k ) sont partagés en deux catégories. Il y a les sommets de LB(Set k ) forcément impli-qués dans le circuit. Ces sommets sont dit terminaux. Les autres sont les sommets dit potentiels et appartiennent à U B(Set k )\LB(Set k ).

On cherche ici une borne inférieure au coût du k ème circuit élémentaire en sachant que tous les sommets terminaux en font obligatoirement partie. Chercher ce circuit correspond au problème du circuit de Steiner présenté plus haut. La suite est consacrée à l'établissement d'une borne inférieure au coût du circuit de Steiner.

Calcul d'une borne inférieure au coût d'un circuit de Steiner

Comme le MSA pour le problème du voyageur de commerce, le problème de l'arborescence de Steiner (Directed Steiner Tree) est une relaxation du circuit de Steiner. Ce problème correspond à la recherche d'une arborescence de poids min dans un graphe enraciné telle que l'arborescence contient au moins tous les sommets terminaux. C'est une généralisation à la fois du MSA et du problème plus connu de l'arbre de Steiner (Steiner Tree Problem) dans les graphes non-orientés.

Malheureusement, les problèmes de l'arborescence et de l'arbre de Steiner sont NP-difficiles [START_REF] Watel | Approximation de l'arborescence de Steiner[END_REF][START_REF] Frank | The Steiner tree problem[END_REF]. Il n'est donc pas envisageable d'utiliser ces relaxations pour trouver une borne inférieure au circuit de Steiner dans notre algorithme de filtrage. On peut faire la même remarque pour le problème d'assignement.

Nous allons également montrer que raisonner uniquement sur le sous-graphe induit par les sommets terminaux est incorrect. Par exemple, la figure 7 illustre le MSA sur le graphe G * . Le graphe G * est construit avec les sommets obligatoires déjà associés à un circuit (en rouge plein) et les sommets qui feront partie d'un circuit (en cercle rouge). Les sommets dans U B(Set dummy )\LB(Set dummy ) (en cercle bleu) sont aussi pris en compte dans la construction : l'arc (i, j) est crée car le chemin (i, k, j) existe. Le sommet 0 et les arcs incidents de poids nul sont ajoutés.

Conclusion

Dans cet article, nous nous sommes intéressés aux contraintes de circuits qui sont notamment utilisées pour traiter des problèmes de voyageur de commerce (TSP) ou de tournées (VRP). Nous avons montré que les contraintes Circuit et WeigthedCircuit proposées dans la littérature ne permettent pas de modéliser tous les types de problèmes. Nous avons proposé une nouvelle contrainte nommée WeigthedSub-Circuits qui permet de chercher un ensemble de circuits élémentaires disjoints sur un graphe valué en excluant certains sommets. Nous avons montré que même la cohérence aux bornes (BC) n'est pas atteignable en temps polynomial. Nous avons également montré que les méthodes efficaces proposées pour filtrer la contrainte WeigthedCircuit ne sont pas directement applicables à la nouvelle contrainte. Nous avons proposé une approche originale pour déterminer une borne inférieure aux coûts des circuits ainsi qu'au coût total de ces circuits. Notre approche repose sur une méthode originale pour déterminer une borne inférieure du coût d'un circuit de Steiner. Ces résultats permettent d'envisager plusieurs possibilités de filtrage pour la contrainte WeigthedSubCircuits.
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 1 Figure 1 -Transformation d'un problème de VRP à deux tournées en un problème de TSP. Le noeud dépôt est dupliqué en autant de paires de sommets (départ/arrivée) que de tournées, afin de se ramener à un circuit hamiltonien.

Figure 2 -

 2 Figure 2 -Exemple du problème du circuit de Steiner. En rouge (plein) les sommets terminaux et en bleu (cercle) les sommets potentiels

Figure 3 -

 3 Figure 3 -La solution optimale au problème du circuit de Steiner sur le graphe de la figure 2. Les variables N ext i sont représentées par les flêches et les ensembles par les rectangles.

Théorème 1 .

 1 Établir BC et établir GAC pour la contrainte WSC est NP-difficile. Démonstration. Décider si un graphe G = (V, A, c) admet un circuit hamiltonien de coût inférieur ou égal à une valeur p est NP-complet. Considérons la contrainte WSC[G]({Set 1 , Set 2 }, {N ext i } i=1..n , {Cost 1 }, Z), où LB(Set 1 ) = V , où chaque N ext i a pour domaine l'ensemble des successeurs du sommet i dans A et où Cost 1 ∈ {0..p}, Z ∈ {0..p}. BC vide le domaine de Z si et seulement si le graphe G admet un circuit hamiltonien de coût inférieur ou égal à p.

À

  la manière de la contrainte WeightedCircuit, nous cherchons une borne inférieure à Cost k pour tout k = 1..K. Cost k est la variable qui représente le coût du circuit hamiltonien dans G[Set k ], le sous-graphe induit de G par les sommets présents dans Set k . Par la suite, nous considérons seulement les ensembles tels que |LB(Set k )| > 1, ∀k = 1..K. Suivant l'état de la variable ensembliste, on peut distinguer deux cas. Premièrement, si Set k est instanciée (c'est-à-dire LB(Set k ) = U B(Set k )) alors tous les sommets de l'ensemble et uniquement eux participent au k ème circuit élémentaire de G. Le circuit est donc un circuit hamiltonien de G[Set k ]. Dans ce cas, on peut utiliser les mêmes relaxations que pour WeightedCircuit sur G[Set k ] afin de déterminer une borne inférieure du coût du circuit.

Proposition 2 .

 2 Soit G = (V, A, c) un graphe respectant l'inégalité triangulaire faible et V * ⊆ V . Le coût d'un MSA (ou AP) sur le sous-graphe G[V * ] peut être supérieur au coût du circuit de Steiner couvrant dans G les sommets terminaux de V * . Démonstration. Prenons par exemple le graphe de la figure 4 et V * = {1, 2, 3, 4}. Le coût du MSA sur G[V * ] vaut 22 alors que le coût du circuit de Steiner sur (G, V * ) vaut 21. Afin de pouvoir établir une borne inférieure du coût d'un circuit hamiltonien sur chaque Set k , nous proposons de calculer un MSA (ou AP) dans un nouveau graphe orienté G * = (V * , A * , c * ). Définition 1. Soit G = (V, A, c) un graphe orienté respectant l'inégalité triangulaire faible et V * ⊆ V un ensemble de sommets terminaux. Le graphe extrapolé G * = (V * , A * , c * ) est défini ainsi :-si (i, j) ∈ A alors (i, j) ∈ A * et c * (i, j) = c(i, j). -sinon, s'il existe au moins un chemin entre i et j dans G composé exclusivement de sommets / ∈ V *

Figure 4 -

 4 Figure 4 -Graphe avec des sommet terminaux en rouge (plein) et potentiels en bleu (cercle). En haut : la solution du MSA sur les sommets terminaux. En bas : la solution au circuit de Steiner sur le graphe entier.

Figure 5 -Exemple 3 .Lemme 1 .

 531 Figure 5 -Graphe G * à partir du graphe de la figure 4. En haut, la solution au MSA et en bas la solution au AP sur G * .

Figure 6 -Exemple 4 .

 64 Figure 6 -En haut le graphe avec les sommets terminaux en rouge (plein) et potentiels en bleu (cercle). C est représenté par les arcs en gras. En bas, C * du graphe extrapolé G * sur les sommets terminaux. Le sous-chemin (i, k 1 , k 2 , j) de C est remplacé par l'arc (i, j) dans C * .

Figure 7 -

 7 Figure 7 -Illustration du MSA sur G * '. En rouge (plein et cercle) sont les sommets obligatoires. Les cercles bleus représentent les sommets potentiels et les cruciformes sont ignorés.

  1 , Set dummy , N ext 1 , .., N ext 8 , Cost 1 , Z) sur lequel on cherche à minimiser Z. Dans cet exemple, un seul circuit est recherché et Cost 1 peut être confondu avec Z. La solution optimale est représentée par la figure 3. Le circuit a un coût de 21. Le sommet 7 est exclu du circuit car il fait partie de l'ensemble Set dummy et sa variable successeur N ext 7 est instanciée à l'unique valeur 7 (non représentée sur la figure).