
HAL Id: lirmm-01711585
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01711585

Submitted on 18 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cycle-Based Singleton Local Consistencies
Robert J. Woodward, Berthe Y. Choueiry, Christian Bessiere

To cite this version:
Robert J. Woodward, Berthe Y. Choueiry, Christian Bessiere. Cycle-Based Singleton Local Consis-
tencies. AAAI Conference on Artificial Intelligence, Feb 2017, San Francisco, United States. pp.5005-
5006. �lirmm-01711585�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01711585
https://hal.archives-ouvertes.fr


Cycle-Based Singleton Local Consistencies

Robert J. Woodward,1,2 Berthe Y. Choueiry1

1Constraint Systems Laboratory∗
University of Nebraska-Lincoln, USA
{rwoodwar|choueiry}@cse.unl.edu

Christian Bessiere2
2LIRMM-CNRS

University of Montpellier, France
bessiere@lirmm.fr

Abstract
We propose to exploit cycles in the constraint network of a
Constraint Satisfaction Problem (CSP) to vehicle constraint
propagation and improve the effectiveness of local consis-
tency algorithms. We focus our attention on the consistency
property Partition-One Arc-Consistency (POAC), which is
a stronger variant of Singleton Arc-Consistency (SAC). We
modify the algorithm for enforcing POAC to operate on a
minimum cycle basis (MCB) of the incidence graph of the
CSP. We empirically show that our approach improves the
performance of problem solving and constitutes a novel and
effective localization of consistency algorithms. Although
this paper focuses on POAC, we believe that exploiting cy-
cles, such as MCBs, is applicable to other consistency algo-
rithms and that our study opens a new direction in the design
of consistency algorithms. This research is documented in a
technical report (Woodward, Choueiry, and Bessiere 2016).1

Introduction
Local consistency properties are enforced on a CSP to fil-
ter values from variables’ domains, reducing the size of the
search space. These properties can be enforced either be-
fore (i.e., pre-processing) or during (i.e., lookahead) search.
One such consistency property is Singleton Arc-Consistency
(SAC) (Debruyne and Bessière 1997). SAC performs a se-
ries of singleton tests by assigning a value to a variable and
enforcing arc consistency (AC) on the entire CSP. While
SAC is a strong form of consistency, enforcing it on a CSP
during search is prohibitively costly in practice. To reduce
the cost of SAC, Wallace (2015) proposed NSAC, restrict-
ing AC to the neighborhood of the variable. Bennaceur
and Affane (2001) proposed Partition-One Arc-Consistency
(POAC), a strictly stronger property than SAC. The algo-
rithm for POAC operates similarly to SAC and can both re-
duce the cost of SAC and increase its filtering. Balafrej et al.
(2014) further reduced the cost of POAC by interrupting the
POAC algorithm as soon as filtering has subsided and before
a fixpoint is reached. Their approach results in an adaptive
version of POAC, APOAC.

∗Supported by NSF Grants No. RI-111795 and RI-1619344.
Experiments conducted at the Holland Computing Center of UNL.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://consystlab.unl.edu/our work/StudentReports/TR-UNL-CSE-2016-
0004.pdf

We explore further reducing the cost of POAC by localiz-
ing the variables on which the singleton test is propagated.
As a first step, we mimic the approach of Wallace (2015) for
SAC, restricting POAC to the direct neighborhood of each
variable. Then, we explore a completely new direction: we
restrict POAC to cycles in which a variable participates, the
rationale being that cycles channel propagation and are thus
likely to expose inconsistencies. We propose to use the cy-
cles in a Minimum Cycle Basis (MCB) of a graph, which is
a graph-theoretic concept and can be efficiently computed
(Horton 1987). We discuss the resulting consistency proper-
ties and algorithms and empirically validate our approach.

Background
A Constraint Satisfaction Problem (CSP) is defined by P =
(X ,D, C). X is a set of variables, and each variable xi ∈ X
has a finite domain dom(xi) ∈ D, where (xi, vi) ∈ P if
vi ∈ dom(xi). C is a set of constraints defined as relations
over the domains of the variables. The question is to deter-
mine whether or not there is an assignment to the variables
that satisfies all the constraints. The incidence graph of a
CSP is a bipartite graph where one set of vertices contains
the variables of the CSP and the other set the constraints. An
edge connects a variable and a constraint if and only if the
variable appears in the scope of the constraint. The incidence
graph is the same graph used in the hidden-variable encod-
ing (Rossi, Petrie, and Dhar 1990). We say that (xi, vi) ∈ P
is SAC iff AC(P ∪ {xi ← vj}) is consistent (the singleton
test), where AC(P ∪ {xi ← vi}) is the CSP after assigning
xi ← vi and enforcing Arc Consistency (AC).

Definition 1 (Bennaceur and Affane 2001) A constraint
network P = (X ,D, C) is Partition-One Arc-Consistent
(POAC) iff P is SAC and for all xi ∈ X , for all vi ∈
dom(xi), for all xj ∈ X , there exists vj ∈ dom(xj) such
that (xi, vi) ∈ AC(P ∪ {xj ← vj}).

A cycle basis of a graph is a maximal set of linearly in-
dependent cycles: a cycle in the basis, represented as a set
of edges, cannot be obtained by taking the symmetric differ-
ence (exclusive-or) of the edges of other cycles in the basis
(Horton 1987). In unweighted graphs, a minimum cycle ba-
sis is one with the minimum total length of the cycles. An
MCB is efficiently computed but is not unique. We propose
to generate MCBs on the incidence graph of the CSP.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

5005



Localizing POAC
We introduce two localizations of POAC: Neighborhood
POAC (NPOAC) and Union-Cycle POAC (∪cycPOAC). The
definitions of these properties restrict the singleton test in
Definition 1 to the neighborhood of a variable and to the
union of the MCB cycles in which the variable appears.

We derive our algorithms from POAC-1, which enforces
POAC (Balafrej et al. 2014). The algorithm POAC-1 runs a
singleton test on each variable-value pair of the CSP. In each
test, it enforces arc consistency on the entire CSP. When-
ever the domain of any variable is updated, the entire pro-
cess is repeated: POAC-1 re-runs the singleton test on all
the variables. Our algorithm for enforcing NPOAC (respec-
tively, ∪cycPOAC) modifies POAC-1 in two ways. First, we
restrict the singleton test to the neighborhood of the variable
(respectively, to the union of the MCB cycles in which it
appears). Second, we use a dynamic queue for propagation.
That is, when a variable’s domain is updated, we add only
the variables in its neighborhood (respectively, only those
that appear in its MCB cycles) to the queue. The resulting
algorithms are NPOACQ and ∪cycPOACQ.

Experimental Evaluation
We evaluate our approach in the context of finding the first
solution of a CSP using backtrack search, real-full looka-
head (RFL) (Haralick and Elliott 1980), and dom/wdeg
dynamic variable-ordering. Comparing NPOACQ and
∪cycPOACQ showed that the latter largely outperforms the
former. Thus, we discuss only ∪cycPOACQ below.

We compare the performance of the following consistency
algorithms used for RFL: GAC (GAC2001 (Bessière et
al. 2005)), POAC (POAC-1), APOAC,2 ∪cycPOACQ, and
A∪cycPOACQ (an adaptive version of our new algorithm).
We conduct our experiments on the set of benchmarks used
by Balafrej et al. (2014). We set a time limit of four hours per
instance with 8GB of RAM. The time includes setting up the
instance and generating an MCB, which for most problems,
is not costly. Table 1 reports the total number of instances
for each benchmark (# inst). For each algorithm, we first re-
port the number of instances solved and then the sum of the
CPU time in seconds computed over the instances where at
least one algorithm terminated. When an algorithm does not
terminate within four hours, we add 14,400 seconds to the
CPU time and indicate with a > sign that the time reported
is a lower bound. The best value in a row of the table is bold
faced. The table separates the benchmarks on which adap-
tive versions of POAC perform best (top), the non-adaptive
versions of POAC perform best (middle), and GAC performs
best (bottom). Indeed, as mentioned by Balafrej et al. (2014),
GAC is sometimes sufficient.

The top two categories show that whenever POAC outper-
forms GAC, cycle-based methods are the best (right versus
left column), except for k-insertions (graph coloring). The
bottom category shows that using cycles improves POAC-
based algorithms and cut the distance to GAC.

2Adaptive POAC, using last drop with β = 5% and the initial
maxK = n (Balafrej et al. 2014).

Table 1: Lookahead with POAC-based algorithms
Benchmark GAC POAC ∪cycPOACQ APOAC A∪cycPOACQ

Adaptive POAC the best
TSP-25 15 14 15 15 15
(# inst 15) 4,303.12 >41,382.27 32,654.67 6,152.91 2,418.41
cril 6 7 7 8 8
(# inst 8) >30,458.10 >16,282.45 >16,651.04 2,321.96 1,831.60
QWH-20 10 10 10 10 10
(# inst 10) 2,256.61 6,154.43 3,007.98 2,236.32 2,061.63
k-ins. 17 17 18 18 18
(# inst 32) >17,034.30 >21,639.31 11,814.83 6,129.92 8,940.59

Non-adaptive POAC the best
mug 6 6 8 6 6
(# inst 8) >54,724.38 >29,385.02 13,655.87 >34,207.98 >41,583.97

GAC the best
TSP-20 15 15 15 15 15
(# inst 15) 302.21 2,750.90 3,096.07 593.04 384.13
renault 50 50 50 50 50
(# inst 50) 55.87 277.74 176.28 196.04 155.88
myciel 13 12 12 13 13
(# inst 16) 1,711.93 >21,564.06 >26,196.15 3,118.86 2,555.54

Future Work & Conclusions
In this paper, we advocate the use of cycles to improve the
performance of POAC algorithms and provide empirical ev-
idence of the benefit of our approach. Future work should
extend our approach to other consistency algorithms.

References
Balafrej, A.; Bessiere, C.; Bouyakhf, E.; and Trombettoni,
G. 2014. Adaptive Singleton-Based Consistencies. In
AAAI 14, 2601–2607.
Bennaceur, H., and Affane, M.-S. 2001. Partition-k-AC: An
Efficient Filtering Technique Combining Domain Partition
and Arc Consistency. In CP 01, 560–564.
Bessière, C.; Régin, J.-C.; Yap, R. H.; and Zhang, Y. 2005.
An Optimal Coarse-Grained Arc Consistency Algorithm.
Artificial Intelligence 165(2):165–185.
Debruyne, R., and Bessière, C. 1997. Some Practicable Fil-
tering Techniques for the Constraint Satisfaction Problem.
In IJCAI 97, 412–417.
Haralick, R. M., and Elliott, G. L. 1980. Increasing Tree
Search Efficiency for Constraint Satisfaction Problems. Ar-
tificial Intelligence 14:263–313.
Horton, J. D. 1987. A Polynomial-Time Algorithm to Find
the Shortest Cycle Basis of a Graph. SIAM J. on Computing
16(2):358–366.
Rossi, F.; Petrie, C.; and Dhar, V. 1990. On the Equivalence
of Constraint Satisfaction Problems. In ECAI 90, 550–556.
Wallace, R. J. 2015. SAC and Neighbourhood SAC. AI
Communications 28(2):345–364.
Woodward, R. J.; Choueiry, B. Y.; and Bessiere, C.
2016. Cycle-Based Singleton Local Consistencies. Tech-
nical Report TR-UNL-CSE-2016-0004, CSE, University of
Nebraska-Lincoln.

5006




