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ABSTRACT

For about 10 years, detecting the presence of a secret message hid-
den in an image was performed with an Ensemble Classifier trained
with Rich features. In recent years, studies such as Xu et al. have
indicated that well-designed convolutional Neural Networks (CNN)
can achieve comparable performance to the two-step machine learn-
ing approaches.

In this paper, we propose a CNN that outperforms the state-of-
the-art in terms of error probability. The proposition is in the conti-
nuity of what has been recently proposed and it is a clever fusion
of important bricks used in various papers. Among the essential
parts of the CNN, one can cite the use of a pre-processing filter-
bank and a Truncation activation function, five convolutional layers
with a Batch Normalization associated with a Scale Layer, as well as
the use of a sufficiently sized fully connected section. An augmented
database has also been used to improve the training of the CNN.

Our CNN was experimentally evaluated against S-UNIWARD
and WOW embedding algorithms and its performances were com-
pared with those of three other methods: an Ensemble Classifier plus
a Rich Model, and two other CNN steganalyzers.

Index Terms— Steganalysis, Deep Learning, Convolutional
Neural Network.

1. INTRODUCTION

The first attempt to use Deep Learning methods for steganalysis
dates back to 2014 [1] with auto-encoders. One year later Qian et al.
[2] and Pibre et al. [3] proposed to use Convolutional Neural Net-
works. In 2016, the first results, close to those of the state-of-the-art,
were obtained with an ensemble of CNNs [4]. The Xu-Net1[5] CNN
is used as base learner of the ensemble of CNNs. Other networks
have been proposed in 2017, this time for JPEG steganalysis. In [6],
authors proposed a pre-processing inspired by the Rich Models, and
the use of a big learning database. The results were close to those
of the state-of-the-art. In [7], the network is built with a phase-split
inspired by the JPEG compression process. An ensemble of CNNs
was required to obtain results that were slightly better than those of
the state-of-the-art. In [8], a CNN inspired by ResNet [9] with the
shortcut connection trick and 20 layers also improved the results in
term of accuracy.

These results were highly encouraging but regarding the gain
obtained in other image processing tasks using Deep Learning meth-
ods [10], the steganalysis results were not ”10% better” compared to
the classical approaches that use an Ensemble Classifier [11] with
a Rich Model [12, 13] or a Rich Model with a Selection-Channel
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1In this paper, we reference Xu-Net a CNN similar to the one given in [5]
and not to the ensemble version [4].

Awareness [14, 15]. In 2017, the main trends to improve CNN re-
sults are: using an ensemble of CNNs, modifying the topology by
mimicking the Rich Models extraction process, or using ResNet. In
most of the cases, the design or the experimental effort is very high
for a very small improvement of the performance.

By looking back to the good practices in deep learning as well
as the recent studies, we experimentally designed a CNN for spatial
steganalysis whose efficiency is naturally better than the state-of-
the-art. This is performed without resort to either a design specific
to the nature of images (spatial, jpeg, ...) or a CNN ensemble (which
is known to improve the results). We focused on the design of the
CNN, avoiding the use of tricks known to improve the performances
such as transfer learning [16] or virtual augmentation of the database
[17], etc. Additionally, the proposed network is not sensitive to the
initialization of hyperparameters and thus easily converges, which
will be later discussed in Section 3. We named this network the
”Yedroudj-Net” CNN, and will compare it with Xu-Net [5], Ye-Net
[17] and also with the Ensemble Classifier [11] fed with the Spatial-
Rich-Models [12] for spatial steganalysis.

2. YEDROUDJ-NET

Fig. 1 illustrates the overall architecture of our CNN. The network is
composed of a pre-processing block, five convolutional blocks, and a
fully connected block made of three fully connected layers followed
by a softmax. The network produces a probability distribution over
the two class labels.

The pre-processing block filters the input cover/stego image with
a predefined high-pass filter in order to extract the noise component
residuals. The pre-processed image then feeds the network. Previ-
ous studies [2, 3] observed that without this preliminary high-pass
filter the CNN converges more slowly. This pre-processing largely
suppresses the image content, narrows the dynamic range, and thus
increases the signal-to-noise ratio between the weak stego signal (if
present) and the image signal. As a result, the CNN can learn on a
more compact and robust signal.

Inspired by the benefit of diversity [12], and similarly to [17], we
use the 30-basic high-pass filters from SRM [12], instead of using
only one filter such as [2, 3, 5], in order to pre-process the input
image. Note that the filters kernel values of the preprocessing block,
i.e. the weights, are not optimized/learned during the training. This
pre-processing has been integrated into a lazy fashion, directly into
the CNN, such that the size of all kernels (weighting matrix) are
set to 5×5. Their central part is initialized with the weights of the
SRM kernels and the remaining elements are padded to zero. No
normalization of the kernels’ values is performed.

The rest of our CNN can be divided into a convolutional mod-
ule, dedicated to features representation, that transforms the input
image into a feature vector, and a classification module, consisting



Fig. 1. Yedroudj-Net CNN architecture.

of three fully-connected layers and a softmax layer, which produces
the classification decision (cover or stego).

Similarly to Xu-Net, the convolutional module has five blocks
marked as ’Block 1’ through ’Block 5’ to extract effective features
for cover and stego images discrimination; see Fig. 1. Each block is
made of the following steps:

1. a Convolution Layer. Similar to Xu-Net [5], we set the size
of the convolutional kernels to 5×5 for Blocks 1 and 2, but
we reduced it to 3×3 for the Blocks 3 through 5. For all the
convolution layers and similarly to Res-Net [9] and Xu-Net
[5], no biases are used. Biases terms are set to false on the
convolution layer and moved to the Scale Layer.

2. an Absolute Value activation (ABS) layer. This ABS layer is
only used in Block 1 similarly to Xu-Net. It forces the sta-
tistical modeling to consider the sign symmetry of the noise
residuals. The relevance of this layer was observed in Xu-Net
[5].

3. a Batch Normalization (BN). The BN normalizes the distribu-
tion of each feature to a zero-mean and a unit-variance, and
eventually, scales and translates the distribution. The bene-
fit of using a BN layer is that it desensitizes the training to
the parameters initialization [18], allows the use of a larger
learning rate which speeds up the learning, and improves the
detection accuracy [7]. Note that similarly to ResNet [9], and
in contrast to Xu-Net, we provide a BN layer accompanied by
a scale layer. The latter attempts to learn the scaling and trans-
lation parameters more efficiently. Those two parameters can
be well learned by the independent Scale Layer. Similarly to
ResNet, we observe a very slight increase in the network’s
accuracy.

4. a non-linear Activation layer. For the Blocks 1 and 2, a Trun-
cation function is used to limit the range of data values and
prevent the deeper layers from modeling large values. In-
deed, these values are sparse and not statistically significant.
The formula of the truncation function (Trunc) is given in Eq.
1, and is parameterized by T ∈ N, a threshold:

Trunc(x) =


-T, x < −T,
x, −T ≤ x ≤ T,

T, x > T.

(1)

This outlier suppression process, proposed in [17], can also
be seen as the use of a robustness function. For the Blocks, 3
through 5, the classical Rectified Linear Unit (ReLU) is used
because it yields good performances and its gradient compu-
tation is fast.

5. An Average pooling. This average pooling layer is exclu-
sively used in Blocks 2 through 5. This allows to down-
sample the feature maps, and thus reduces the dimensionality.
For the last block, a global average pooling is performed to
generate a one by one element for each corresponding fea-
ture map, thereby preventing the statistical modeling from
grasping the location information of embedded pixels from
the training data [19]. There is no pooling in the first block to
avoid information loss at the beginning of the network.

The features extracted from the convolutional module feed the
classification module which consists of three fully connected layers.
The number of neurons in the first and second layers is 256 and 1024
respectively, and the last fully connected layer has only two neurons
corresponding to the number of classes of the network’s output. At
the end of this module, a softmax activation function is used to pro-
duce a distribution over the two class labels.

3. EXPERIMENTS

3.1. Dataset and software platform

We use S-UNIWARD [20], and WOW [21], two well-known
content-adaptive methods for the embedding in the spatial domain
and their Matlab implementations (online codes2) with the simulator
for the embedding and a random key for each embedding. We thus
avoid any wrong use of the C++ codes, i.e. a fixed and unique
embedding key, as reported in [3].

Our steganalysis CNN, Yedroudj-Net, is compared with the
state-of-the-art approaches: Xu-Net CNN [5], Ye-Net CNN [17],
and with SRM + EC which stands for the hand-crafted feature set
Spatial-Rich-Model [12] and the Ensemble Classifier [11]. For a fair
comparison, all the involved steganalysis methods are tested on the
same subsampled images from the BOSSBase database v.1.01 [22].
All CNNs experiments were performed with the publicly available
Caffe toolbox [23] with necessary modifications, plus digits V5. All
tests were run on an NVidia Titan X GPU card.

3.2. Training, Validation, Test

Due to our GPU computing platform and time limitation, we conduct
all the experiments on images of 256×256 pixels, similarly to [17].
To this end, we resampled all the 512×512 images to 256×256 im-
ages, using the imresize() Matlab function with the default parame-
ters. Then, our 256×256 BOSSBase is split into two sets, 50% (resp.
the other 50%) of the cover/stego pairs is assigned to the training

2http://dde.binghamton.edu/download/



Fig. 2. Comparison of Yedroudj-Net, Xu-Net, and Ye-Net architectures.

(resp. testing) set. 4000 out of the 5000 training set pairs are ran-
domly selected for training, the remaining 1000 pairs are set aside
for validation. The testing set is left untouched during the training
stage.

During the CNNs training, we fixed a maximum of 900 epochs.
Nevertheless, most of the time, we manually stopped the train-
ing when an over-fitting phenomenon appeared (usually before the
epoch 200 for WOW and 300 for S-UNIWARD), i.e. when the Loss
continues to decrease on the training set but starts to increase on the
validation set. In practice, observing the Loss curve computed on the
validation test leads us to keep two versions of the CNN: the CNN’s
models with minimum Loss (resp. maximum) on the validation set
over the previous five epochs. Those two CNN’s models are evalu-
ated on the testing set, and we report the average error probability of
detection for these two CNN’s models.

For SRM + EC we use the SRM feature set of dimension=34
671 [12], and the Ensemble Classifier [11]. We report the minimum
error probability under equals prior, averaged over 10 tests.

3.3. Hyper-parameters

We apply a mini-batch stochastic gradient descent (SGD) to train
our CNN. The momentum is fixed to 0.95 and the weight decay to
0.0001. No dropout is used. The batch size in the training procedure
is set to 16, due to GPU memory limitation (8 cover/stego pairs).
All layers are initialized using Xavier method: the weights follow
a Gaussian distribution and are chosen so that the variance for both
input and output among each layer remains the same [24]. During
the training, we use the step policy of Caffe to adjust the learning rate
(initialized to 0.01). With this policy, each 10% of the total number
of epochs, our learning rate is decreased by a factor gamma equal
to 0.1. The threshold T , for the Truncations functions (see Equ. 1)
is set to 3 for the first layer and 2 for the second layer, and the 30-
basic high-pass SRM filters are not normalized. Note that the source
codes and the materials files are available at http://www.lirmm.fr/˜
chaumont/DemoAndSources.html.

3.4. Difference between the 3 CNNs

In this section we will briefly discuss the differences between our
CNN Yedroudj-Net, the Xu-Net CNN and Ye-Net CNN, the state-
of-the-art CNNs for the spatial steganalysis. In our comparisons,
Xu-Net is a CNN similar to the one given in [5] that takes images
of size of 256×256 instead of 512×512. We thus suppressed the
average pooling from the first Block, which is a favorable measure

since it avoids an early down-sampling. We also set a ReLU acti-
vation function among the Fully connected layers. Fig.2 shows the
overall architectures of all CNNs. We summarize below the major
similarities and differences between the CNNs:

• Both Yedroudj-Net and Xu-Net use 5 convolution layers.
Yedroudj-Net has nevertheless two times more features (256)
at the input of the fully connected section. Ye-Net has more
convolution layers.

• Both Yedroudj-Net and Xu-Net use a Batch Normalization
layer; the Ye-Net does not.

• Both Yedroudj-Net and Xu-Net use the Absolute Value layer;
the Ye-Net does not.

• Both Yedroudj-Net and Ye-Net use a 30 filter bank for pre-
processing; the Xu-Net does not

• Both Yedroudj-Net and Ye-Net Net use a Truncation activa-
tion function in Block 1 and 2 (We have found ”Experimen-
tally” that using Truncation activation function only in the
Blocks 1 and 2 is the best choice in term of detection accu-
racy, those experiments are not reported here); the Xu-Net
does not.

• Yedroudj-Net has three (resp. Xu-Net two, and Ye-Net one)
fully connected layer.

3.5. Results without using any tricks

3.5.1. General performance comparisons

In Table 1, we report the error probability obtained when stegana-
lyzing WOW and S-UNIWARD embedding algorithms at 0.2 bpp
and 0.4 bpp. The steganalysis methods are Yedroudj-Net, Xu-Net,
Ye-Net, and SRM+EC [11, 12].

Table 1. Steganalysis error probability comparison of Yedroudj-
Net, Xu-Net, Ye-Net, and SRM+EC for two embedding algorithms
WOW and S-UNIWARD at 0.2 bpp and 0.4 bpp.

BOSS 256×256
WOW [21] S-UNIWARD [20]

Steganalysis
Payload

0.2 bpp 0.4 bpp 0.2 bpp 0.4 bpp

SRM+EC [11, 12] 36.5 % 25.5 % 36.6 % 24.7 %
Yedroudj-Net 27.8 % 14.1 % 36.7 % 22.8 %
Xu-Net [5] 32.4 % 20.7 % 39.1 % 27.2 %
Ye-Net [17] 33.1 % 23.2 % 40.0 % 31.2 %



For WOW algorithm, Yedroudj-Net has an error probability 8%
lower (resp. 11%) at 0.2 bpp (resp. 0.4 bpp) compared to SRM+EC.
The results are also favorable for S-UNIWARD steganalysis with an
equal error probability at 0.2 bpp and 2% lower at 0.4 bpp.

Compared to the other CNN algorithms, our proposed CNN
achieves far superior results. Yedroudj-Net is 2% to 6% better com-
pared to Xu-Net for the two embedding algorithms and the two pay-
loads. The results are even better when compared to Ye-Net, where
Yedroudj-Net is 3% to 9% better. Let us note that the two other
CNNs are not always superior when compared to the SRM+EC. To
beat SRM+EC, those approaches require using an ensemble of CNN,
as proposed in [4], or increasing the learning database, as proposed
in [6], and showed in section below.

Note that extreme caution must be taken for the initialization of
the learning rate of the Ye-Net and the management of its evolution
through the epochs. Indeed, a bad initialization prevents the network
from converging. In Yedroudj-Net and Xu-Net, the use of the Batch
Normalization ensures less sensitivity to such a parameter setting.

To conclude on these general comparisons, in a classical clair-
voyant scenario without any channel-awareness, and without us-
ing an ensemble, a larger database, a virtual augmentation of the
database, or a transfer learning, Yedroudj-Net has a clear advantage
over all the state-of-the-art methods.

3.6. Results with a Base augmentation

Many tricks exist for improving the results of CNN but the base
augmentation seems to be a very important measure to apply in order
to better exploit the capacity of Deep Learning approaches.

Table 2. Base Augmentation influence: error probability compari-
son of Yedroudj, Xu and Ye nets on WOW at 0.2 bpp with a learning
base augmented with BOWS2, and Virtually Augmented.

BOSS BOSS+BOWS2 BOSS+BOWS2+VA
Yedroudj-Net 27.8 % 23.7 % 20.8 %
Ye-Net 33.1 % 26.1 % 22.2 %
Xu-Net 32.4 % 30.3 % 30.5 %

In machine learning, and this is also true for CNNs, it is impor-
tant to use a training base large enough to ensure a good generaliza-
tion but also to avoid over-training. Some authors are prone to use
big databases [2, 6, 17] in order to reach the state-of-the-art results.
In the above experiment, we attempt to investigate the improvement
brought by increasing the learning database size without modifying
the testing set. It means that the learning set does not only contain
images of the same kind as in the test set: e.g. the settings of cam-
eras, the scenes of the learning set, can all be different from those of
the testing set. We show the effects of increasing the image database
on the error probability in Table2. To increase the size of our training
set, two scenarios have been tested inspired by [17].

In the first scenario, noted BOSS+BOWS2, we embedded the
payload in the subsampled BOSSBase database v.1.01 [22]. We split
this base into two sets: 50% of the cover/stego pairs to the train-
ing set, the rest to the testing set. Then, 10 000 additional pairs of
cover/stego pair (obtained by subsampling BOWS2Base [25]) were
added to the training set. The learning database now contains 15 000
pairs of cover/stego images minus 1000 pairs from BOSS, set aside
for validation.

In the second scenario, noted BOSS+BOWS2+VA, the database
is virtually augmented by performing the label-preserving flips
and rotations on the BOSS+BOWS2 training set. The size of the

BOSS+BOWS2 training set is thus increased by a factor of 8, which
virtually gives a final learning database made of 112 000 pairs of
cover/stego images plus 1000 pairs from BOSS used for validation.

Table 2 shows the performance comparisons in terms of de-
tection error probability for Yedroudj-Net, Xu-Net [5], Ye-Net
[17], against the embedding algorithm WOW [21] at payload 0.2
bpp. For all algorithms, better performances are achieved using
BOSS+BOWS2 compared to using only BOSSBase. The Yedroudj-
Net obtains the best results and decreases its detection error probabil-
ity by 4%. Ye-Net and Xu-Net respectively decrease their detection
error probability by 7% and 2%. At this point, it was not clear if the
improvement was only due to a lack of data or also because the ad-
ditional images came from the same cameras. We have nevertheless
conducted additional experiments, reported in the paper [26], and it
seems that in order to improve the performance, one must increase
the database with images coming from the same sources and with a
development process respecting the pixels resolutions and ratios.

When virtually augmenting the entire BOSS+BOWS2 learning
set (i.e. BOSS+BOWS2+VA) thanks to the 8 combinations of rota-
tions and flips that do not introduce interpolation, the performances
are again increased. The Yedroudj-Net keeps the best results and
decreases its detection error probability by 7% (Ye-Net decreases it
by 11%, and Xu-Net by 2%) compared to the case of only using
BOSSBase for the training. Comparing to RM+EC [11, 12], whose
error probability is 36.5% with a learning on the BOSSBase, the
Yedroudj-Net obtain an error probability of 20.8% which give an
improvement of 16%. The Ye-Net obtains an improvement of 14%
and the Xu-Net an improvement of 6%.

These tests reveal how important it is to have a large database
when using CNN of 5-7 blocks. The number of parameters (without
taking into account the BN and/or scale) goes approximately from
50 thousand (Xu-Net) to 500 thousand (Yedroudj-Net). Such a huge
number of unknown requires bearing enough samples. The exper-
iments show that the CNNs still do not have enough learning sam-
ples. For a steganalysis of BOSSBase with CNNs of 5-7 blocks,
even 112 000 pairs of images (BOSS+BOWS2 virtually augmented)
is not enough. Consequently, using a bigger base allows our CNN to
achieve better performances even if the convergence time increases.

Using a GPU card of the previous generation (Nvidia TitanX)
on an Intel Core i7-5930K CPU 3.50GHz×12 with 32G of RAM, it
takes less than one day for learning Yedroudj-Net CNN on BOSS-
Base, three days on BOSS+BOWS2, and more than seven days on
BOSS+BOWS2+VA.

4. CONCLUSION

This article presents the evaluation of the Yedroudj-Net CNN, de-
signed for spatial steganalysis. This CNN gathers some recent de-
sign propositions in order to build a simple approach beating the
state-of-the-art approaches in a classical clairvoyant scenario with-
out knowledge of the selection channel.

The key to the steganalysis performance improvement is the
combination of the following elements: a bank of filters for the pre-
processing step, a Truncation activation function, and a Batch Nor-
malization associated with a Scale Layer.

An additional experiment dealing with the problem of the learn-
ing base size showed that by adding BOWS2 and virtually augment-
ing the learning database, the results become extremely satisfactory.
An experiment on WOW at 0.2 bpp led to an error probability de-
crease of 16% compared to the RM+EC.
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