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Motion Control of a Hovering Biomimetic

4-fin Underwater Robot

Taavi Salumäe, Ahmed Chemori, and Maarja Kruusmaa

Abstract

U-CAT is a highly maneuverable biomimetic 4-fin underwater robot for operating in confined spaces.

Because of its novel mechanical design and specialized purpose, the traditional autonomous underwater

robot control methods are not directly applicable on U-CAT. This paper proposes a novel modular control

architecture that can be adopted for different application scenarios. Within this framework we implement

and test several 2-degree of freedom (DOF) controllers and discuss the test results. Furthermore, we

describe and implement an actuation coupling method by prioritizing the selection of DOF with fuzzy

membership functions and demonstrate the approach for 3-DOF control. The results show that the

proposed DOF prioritization approach helps to improve tracking both in the case of human in the loop

and automatic control. Finally, we describe long duration field experiments in realistic environmental

conditions.

I. INTRODUCTION

AUTONOMOUS underwater vehicles (AUVs), such as Iver-2 [1], Bluefins [2] and Remus

[3], are nowadays widely used in many research areas and industries. For example the

oil and gas industry uses them for surveys to locate deposits and to inspect pipelines or rigs

[4], navies use them for intelligence and mine countermeasures [5]; and archaeologists use

them to locate historical shipwrecks [6]. The large variety of applications of AUVs motivates

researchers to develop more and more advanced control systems and technologies for these

vehicles. The more advanced control systems in turn shift AUV application towards even more

complex underwater environments. In many of these environments, traditional vehicle designs
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Fig. 1. View of U-CAT biomimetic 4-fin AUV.

are no longer optimal. Traditional AUVs are actuated by propellers and they are relatively large

to accommodate high-tech suites. Such vehicles are not well suited to be used in shallow waters,

confined areas, in proximity of divers and animals or close to bottom.

The use of biomimetic underwater robots presents an alternative to traditional propoller driven

vehicles by using novel thrust creating mechanisms, such as fins, paddels and flippers. Some

recent examples of bio-inspired underwater locomotion include mimicking the swimming of fish

to create AUVs for mariculture monitoring [7], mimicking the locomotion of snakes in water to

develop amphibious vehicles [8] and studying the diving of birds to build aerial-aquatic robots

[9]. One class of fin-actuated AUVs consists of multi-fin vehicles often referred to as ”turtle-like

robots”. These vehicles use multiple oscillating fins actuated either in 1 DOF [10]–[13], 2DOFs

[14]–[18] or 3DOFs [19]. Most of them use 4 fins, but in some cases the number of actuated fins

is different [13]. Some of these studies have a goal to precisely mimic the turtle-like motion [14]–

[16], [19], [20] while in others the biological similarity has lower priority compared to practical

feasibility [10]–[13], [18], [21]. With different multi-fin underwater vehicle designs, researchers

mainly hope to achieve high maneuverability, quiet and efficient thrust generation as well as

reliable or even amphibious locomotion [11], [13], [15]. Alternative locomotion approaches

might work better in difficult conditions, such as close to the bottom, next to shore or near water

plants and animals.

As the locomotion principle of multi-fin vehicles is very different from that of propeller-

actuated vehicles, traditional unmanned underwater vehicle (UUV) motion control methods often

cannot be directly applied. One main peculiarity of fin-based actuation is the oscillating thrust

generation - it is not possible to create constant thrust and this has a strong impact on the control
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stability. The thrust vector of fins is also much less reactive. While the rotation speed of the

propeller can usually be changed in a fraction of a second, the thrust of a fin depends on the

oscillation amplitude and frequency which cannot be changed equally fast. Moreover, the thrust

of fins cannot be as easily and precisely estimated as it is a complex function between oscillation

parameters, bending modes and harmonic oscillations of fins and other variables. Next, and likely

the biggest difference between highly maneuverable traditional UUVs and multi-fin UUVs, is

that the former usually use a separate actuator for controlling each degree of freedom whereas the

latter are mostly under-actuated. Multi-fin UUVs instead use different combinations of actuator

configurations in order to achieve motion in the available DOFs. This creates strong coupling

between the control of different DOFs. For example, when such a vehicle is diving at full speed,

the fins are pointed straight up. This configuration completely prevents a surge action to be done

at the same time, as this requires the fins to be oriented horizontally.

In this paper we propose a motion control system for biomimetic vehicles actuated by 4

pitching fins. We demonstrate the implementation and functionality of the motion control system

on a novel 4-fin biomimetic AUV U-CAT (Fig. 1). U-CAT is an agile 6-DOF maneuverable

vehicle developed for autonomous and semi-autonomous inspection of confined spaces, such as

shipwrecks, caves, submerged buildings etc. With regards to the mechanical locomotion principle,

U-CAT presents a slight departure from previous works; in task/mission directive, the vehicle

is fully novel. We propose a control architecture suitable for semi-autonomous and autonomous

control of the vehicle, more specifically:

• a modular, easily extensible control architecture that allows rapid and simple implementation

and testing of different controllers for different control scenarios.

• comparison of four controllers for simultaneous control of 2 DOFs

• a method for dealing with actuation coupling by prioritizing the action of different DOFs

• simultaneous control of 3 DOFs in 1) manual control with 2 DOF autopiloting, i.e. remotely

operated vehicle (ROV) mode; 2) fully autonomous control (AUV mode)

• demonstration and validation of the performance for a real underwater mission

This paper build upon our previous work published on IEEE conferences [22] and [23]. These

articles have outlined our approach to the control architecture along with partial test results. This

paper extends the conference articles by adding:

• more detailed description of the implementation and validation of the whole control archi-
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tecture,

• model identification of the U-CAT robot,

• description, implementation and experimental comparison of different model-based con-

trollers for selecting the most suitable one for U-CAT,

• experimental validation of the whole system on real underwater robot missions.

The article is structured as follows: section II gives an overview of multi-fin vehicles and

their control systems. Section III describes the U-CAT vehicle, its modeling and the model

identification. Section IV describes the proposed control architecture including the priority man-

agement strategy. Section V compares 4 different controllers to choose the most suitable one for

controlling U-CAT. Section VI shows the importance of DOF priority management and validates

the control system for remotely operated vehicle mode and fully autonomous mode. Section VII

validates the system on two real-life missions. Conclusions are presented in Section VIII.

II. MULTI-FIN UNDERWATER VEHICLES AND THEIR CONTROL SYSTEMS

Most multi-fin vehicles aim to mimic aquatic locomotion of turtles. Marine turtles produce

thrust with a complex motion of their forelimbs by using them as rolling and pitching wings

creating lift-based forces, as paddles or rows creating mainly drag-based forces, or as a combi-

nation of both of them [24]. One of the earliest examples of mimicking such thrust generation

can be seen on Turtle 2005 [14] of Kogakuin University that uses rolling and pitching fore-

fins for propulsion and pitching hind-fins for control. The same configuration is used by the

robot turtle of Nanyang Technological University [15]. Some other examples are Finnegan the

RoboTurtle [16] which uses 4 fins instead of 2 giving the robot a hovering capability, Naro-

tartaruga [19] robot whose fins also include additional yaw motion and Gen series robots of

Naval Research Laboratory [20] which use slightly different so called active shape deformation

fins [17]. Turtle-like motion has even been mimicked using smart soft composite materials [25].

Some of these robots have better maneuverability than most of the traditional AUVs. However,

due to the specifics of the turtle-like actuation, all these robots perform much better in surge

motion than in other degrees of freedom. They have none or poor hovering capability and are

thus not well suited for tasks such as wall-following or close-up inspection and investigation

of confined spaces, in which the vehicle must perform well along each DOF. Another major

disadvantage of turtle-mimicking robots is the complexity of multiple-DOF fin actuators. Due

to their complex mechanical design such actuators are usually large and less reliable.
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U-CAT generates thrust by using only the pitching motion of fins. This allows us to reduce

complexity and size of the fins as each fin is driven only by a single motor. Pitching fins have

previously been used also on Madeleine of Nekton Research [10], [26], its commercial successor,

an amphibian ROV Transphibian of IRobot [11] and a vehicle developed by Robotics Institute of

Beihang University [12]. All these vehicles have 4 pitching fins whose rotation axes are parallel

[10] or very close to parallel [11], [12]. Such fin configuration allows to control the robots in

maximum 5 DOFs, leaving out the sway motion i.e. they can not move sideways. U-CAT, on the

contrary, has a different mechanical configuration that also makes the sideways motion possible,

thus giving the vehicle all 6 controllable DOFs.

There are also some other, slightly different vehicles that use pitching fins. An amphibious

robot of Peking University [21] uses fins that are actuated by two parallel motors through a

special five-bar link mechanism. The mechanism allows the fins to be used for thrust generation

or as legs for walking on the ground. Another vehicle of Peking University [18] has fins whose

rotation axes can be reoriented using 4 additional motors. This vehicle is extremely highly

maneuverable and can be used to control 6 DOFs, but this comes at a price of doubling the

number of motors. The amphibious Aqua vehicle of McGill University [13] uses 6 pitching fins

instead of 4. The additional two fins help to improve the crawling performance, but are excessive

when only aquatic locomotion is desired.

Motion control systems of most of multi-fin vehicles are not as profoundly developed as

their mechanical designs, however, there are some exceptions. Many of the authors have only

presented open-loop or manual control [12], [14], [15], [18], [21]. Their main contribution lies in

the development and analysis of the gait generation, for example using central pattern generators

[12], [18], [21]. Some studies have been conducted about the control of non-hover-capable turtle-

like vehicles during dominant surge motion. [20] demonstrates model free control for only 1 DOF

at the same time, [19] presents model free control of the angular rate for forward swimming

stabilization. [16] concentrates mostly on mimicking the fin kinematics and maneuvering of

a biological turtle on Finnegan the RoboTurtle, but it presents also results on pitch, roll and

yaw control for different dynamically stable and unstable turning maneuvers. To the best of our

knowledge, there are no studies that concentrate on the automatic position control of 4-fin hover-

capable vehicles. Although [10] claims to have a simultaneous control of different DOFs of the

Madeleine vehicle, the authors have not published the control approach or any experimental or

simulated results yet.
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Advanced position control has been developed for a 6-fin amphibious Aqua vehicle [13]. It is

somewhat similar to the U-CAT in terms of using only pitching fins and being hover-capable. [27]

and [28] present modeling and model-based control of Aqua, but only for a single simultaneous

DOF. In [29] authors also demonstrate multi-DOF control using a combination of model-free PD

and PI controllers for yaw, roll, pitch and heave. They avoid coupling problems by using gain

scheduling depending on the surge speed. Even though authors have reported good trajectory

following, this was achieved by tuning an array of 45 control parameters, making the developed

control approach complex and inextensible. Authors have tried to simplify the process by using

online gain adaption algorithms [30], however the presented results show large deviations from

desired attitude.

As it can be seen from the background overview, many different fin-actuated vehicles have

been developed in recent years. However, the control of these vehicles, especially the position

control of hover-capable vehicles is relatively little studied.

III. U-CAT VEHICLE

U-CAT is a biomimetic underwater vehicle designed for autonomous and semi-autonomous

inspection of confined areas, such as shipwrecks, caves and man-made underwater structures. It

was developed in the framework of the European Commission funded research project ARROWS

[31]. The aim of ARROWS project was to adapt and develop low-cost AUV technologies to

significantly reduce the cost of archaeological operations. U-CAT was designed specifically

to meet archaeologists’ requirements for unmanned shipwreck penetration. It uses fin-based

locomotion to achieve high maneuverability and for quiet and safe locomotion. One unique

feature of U-CAT compared to other mentioned 4-fin vehicles lies in its fin configuration. The

fins are placed such that a thrust force can be created in all the 6 DOFs. This includes sway, which

cannot be controlled with other vehicles using 1 DOF pitching fins, but which is extremely useful

for various video inspection tasks such as wall following. More detailed design justification and

the description of vehicle are presented in [32]. Some preliminary control results for 1 degree

of freedom using non-model-based controllers are published in [22].

U-CAT is 56 cm long and weights approximately 19 kg. Its four fins are actuated by 60 W

Maxon brushless DC motors driven by Maxon Epos motor drivers using sensorless back-EMF

feedback control. The vehicle has an internal battery allowing at least 6 hours of autonomous

operation. The whole control architecture is developed on an internal single-board computer
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Fig. 2. Coordinate systems used in this study. {xb, yb, zb} is the body-fixed coordinate frame and {xe, ye, eb} is the earth-fixed

coordinate frame. Robot’s position is presented as a vector of positions in earth-fixed frame η = [x, y, z, ϕ, ϑ, ψ]T

with ARM Cortex A9 quad-core 1Ghz processor. We use a modular development approach with

ROS middleware. The on-board computer communicates with a remote PC through a custom

connectorless tether mounted on top of the vehicle. In the end of the tether there is a waterproofed

WiFi router, creating an ultra short range underwater WiFi link. We use the remote PC only for

forwarding remote controller actions in ROV mode, and accessing the on-board computer for

debugging. As a remote controller we used a Sony Playstation DualShock 3.

In this paper we use the following sensors of U-CAT:

• Invensense MPU-6050 IMU for measuring the robot’s attitude. In the current study only yaw

measurement is directly used as a feedback in control loop. The roll and pitch measurements

are used only for coordinate transformations. The sampling frequency is 5 Hz.

• GEMS 3101 analog output pressure sensor with 18-bit DAQ for measuring depth. The

sampling frequency is 10 Hz and the resolution is 0.6 mm.

U-CAT has some additional devices not used in this study, but which will be used in fur-

ther developments: Applicon acoustic modem for underwater communication and localization;

two active buoyancy control modules; custom-developed hydrophone array for acoustic beacon

localization; custom-made echosounder array for close-distance obstacle avoidance; Point Grey

Chameleon camera; and various system health monitoring sensors.

A. Kinematics

U-CAT has four fins placed at 30 degree angle with respect to the vehicles center-line on

the horizontal plane. Each fin i is separately actuated using a sinusoidal input with parameters:
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a) b) c)

d) e) f)

Fig. 3. Motions of the U-CAT in the hovering mode: a) surge; b) sway; c) heave; d) roll; e) pitch; f) yaw.

Ai - oscillation amplitude; fi - oscillation frequency and Φi - oscillation offset. The oscillation

amplitude and frequency modify the magnitude of thrust while the oscillation offset modifies

the direction of thrust. By combining the motions of all four fins it is possible to move the robot

in all the three directions and to rotate the robot around all the three axes (Fig. 3).

We have identified 2 main modes of locomotion which we call 1) cruise mode and 2) hovering

mode. In cruise mode the fins are generally pointing in the same direction (as illustrated on Fig.

2 for surge motion). The surge motion in cruise mode is achieved by actuating all the fins at

the same time. The robot can be oriented by slightly modifying the offset or thrust of some

of the fins. The cruise mode is useful when fast forward motion is desired, however, it is not

practical for slow maneuvering and hovering at single spot. The reason is that it is not possible

to create thrust forces in any direction without reorienting fins. For example when the vehicle is

swimming forward and then needs to slightly move backwards, it would have to reorient all its

4 fins 180 degrees, making it impossible to precisely keep station. To avoid this problem during

tasks that require precise maneuvering, such as close-up inspection of an artifact, we use the

hovering mode. During hovering mode the front and back fins are generally pointing towards

each other. Such a fin configuration allows for force in any direction and torque around any axis

to be created without fin reorientation (see Fig. 3).

The current article concentrates only on the control of the robot in the hovering mode. The

oscillation frequency of the fins is fixed at an experimentally identified optimum value and the

desired thrust is being achieved by actively changing the actuation amplitude. The fin oscillations
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are synchronized to have a zero phase shift. Precise synchronization is important to reduce

irregular motions of the vehicle resulting from oscillating thrust vectors. When the fins are all

oscillating in the same phase, the vehicle oscillates mostly in the heave direction.

B. Dynamics

We model the rigid body dynamics of the vehicle in 6 DOFs using Fossen’s robot-like vectorial

model of marine craft [33]. The Fossen’s model is well suited for computer implementation and

control systems design. Therefore it is widely used in underwater robotics, but also in submarine

and surface vessel studies. The 6 DOF model is represented as:

Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ (1)

η̇ = J(η)ν (2)

where η = [x, y, z, ϕ, ϑ, ψ]T is the vector of positions and orientations in the earth-fixed frame,

ν = [u, v, w, p, q, r]T is the vector of linear and angular velocities in the body-fixed frame and

J(η) ∈ R6×6 is the transformation matrix mapping from the body-fixed frame to the earth-

fixed frame. The systems coordinates are presented on Fig. 2. M =MRB +MA is the system

inertia matrix, where MRB is the inertia matrix of the vehicle and MA describes the added mass

resulting from the accelerating volume of water surrounding the robot. C(ν) = CRB +CA is

the Coriolis-centripetal matrix which again takes into account the rigid body and the added mass.

D(ν) is the damping matrix, g(η) is the vector of gravitational/buoyancy forces and moments

and τ = [X, Y, Z,K,M,N ]T is the vector of control inputs. τ can be represented as a resultant

force composed of forces Fi with which each fin i acts on the rigid body.

C. Fin forces

To successfully control the vehicle using model-based approaches, we need to know the

relationship between the fin actuation parameters and the generated thrust force. The forces

generated by the fins depend on complex interactions between the viscoelastic body and the

hydrodynamics of the surrounding water. We have previously studied the analytical modeling

of these interactions [34], however, due to complex nature of the system, analytical models

are either too imprecise or not suitable for using in real-time control. Therefore, we create an

empirical model of the fin thrust.
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The average magnitude Fi of thrust Fi of each fin i is described as

Fi = ξ(Ai , fi) (3)

where Ai is the oscillation amplitude and fi is the oscillation frequency. We identified the

relationship experimentally by mounting one of the U-CAT’s fin modules on a waterproof 4-axis

force/torque sensor and actuating it with different amplitudes and frequencies. Fig. 4 plots the

average thrust during 10 s experiment period. We fitted the experimental results to gain the

relation (3).

To illustrate the strong oscillating nature of the fin locomotion, Fig. 5 plots the example of

forces generated by the fins over 2 oscillation periods. The plot shows that the fins do not

generate fluctuating forces only in the desired direction. They also generate lateral forces whose

amplitude is occasionally exceeding the amplitude of thrust. Large lateral forces are the main

reason why the fin motion has to be precisely synchronized. The oscillating motion also has to

be taken into consideration during controller implementation as it can initiate strong instability.
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D. Model identification

The initial dynamic parameters in (1) were found using both analytical and computational

methods. Using experimental model identification, the most important of these parameters were

adjusted.

The geometrical properties of the vehicle are found from a detailed 3D model drawn in

SolidWorks CAD software. The model includes all the internal and external components of

the robot and also the density of the larger components. The 3D model allowed us to precisely

calculate all the components of the U-CAT’s inertia matrix MRB, the Coriolis-centripetal matrix

CRB, and the gravity and buoyancy vector g(η). The damping is modeled as a hydrodynamic

drag. The drag coefficients in the damping matrix D(ν) are found using a computational fluid

dynamics package called Solidworks Flow Simulation. The inertia MA and Coriolis-centripetal

matrix CA of the added mass are calculated with the help of strip theory [35] using simplified

geometrical representation of the vehicle. Strip theory is a widely used approach in marine

engineering. It can be used to find an added mass of closed 2D contours. The added mass of

contours is summed to find the added mass of the whole body.

To achieve higher modeling precision along the most important DOFs, we experimentally

identified surge, sway, heave and yaw related components of the added mass inertia matrix MA

and drag matrix D(ν). We actuated the robot with a constant known force in a single DOF at

the same time and measured the response. To measure the depth response we used the pressure

sensor, and for yaw, surge and sway response we used the experimental setup described in Fig.

6. The robot was mounted on a highly buoyant bar to constrain its depth, roll and pitch motions.

On the bar there were two contrast markers which were automatically tracked from the video

recorded by the calibrated over-head camera. The custom-made tracking software implemented

in LabVIEW calculated the vehicle’s coordinates on the x-y plane. The robot itself was precisely

tuned to be neutrally buoyant to minimize the effect of the bar on the system dynamics. The

bar was only slightly touching the water surface.

As during each experiment the robot is moving only along a single axis, the dynamics can be

written in a single DOF. For example for the x-axis

(MRB
x +MA

x )u̇+Dxu = τx (4)

The velocity u and acceleration u̇ are taken from the experimental results, total fin thrust τx
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Fig. 6. Experimental setup for model identification and validation. Experiment was conducted in a 25 m swimming pool. The

robot was mounted on a floating bar (2) which was tracked by the overhead camera (1).

in x-direction known from the fin characterization experiment and vehicles inertia matrix’s first

diagonal component MRB
x is equal to the vehicle’s mass. The parameters MA

x and Dx can be

found using the least-squares method over the full experimental data set. We repeated the process

with various different actuation parameters and selected the average of the found coefficients.

To validate the precision of the model we compared the experimentally measured motion and

the model-predicted motion in each degree of freedom. The obtained results for a single actuation

amplitude and frequency are presented on Fig. 7. It can be seen that the model-predicted position

of the robot matches the actual position with a high precision.

IV. CONTROL ARCHITECTURE

We propose a modular, easily extensible control architecture that allows rapid and simple

controller implementation and testing, but which also can be used during a wide range of

different real mission scenarios (see Fig 8). The control architecture is implemented fully in

general matrix form. Matrix form implementation allows to quickly work with different DOFs

without the need to reimplement any parts of the architecture if additional DOF’s need to be

added to the control. The second feature, which simplifies the testing and implementation, is
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that the control architecture is composed of different modules, which all are implemented as

independent ROS nodes. Each node can be easily replaced or modified for different scenarios.

Also, additional nodes can be added for new control scenarios. In the current study the core of the

control architecture is composed of the following nodes: Automatic Control for different DOFs,

Dynamical Model, Priority Management, Force and Torque Calculation, Actuation, Odometry

Estimation, Trajectory Management, and Human Intervention.

The general idea behind the proposed control is that each degree of freedom is separately

and independently controlled by the best controller chosen for this DOF. The output of each

controller is then prioritized using smooth functions, depending on the desired control action, to

reduce the actuation coupling problem. The controllers can be individually tuned and replaced

with any different control method or with manual inputs from the remote controller.

A. Automatic control

The automatic control node includes the controller implementations for each DOF. To choose

the most suitable control approach we have experimentally tested different model-free and model-

based controllers. In section V we present the comparison of the following controllers:
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• PID

• Inverse dynamics (ID)

• Inverse dynamics with nonlinear feedback gains (IDNL)

• Adaptive inverse dynamics (AID)

B. Human intervention

In addition to the automatic control, all DOFs can be controlled manually using a joystick.

Joystick outputs axis values between -1 to 1. These values are proportionally mapped to manual

control input τm. For each DOF, operator can choose which control input the vehicle uses,

manual or automatic.
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C. Priority management

The priority management node offers a solution to the DOF actuation coupling problem. Based

on actuation redundancy, task priority control has been used in robotics to prioritize between

different tasks [36] but as opposed to task priority control, DOF priority control is implemented to

solve the problem of actuation coupling. DOF prioritization strategy works by assigning priorities

to the control actions using smooth functions. To prioritize the DOFs, control input vector τ

elements are multiplied by weight vector p = [px, py, pz, pϕ, pϑ, pψ] elements. The priority of

each DOF varies from 0 to 1. To assign priorities, different sets of laws could be created. Our

tests show that on U-CAT it is best to use laws that assign priorities depending on the control

action of a single DOF. We propose laws that give highest priority to yaw and depth control

when surge action is small. When surge action increases, its priority increases and the priority

of depth and yaw decreases. In principle, the control is modified depending on what motion the

vehicle is about to perform. When the vehicle is close to its desired x , y position, it can precisely

hover and orient itself towards the desired direction. When a new waypoint is commanded or

when the operator wants to move forward, surge action increases and the action of depth and

yaw decreases. The laws we propose are the following:

pz = pψ = c1|αx|3 + c2|αx|2 + c3|αx|+ c4

px = 1− pz
(5)

where αx = τx/τxmax is the normalized control input. Constants ci are such that 0 < α1 <

1→ 0 < pz < 1. The rules are plotted in priority management block of Fig. 8.

D. Wrench driver

The wrench driver converts the generalized, priortized control input τp into fin actuation

parameters Ai, fi and Φi . It uses a set of simple rules to convert forces and moments of different

DOFs to corresponding fin thrust forces Fi. These rules are implemented to achieve motions

illustrated in Fig. 3. The conversion from fin thrust forces to actuation parameters is found from

(3). We use a fixed frequency of 2 Hz and only vary the oscillation amplitudes Ai and directions

Φi . Wrench driver forwards the actuation parameters to Maxon motor controllers who handle

the position control of fins.
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E. Odometry and trajectory

Odometry node calculates the positions and velocities of the vehicle using the feedback from

IMU and pressure sensor. It also estimates the position of the vehicle in the world-fixed frame

using the dynamics of the vehicle. However, we do not use this estimation in the current study

due to the lack of a good state observer.

The trajectory manager creates smooth position and velocity trajectories. In the current study

it uses predefined timed setpoints written in a file. It then uses hyperbolic tangent functions

to calculate smooth transitions between setpoints. The trajectory manager is also able to read

setpoints from other sources. For example, a remote controller can be used to modify the desired

depth and yaw.

V. 2-DOF CONTROL

The Automatic Control Unit in Fig. 8 is responsible for automatically controlling the specified

degrees of freedom. This control unit can work in combination with the manual control by

joystick, leaving the control of some DOFs for a human operator. An automatic control of some

DOFs would take some cognitive load from the human operator and let the operator concentrate

on better completing the misson. A typical scenario may be a human operation guiding the

vehicle along a desired trajectory by visual feedback on x-y plane while the depth and yaw of the

vehicle are automatically controlled. In order to select the most suitable controller for automatic

control, we propose here the implementation and comparative experiments of four different

feedback controllers (one non-model-based and three model-based controllers) at 3 different

implementation scenarios with a varying degree of complexity. All the proposed controllers are

tested and compared at the following scenarios:

• Nominal case in a controlled environment

• External disturbance rejection

• Robustness towards uncertainties

A. Controllers

1) Proportional Integral Derivative (PID): The PID is a well known and well established

non-model-based controller [37]. The control law can be expressed by:

τττ = KP η̃KP η̃KP η̃ +KI

∫ t

0

η̃KI

∫ t

0

η̃KI

∫ t

0

η̃ dtdtdt+KD
˙̃ηKD
˙̃ηKD
˙̃η (6)
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η̃̃η̃η = ηηη − ηdηdηd is the tracking error, and ˙̃η̇̃η̇̃η is its first time derivative. KPKPKP ,KIKIKI ,KDKDKD are positive

definite matrices representing the proportional, the integral, and the derivative feedback gains

respectively.

2) Inverse dynamics (ID): The main idea of this controller is to fully linearize the dynamics

of the robot based on a nonlinear feedback law to obtain a linear system [33]. Consider the

nonlinear dynamics (1) of the robot, and consider the following nonlinear feedback control law:

τττ = MabMabMab + n(ν, η)n(ν, η)n(ν, η) (7)

with ababab the body frame commanded acceleration, that can be calculated from a simple trans-

formation between the body and the earth fixed-frames as ababab = J−1J−1J−1(ananan − J̇νJ̇νJ̇ν), and ananan =

η̈d̈ηd̈ηd −KP η̃KP η̃KP η̃ −KI

∫ t
0
η̃KI

∫ t
0
η̃KI

∫ t
0
η̃ dtdtdt −KD

˙̃ηKD
˙̃ηKD
˙̃η, where ηdηdηd is the desired trajectory and η̈d̈ηd̈ηd is its corresponding

acceleration. The control law (7), if replaced in the robot’s dynamics (1), leads to:

(JJJν̇̇ν̇ν + J̇νJ̇νJ̇ν) = η̈d̈ηd̈ηd −KP η̃KP η̃KP η̃ −KI

∫ t

0

η̃KI

∫ t

0

η̃KI

∫ t

0

η̃ dtdtdt−KD
˙̃ηKD
˙̃ηKD
˙̃η (8)

Now consider the robot’s kinematics (2), its first derivative leads to η̈̈η̈η = J̇̇J̇Jννν + JJJν̇̇ν̇ν, which if

combined with (8) gives:

¨̃η̈̃η̈̃η +KD
˙̃ηKD
˙̃ηKD
˙̃η +KP η̃KP η̃KP η̃ +KI

∫ t

0

η̃KI

∫ t

0

η̃KI

∫ t

0

η̃ dtdtdt = 0 (9)

With an appropriate choice of the feedback gains KPKPKP ,KIKIKI ,KDKDKD, the closed-loop dynamics is

asymptotically stable.

3) Inverse dynamics with nonlinear feedback gains (IDNL): This approach has the same

control law as the previous one, except that feedback gains are no longer constants. The use of

nonlinear varying feedback gains may improve the tracking performance of the controller. For

instance, the Nonlinear Computed Torque [38] and the Nonlinear Augmented PD [39] provided

better tracking performance than the conventional computed torque and augmented PD controllers

respectively. For our case, let’s consider the following nonlinear proportional gain KP (·)KP (·)KP (·):

KPKPKP (e) =

 kp0|e|α1−1, |e| > δ1,

kp0δ
α1−1
1 , |e| 6 δ1.

(10)

where kp0 is its maximum values, α1 is the nonlinearity decreasing parameter and δ1 its activation

threshold (as illustrated in Fig. 9). The derivative gain KD(·)KD(·)KD(·), also illustrated in Fig. 9, may be

expressed by:

KDKDKD(ė) =

 kd0|ė|α2−1, |ė| > δ2,

kd0δ
α2−1
2 , |ė| 6 δ2.

(11)
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Fig. 9. Typical evolution of the nonlinear proportional KP and derivative KD gain versus position error e and velocity error

ė (respectively) with α1 = 0.75, δ1 = 1, α2 = 1.25 and δ2 = 1.

with kd0 is its minimum value, α2 is the nonlinearity increasing parameter and δ2 its activation

threshold.

4) Adaptive inverse dynamics (AID): The adaptive inverse dynamics controller is a state

feedback controller with an adaptation control term. It provides an online estimation of possible

unknown model parameters in order to ensure a good trajectory tracking [33]. The control law

can be expressed by:

τττ = M̂abM̂abM̂ab + n̂(ν, η)n̂(ν, η)n̂(ν, η) (12)

where the hatted variables denote the dynamics matrices based on estimations, n̂(ν, η)n̂(ν, η)n̂(ν, η) the

estimate of n(ν, η)n(ν, η)n(ν, η) in (7). Since the dynamic model is linear in its parameters, the adaptive

control law (12) can then be rewritten as:

τττ = Φ(ab, ν, η)θ̂Φ(ab, ν, η)θ̂Φ(ab, ν, η)θ̂ (13)

where ΦΦΦ represents the regressor and θ̂̂θ̂θ is the vector of the online estimated parameters. ababab and

ananan are computed as in the inverse dynamics controller. The vector of estimated parameters is

updated online based on the following adaptive law:

˙̂
θ
˙̂
θ̇̂θ = −ΓΦT (ab, ν, η)J−1yΓΦT (ab, ν, η)J−1yΓΦT (ab, ν, η)J−1y (14)

where the diagonal positive definite matrix ΓΓΓ represents the adaptation gain, JJJ the transformation

matrix, and yyy is the combined tracking error given by yyy = c0η̃̃η̃η + c1 ˙̃η̇̃η̇̃η. c0 and c1 are positive

constant gains, that may be chosen using the algorithm presented in [33], and based on Barbalat’s

lemma, it ensures that yyy converges to zero.
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B. Implementation details

The comparative experiments of 2-DOF control have been carried out in the swimming pool

of the University of Montpellier in France with the aim of choosing the most suitable controller

for the automatic control mode of the architecture of Fig. 8. The 2DOF control experiments

where implemented as follows:

• The parameters of each controller are tuned for the nominal case and kept unchanged for

the other scenarios.

• All the proposed controllers were implemented on U-CAT using the ROS based control

architecture presented in section IV

• Two degrees of freedom are to be simultaneously controlled (namely depth and yaw).

• All the relevant real-time data were saved to ROS log files (rosbags). The use of rosbags

enables inspecting the data exactly in the same form as used by the robot software.

Next we will briefly describe all the three implementation scenarios, present the results and

discuss the selection of the 2-DOF controller. The tuned parameters of the proposed controllers

are summarized in Tables I, II, III and IV.

TABLE I

SUMMARY OF THE PARAMETERS OF THE PID CONTROLLER.

Parameter KPKPKP KIKIKI KDKDKD

Value

200 0

0 8

 7.5 0

0 0.05

 80 0

0 6



TABLE II

SUMMARY OF THE PARAMETERS OF THE ID CONTROLLER.

Parameter KPKPKP KIKIKI KDKDKD

Value

0.6 0

0 2.5

 0.075 0

0 0.1

 0.2 0

0 2.2


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TABLE III

SUMMARY OF THE PARAMETERS OF THE IDNL CONTROLLER.

Parameter kp0kp0kp0 KIKIKI kd0kd0kd0

Value

1.6 0

0 6.7

 0.075 0

0 0.1

 0.36 0

0 6


Parameter α1α1α1 α2α2α2

Value

1.25 0

0 0.01

 1.25 0

0 0.1


Parameter δ1δ1δ1 δ2δ2δ2

Value

0.02 0

0 1.25

 0.1 0

0 1.25



TABLE IV

SUMMARY OF THE PARAMETERS OF THE AID CONTROLLER.

Parameter KPKPKP KIKIKI KDKDKD

Value

0.6 0

0 2.5

 0.075 0

0 0.1

 0.2 0

0 2.2


Parameter c0c0c0 c1c1c1 ΓΓΓ

Value

0.1 0

0 0.1

 0.075 0

0 0.075

 1.5 0

0 3



C. Experimental scenarios

1) Experimental scenario 1 - Nominal case: We first test all the proposed control solutions

in the nominal case. This means that the tests will be conducted without external disturbances

and without changes in the dynamic parameters of the robot. The main objective is to track

predefined time-varying reference trajectories along both controllable degrees of freedom (depth

and yaw).

2) Experimental scenario 2 - External disturbance rejection: The main objective behind

this experimental scenario is to test the ability of the proposed controllers to reject external

disturbances. The same predefined time-varying reference trajectories, used for the previous

scenario, are tracked. Once the system outputs (depth and yaw) reach the steady-state value, an
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Fig. 10. View of the robot with increased floatability, a piece of float fixed to the body of the robot increases its buoyancy.

external disturbance is applied, the behaviour of the system is recorded to show the reaction of

the controller and its ability to steer back the system’s outputs to their reference values.

3) Experimental scenario 3 - Robustness towards uncertainties: With this scenario we test the

robustness of the controllers towards parameters’ uncertainties. We change one of the dynamic

parameters of the robot (namely the buoyancy), and check how well the proposed controllers are

able to compensate for such change with respect to the nominal case. It is worth to emphasize

that all the parameters of the proposed controllers are kept unchanged. Fig. 10 illustrates how the

buoyancy of the robot was changed: a piece of a float was fixed on the body of the robot, which

will increase its buoyancy. The proposed experimental scenario consists of tracking reference

trajectories while the buoyancy of the robot is increased.

D. Obtained results

The experimental results are plotted in Fig. 11 (PID, ID and IDNL controllers) and Fig. 12

(AID controller). The plots show the desired and actual depth and yaw during each experiment.

To compare the results, we use the root-mean-square tracking error (RMS) calculated over the

full length of each experiment (from diving to re-surfacing). In addition to the RMS error of

depth (RMSdepth) and yaw(RMSyaw) we use the mean of these two values (RMS) to describe

the combined performance of the whole system. All the depth and yaw RMS values are shown

in Table V and all the mean RMS values are shown in Table VI.

It is important to note that RMS values are comparable only in the Scenario 1 - Nominal

case and Scenario 3 - Robustness towards uncertainties. RMS value does not give meaningful

information in Scenario 2 - External disturbance rejection, as the applied external disturbance
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Fig. 11. 2DOF controller comparison results in three different test scenarios. Part 1 - PID, inverse dynamics and inverse

dynamics with nonlinear feedback gains
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Fig. 12. 2DOF controller comparison results in three different test scenarios. Part 2 - Adaptive inverse dynamics controller

was not equal in all the experiments. In this scenario we qualitatively estimate how well does

the vehicle return to a steady state after the disturbance.

The results show that in the nominal case, all four proposed controllers hold the vehicle on

the predefined trajectory without any major deviations or oscillations. However, the RMS values

differ significantly. As expected, the mean RMS of PID is bigger than that of the model based

controllers in both the nominal and the increased buoyancy scenario. In the case of increased

buoyancy the PID is not able to correctly track the yaw trajectory due to the instability in depth

control and the coupled degrees of freedom.

The ID depth controller performs 33.9% better than PID in nominal case and 29.4% better

than PID in case of increased buoyancy. Even though the yaw performance in nominal case

was slightly lower than that of the PID, the combined error of ID was 7.7% smaller in nominal

case and 40.0% smaller in the case of modified buoyancy. The external disturbance experiment

shows that the ID controller is very well able to return the vehicle to the desired values after

disturbance. There are no oscillations in the depth and yaw values and only slight overshoot in

the yaw.

Contrary to our expectations, IDNL does not perform better than ID. Even though its combined

performance in the nominal case is 1.6% better than that of the ID, the mean RMS in the modified

buoyancy case is 17.9% higher that of the ID (28.7% bigger depth RMS and 12.2% bigger yaw

RMS). Also, the external disturbance experiment reveals strong oscillations in depth and failure

to return to desired yaw value after disturbance.

The AID’s mean RMS is 9.3% smaller than that of the ID in nominal case and 21.7% smaller
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TABLE V

RMS VALUES FOR DEPTH / YAW

Scenario 1 Scenario 3

depth | yaw depth | yaw

PID 34.5 mm | 30.3 mrad 56.1 mm | 136.6 mrad

ID 22.8 mm | 37.0 mrad 39.6 mm | 76.0 mrad

IDNL 29.6 mm | 29.2 mrad 51.0 mm | 85.3 mrad

AID 21.2 mm | 33.0 mrad 22.2 mm | 68.3 mrad

TABLE VI

MEAN RMS VALUES

Scenario 1 Scenario 3

PID 32.4 96.3

ID 29.9 57.8

IDNL 29.4 68.1

AID 27.1 45.2

than that of the ID in the case of modified buoyancy. Based on these values AID has the best

performance in the nominal case and in the case of modified buoyancy (16% better than PID in

nominal case and 53% better than PID in the case of modified buoyancy). However, the external

disturbance experiment reveals one disadvantage of the adaptive controller. After the disturbance,

the controller needs approximately 40 s to take the vehicle back to the desired depth. During

these 40 s there is a steady depth error slowly converging towards zero. The reason for this error

is that as a result of a strong external disturbance the adaptive model parameters diverge from

their desired values and it takes time until the parameters re-adapt to their correct values.

Based on the controller comparison we can say that PID and ID are the only two controllers

that show good results in all the three experimental scenarios. However, due to the compensation

of the nonlinear components of the vehicle dynamics, the ID controller performs significantly

better. IDNL fails to perform well in our case probably because of a more difficult and less

intuitive parameter tuning process. Since we are looking for robust and easily applicable control
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methods, IDNL is not the best approach. As expected, AID performs significantly better than any

other controller in the test of robustness towards model uncertainties. Therefore, this controller

would be the best choice for missions where the vehicle dynamics changes during the operation.

This includes for example the case where the robot is operated on a long tether that affects the

vehicle’s dynamics. However, AID is not appropriate for missions in which the vehicle may be

exposed to strong external disturbances, such as collision with underwater objects. Our control

architecture allows seamless switching between different control approaches even during the

mission. Either ID or AID can be chosen by the operator depending on the situation.

VI. 3-DOF CONTROL

This section experimentally validates the proposed control architecture with DOF prioritization

for 3D motion of the robot. We describe 5 control strategies where some of the degrees are

controlled by the operator with the joystick and others automatically while using the DOF

priority manager illustrated in Fig. 8. These tests are also compared to the scenario where the

DOF priority management is switched off.

The experiments were conducted in a 60 m long, 5 m wide and 3 m deep fresh water tow

tank of Tallinn University of Technology. In all the experiments the robot followed a lawnmower

trajectory at constant depth of 1 m. Each experiment started with a dive and ended with a

resurface. We chose the lawnmower trajectory because of its wide use in underwater inspection

tasks. During the experiments the robot recorded its depth and yaw data into ROS log files.

As the acoustic positioning methods did not work in a concrete tank, we did not have any

real-time position feedback for translational motions on the horizontal plane. However, we used

a calibrated overhead camera for recording the vehicle trajectories. After the experiments we

manually tracked the position of U-CAT from the overhead video frame by frame.

A. Experimental scenarios

We tested the following 5 control approaches:

1) Fully manual control: An experienced U-CAT operator controlled depth, yaw and surge

to follow the predefined trajectory as precisely as possible while keeping constant depth. In this

scenario the automatic control unit on Fig. 8 is switched off and the commands from the joystick

are processed by the priority manager. The operator used visual feedback and a depth reading

on screen. The lawnmower trajectory was relatively loosely defined in our experiments, as there



26

was no precise position feedback other than visual. The operator used markers on the poolside

to approximately travel a same distance with every short leg of the trajectory. For comparative

reasons the operator also tried to follow the same trajectory timing as in other experiments.

2) Depth autopilot: In this experiment the automatic control unit in Fig. 8 controls only depth

while the operator controlled other DOFs (yaw and surge) manually.

3) Depth and yaw autopilot: In this experiment the operator’s manual control was kept

minimal as he only controlled the surge motion with the joystick to move the vehicle from

one turning point to another while depth and yaw motion where controlled automatically.

4) Fully autonomous control: As U-CAT is designed to eventually be fully autonomous, we

also tested the extensibility of our control approach to fully autonomous control mode. In this

case the vehicle was untethered and the operator was removed from the control loop. The manual

surge regulation was replaced by automatic open-loop control. As we did not have any surge

velocity or position feedback, the surge control was implemented as a smooth predefined force

trajectory.

5) Fully autonomous control without DOF prioritization: In this experiment we repeated the

fully autonomous control scenario, but we disabled the priority manager. All 3 DOF (depth,

yaw and surge) where controlled by the Autonomous control unit in Fig. 8 while the Priority

Manager was turned off.

B. Obtained Results

The desired and actual trajectories for each of the above experiments are shown in Fig. 13.

Root mean square (RMS) error values calculated over the full length of experiments are marked

on the graphs.

1) Manual Control: Fig. 13a shows the desired and actual trajectories of depth, yaw, x and

y. From the figure it can be easily seen that the trajectory following precision is poor (depth

RMS error of 27.6 cm and yaw RMS error of 39.8◦). This illustrates the definite need for at

least some autopiloting.

2) Depth Autopilot: In this experiment the depth autopilot was enabled while the operator

manually controlled the surge and yaw. Results show 81% decrease in depth error compared to

the manual control. In addition yaw error decreased 28% as now the operator had to concentrate

on controlling only 2 DOFs instead of 3. However, the overhead camera image still reveals the

lack of precision in tracking straight lines. The vehicle turns rapidly. This kind of unsteady motion
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would probably cause problems in video inspection tasks, especially when using automatic video

processing methods such as mosaicking.

3) Depth and Yaw Autopilot: In this experiment we also enabled automatic yaw control.

This time the operator intervention was minimal. He only had to control the surge motion

to move the vehicle from one turning point to another. The obtained results (Fig. 13c) show

high precision in yaw tracking (RMS error of 2.5◦ ; improvement of 91%). Also, due to more

steady yaw the depth tracking error decreased by 63% compared to the scenario with only

depth autopilot. More stable yaw is also visible from the overhead camera image. It shows

how the robot moves in straight lines between turning points. Unfortunately, the short legs of

the trajectory (vertical on the overhead camera images) are not perpendicular to the long legs.

This is caused by the disturbance of the tether, which slowly pulled the vehicle sideways. The

disturbances are inevitable and during ROV missions they have to be manually compensated for.

The compensation can be relatively easily done as the U-CAT’s fins also allow to actuate the

sway motion to move the vehicle sideways. In this article, however, we do not consider sway

control.

4) Fully Autonomous Control: The results depicted in Fig. 13d show that removing human

intervention did not significantly reduce the tracking precision. Also, the tether disturbance is

not any more visible on the overhead image. However, the figure reveals an IMU drift in yaw

signal which was not present in our previous experiments. We have noticed that large IMU drift

sometimes occurs due to electromagnetic noise emitted by the motor controllers. The drift is

small enough (0.9 deg/min) to not affect the controller behaviour. For real missions the drift

will be reduced by minimizing electromagnetic noise and by using magnetometers and Extended

Kalman Filter. Despite the IMU issue the experiment shows that our control approach is suitable

for simultaneously controlling 3 DOFs of the fully autonomous 4-fin vehicle. Once the vehicle

has a reliable position or surge velocity estimation, the current surge controller can be replaced

by a suitable closed-loop controller.

5) Fully autonomous control without DOF prioritization: The test results without the priority

manager in Fig. 13 e show strong oscillations of depth value. The oscillations occur when the

surge action increases and the vehicle tries to move forward. The figure also displays the roll

and pitch angles in comparison to those during the previous experiment (Fig. 13 d). It can be

seen that the vehicle is strongly oscillating in pitch and roll. The oscillations are the result of a

coupling between the actuation of different DOFs. All the controllers try to stabilize the vehicle,
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however the fin configuration does not allow to equally control all the DOFs at the same time.

The resulting lawnmower trajectory is also different from that of the experiment 4 as the vehicle

can not correctly output the predefined surge force. These results clearly show the importance

of DOF prioritization in our system.

VII. VALIDATION IN NATURAL ENVIRONMENT

This section describes two real-life test scenarios in natural environments where the control

of the robot was validated during a real mission.

A. ROV Inspection Missions of Submerged Machinery

The first testsite is located in Rummu quarry in Estonia (59◦13’35.8”N 24◦13’30.48”E).

Rummu quarry is an abandoned flooded limestone mine containing submerged building and

several large mining machines. We inspected a mining excavator in 11m depth with the U-CAT

in an ROV mode. Two missions where carried out on this test site in different environmental

conditions:

• 1 - Winter experiment (3rd of March 2016) - we launched the vehicle through an 1x1 meter

hole (see Fig. 15a) cut into 20 cm thick layer of ice.

• 2 - Summer experiment (14th of July 2016) - we launched the vehicle from a small (4.3

m) rowboat.

During the mission the depth and yaw were autopiloted by the inverse dynamics controller.

The operator used a joystick to modify the controller setpoints and to manually control the surge

speed of the vehicle. He used the live video feedback (Fig. 15c) from the downward looking

on-board camera to inspect the different parts of the machine.

Fig. 14 shows a typical test data of the yaw and depth position and the surge action during one

of the dives. It can be seen that the autopilot is able to track the desired trajectory throughout the

whole mission (depth RMS error of 8.6 cm; yaw RMS error of 5.8◦). According the operators’

feedback the vehicle was relatively simple to control. He successfully gathered large amounts

of video data of the machine during 2 missions.

Even though the tracking precision was high enough for ROV inspection, the combined RMS

error is higher than in the controlled environment (depth RMS error of 1.9 cm; yaw RMS error of

2.5◦). This is mostly due to following factors: i) much longer tether; ii) environmental disturbing

factors such as waves and currents; iii) in this experiment the operator modified the set values
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Fig. 14. Sample of position tracking and surge action data during the inspection mission done from the boat in Rummu quarry.

Fig. 15. Validating the control system in the real-life ROV inspection mission. a) U-CAT being launched through a hole in the

ice; b) U-CAT hovering above the mining machine; c) snapshot of the U-CAT’s on-board camera image.

of depth and yaw using incremental steps of 10 cm and 0.1 rad, while in the pool experiments

smooth hyperbolic tangent trajectories were used.
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Fig. 16. Position tracking and surge action data during one of the dives of the inspection mission done at the Citadel.

Fig. 17. View of the remains of the citadel fortifications in Tallinn Bay taken by the U-CAT’s on-board camera

B. Underwater Archaeology Mission on Citadel

The second test site, the remains of the coastal defense battery known as The Citadel (59◦27’5.9N

24◦47’27.8E), located near the Tallinn shoreline and was chosen for its relevance to the applica-

tion domain of U-CAT, underwater archaeology. The remains of the fortification are in 8-11 m

depth about 900m from shore. The archaeological interest was in inspecting the separate standing

stone filled cellboxed built of wooden logs, in particular to document the possible damage by

waves, ice and divers to the archaeological site.
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As opposed to the sheltered water site in Rummu quarry, Citadel is more exposed to currents

and waves and visibility is poor due to turbidity of water and algae growth in summer. Here,

the high maneuverability of U-CAT is particularly important in order to visually follow the

complicated contours of the cell boxes at close distance while compensating for wave and

current disturbances by the operator. The mission lasted 5 days, resulting in 11 hours of onboard

camera footage. The robot was operated from a RIB (rigid-hulled inflatable boat). Due to the

turbidity from the algae blooms and highly volatile silt rising from the bottom with currents,

waves and motion of the robot and its tether, the visibility was only 1m or less making close

inspection of the logs of the cell boxes and its dove-tailed corners particularly challenging. The

currents were estimated to reach about 0.5 m/s (just about the max forward speed of U-CAT in

hover mode) and the wave height was visually estimated about 0.5m.

Fig. 16 shows an example of a typical tracking data during one of many inspection dives. From

the graph it can be seen that in the beginning and the end of the dive the operator modified the

desired depth faster than the robot was able to move. Therefore, we calculate the tracking error

only in the time range from the end of the initial dive to the beginning of the final resurface. The

RMS error value for depth tracking is 6.16 cm and the RMS error of yaw tracking is 14.54◦).

Even though the depth tracking is slightly more precise and the yaw tracking less precise than

in the experiments in sheltered quarry, the error values are still in similar range. This shows that

the developed control system can operate with satisfying precision in more difficult conditions

in the presence of environmental disturbances such as waves and currents.

VIII. CONCLUSION

This paper presented a new control architecture and its implementation for a biomimetic

four-fin underwater robot U-CAT in hovering mode. Finned propulsion has several advantages

compared to a traditional propeller driven underwater vehicle, in the case of the U-CAT high

maneuverability on a cost of lower complexity, but it also proposes new challenges for control,

mainly caused by strong motion coupling of the DOFs and delayed response of the fin actuators.

We have built a modular control architecture and realised 2DOF and 3DOF control presenting

a method of DOF priority selection. The tests show that this approach decreases the tracking

errors of the U-CAT. We also subjectively experienced during the trials that it makes the control

more intuitive for a human operator. Also the modular control architecture has been beneficial

in the development phase allowing us to quickly change the control approaches (for example to
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switch between different 2DOF controllers). We therefore conclude that the architecture makes

the robot easier to operate both in development phase as well as during real missions. The

tests where carried out in controlled underwater environment, in sheltered water and in open

water environment with waves, currents and very low visibility at a difficult inspection task. The

tracking error increases when moving to more complicated environments, which is expected with

any control approach. However, the control of the robot was sufficiently easy and precise even

during a long real mission in a highly unstable environment. We therefore conclude that the

proposed control architecture is suitable for U-CAT. Our future goal is to extend the control to

more DOFs as well as to extend the motion library of U-CAT to include cruising mode. Again,

we expect the modular control architecture to be beneficial in development and testing phase as

well as on real underwater missions.

ACKNOWLEDGMENT

This research has received funding from the European Unions Seventh Framework Programme

for Research technological development and demonstration, under grant agreement no. 308724

(The ARROWS Project), from Estonian- French joint collaboration project PHC-PARROT and

from IUT339 grant of Estonian Ministry of Education and Research. The authors would like

to thank Keijo Kuusmik, Jaan Rebane, Riho Markna who have helped to develop the UCAT

vehicle. We would also like to thank TUT Small Craft Competence Centre for letting us use the

tow tank.

REFERENCES

[1] B. Anderson and J. Crowell, “Workhorse auv-a cost-sensible new autonomous underwater vehicle for surveys/soundings,

search & rescue, and research,” in OCEANS, 2005. Proceedings of MTS/IEEE. Washington, USA: IEEE, Sep. 2005, pp.

1–6.

[2] (2016) Bluefin robotics website. [Online]. Available: http://www.bluefinrobotics.com/

[3] C. von Alt, “Remus 100 transportable mine countermeasure package,” in OCEANS 2003. Proceedings, vol. 4. San Diego,

USA: IEEE, 2003, pp. 1925–1930.

[4] A. Shukla and H. Karki, “Application of robotics in offshore oil and gas industry a review part

{II},” Robotics and Autonomous Systems, vol. 75, Part B, pp. 508 – 524, 2016. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0921889015002018

[5] V. Yordanova and H. Griffiths, “Rendezvous point technique for multivehicle mine countermeasure operations in

communication-constrained environments,” Marine Technology Society Journal, vol. 50, no. 2, pp. 5–16, 2016.

[6] B. Bingham, B. Foley, H. Singh, R. Camilli, K. Delaporta, R. Eustice, A. Mallios, D. Mindell, C. Roman, and D. Sakellariou,

“Robotic tools for deep water archaeology: Surveying an ancient shipwreck with an autonomous underwater vehicle,”

Journal of Field Robotics, vol. 27, no. 6, pp. 702–717, 2010.



34

[7] Y.-S. Ryuh, G.-H. Yang, J. Liu, and H. Hu, “A school of robotic fish for mariculture monitoring in the sea coast,” Journal

of Bionic Engineering, vol. 12, no. 1, pp. 37–46, 2015.

[8] A. Kohl, K. Pettersen, E. Kelasidi, and J. Gravdahl, “Planar path following of underwater snake robots in the presence of

ocean currents,” Robotics and Automation Letters, IEEE, vol. PP, no. 99, pp. 1–1, 2016.

[9] R. J. Lock, R. Vaidyanathan, S. C. Burgess, and J. Loveless, “Development of a biologically inspired multi-modal wing

model for aerial-aquatic robotic vehicles through empirical and numerical modelling of the common guillemot, uria aalge,”

Bioinspiration & biomimetics, vol. 5, no. 4, p. 046001, 2010.

[10] M. Kemp, B. Hobson, and J. H. Long, “Madeleine: an agile auv propelled by flexible fins,” in Proceedings of the 14th

International Symposium on Unmanned Untethered Submersible Technology, vol. 6, 2005.

[11] S. Licht and N. Durham, “Biomimetic robots for environmental monitoring in the surf zone & in very shallow water,” in

IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, Oct. 2012.

[12] G. Yao, J. Liang, T. Wang, X. Yang, Q. Shen, Y. Zhang, H. Wu, and W. Tian, “Development of a turtle-like underwater

vehicle using central pattern generator,” in Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference on.

Shenzhen, China: IEEE, Dec. 2013, pp. 44–49.

[13] G. Dudek, P. Giguere, J. Zacher, E. Milios, H. Liu, P. Zhang, M. Buehler, C. Georgiades, C. Prahacs, S. Saunderson et al.,

“Aqua: An amphibious autonomous robot,” Computer, no. 1, pp. 46–53, 2007.

[14] A. Konno, T. Furuya, A. Mizuno, K. Hishinuma, K. Hirata, and M. Kawada, “Development of turtle-like submergence

vehicle,” in Proceedings of the 7th International Symposium on Marine Engineering, 2005.

[15] K. Low, C. Zhou, T. Ong, and J. Yu, “Modular design and initial gait study of an amphibian robotic turtle,” in Robotics

and Biomimetics, 2007. ROBIO 2007. IEEE International Conference on. Sanya, China: IEEE, Dec. 2007, pp. 535–540.

[16] S. C. Licht, “Biomimetic oscillating foil propulsion to enhance underwater vehicle agility and maneuverability,” Ph.D.

dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts, June 2008.

[17] J. D. Geder, R. Ramamurti, D. Edwards, T. Young, and M. Pruessner, “Development of a robotic fin for hydrodynamic

propulsion and aerodynamic control,” in Oceans-St. John’s, 2014. IEEE, 2014, pp. 1–7.

[18] W. Zhao, Y. Hu, L. Wang, and Y. Jia, “Development of a flipper propelled turtle-like underwater robot and its cpg-based

control algorithm,” in Decision and Control, 2008. CDC 2008. 47th IEEE Conference on. Cancun, Mexico: IEEE, Dec.

2008, pp. 5226–5231.

[19] C. Siegenthaler, C. Pradalier, F. Gunther, G. Hitz, and R. Siegwart, “System integration and fin trajectory design for a

robotic sea-turtle,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. Tokyo, Japan:

IEEE, Nov. 2013, pp. 3790–3795.

[20] J. D. Geder, R. Ramamurti, M. Pruessner, and J. Palmisano, “Maneuvering performance of a four-fin bio-inspired uuv,”

in Oceans-San Diego, 2013. IEEE, 2013.

[21] C. Wang, G. Xie, X. Yin, L. Li, and L. Wang, “Cpg-based locomotion control of a quadruped amphibious robot,” in

Advanced Intelligent Mechatronics (AIM), 2012 IEEE/ASME International Conference on. IEEE, 2012.
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