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External disturbance rejection in IDA-PBC controller for underactuated
mechanical systems : from theory to real time experiments

N.Khraief Haddad1, A.Chemori2 and S.Belghith3

Abstract— Proving the robustness, vis-à-vis external distur-
bances of IDA-PBC (Interconnexion Damping Assignment,
Passive Based Control) controller for underactuated mechanical
systems is addressed in this paper. Some sufficient stability
conditions on matched and unmatched disturbances are pro-
vided. As illustration we propose to revisit the application of
IDA-PBC controller to the Inertia Wheel Inverted Pendulum
(IWIP) in the presence of external disturbances. Simulations
and real-time experimental results are presented as validations
of the theoretical results.

I. INTRODUCTION

In this paper we will consider the robustness analysis of
IDA-PBC controller when applied to underactuated mecha-
nical systems. The latter, will be, necessarily 1[1], described
by the so-called Port Controlled Hamiltonian models (PCH).
PCH systems have been introduced in 1994 by Van der
Shaft and Mashke [2]. The central paradigm of complex
systems modeling is to have individual open subsystems
with well defined port interfaces, hiding an internal model
of variable complexity, and a set of rules describing how
these subsystems interact through the port variables [3]. To
implement this general idea we can use the so called port
Hamiltonian systems or port-controlled Hamiltonian systems
(PCHS). PCH models represent another alternative to the
classical Euler-Lagrange (or standard Hamiltonian) models.
Writing a system in a PCH form has the advantage to cover a
large set of physical systems and provide important structural
properties. An extended survey of PCHS is presented in
[4]. One procedure to control PCH systems is called IDA-
PBC [5]. It combines the passivity properties of PCHS with
control by interconnection and energy based control. IDA-
PBC uses the hamiltonian framework, it consists in solving
the PDE associated to the energy balance equation. This
technique has been applied to various plants : Mechanical
systems [6], [7], magnetic levitation systems [8], [9], mass
balance systems [10], electrical machines [11], [12], power
converters [13]. For an in-depth review of IDA-PBC the
reader is referred to [14].
In this paper we will study the robustness of IDA-PBC,
for underactuated mechanical systems. We will focus on the
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1. To stabilize underactuated mechanical systems by energy shaping, it
is necessary to modify the total energy function. Which cannot be done with
the classical PBC (passivity based control). That is why IDA-PBC is used.

case of external disturbances where little is known. Many
studies turn around the improvement of the robustness. Input
disturbance suppression for PCHS using an internal model,
has been studied in [15]. In [9] an IDA-PBC controller
applied to a magnet levitation system was experimentally
tested. To solve the robustness problem they add an integral
term to the error of the passive output. The same technique
was used in [16] to improve the robustness of hamiltonian
passive control. Stability and robustness of disturbed port-
controlled Hamiltonian systems with dissipation have been
addressed in [17]. The authors studied IDA-PBC controller
robustness against parameters uncertainties. Recently Jose
Guadalupe Romero et al. [18] improve the robustness vis-
à-vis external disturbance, of energy shaping controllers for
fully actuated mechanical systems. They design a dynamic
state feedback controller such that the closed-loop system
ensures some stability properties in spite of the presence of
external disturbances. Nevertheless two important issues are
still open :
1) The proof of the robustness of the controller obtained by
IDA-PBC technique.
2) More real-time experimental applications when applying
IDA-PBC controller.
Motivated by both issues and as a main contribution of this
paper, we prove that, when applying IDA-PBC to underac-
tuated mechanical systems, the stability is preserved in spite
of the presence of external disturbances. Some sufficient
stability conditions on the external disturbances are given.
To strength those results we propose to validate the proposed
controller experimentally on the well known inertia wheel
inverted pendulum (IWIP). Based on the IDA-PBC controller
designed in [6], we did some experiments in presence of
external disturbances. The robustness of IDA-PBC controller
is proved through these experimental results.
The remaining of the paper is organized as follows. In section
II, background on IDA-PBC for underactuated systems is
given. Section III introduces the main contribution about
external disturbance rejection in IDA-PBC controllers. Simu-
lations and experimental results on an inertia wheel inverted
pendulum are given in section IV. Finally, we present some
conclusions and future work in section V.

II. BACKGROUND ON IDA-PBC CONTROL

In this section let’s consider previous work proposed in [6],
[5]. An underactuated mechanical system whith no natural
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damping can be written in PCH form as follows 2 :
(
q̇
ṗ

)
=

(
0 In
−In 0

)(
∇qH
∇pH

)
+

(
0

G(q)

)
u

y = G(q)T∇pH
(1)

with total energy

H(q, p) =
1

2
pTM−1(q)p+ V (q) (2)

(1) will be called nominal system, where q ∈ Rn, p ∈ Rn are
the generalized position and momenta respectively. G(q) ∈
Rn×m, is the input matrix. We consider here that the system
is underactuated and assume rank(G) = m < n, u and y are
the control input vector and the output vector respectively.
M(q) = MT (q) > 0 is the inertia matrix, and V (q) is the
potential energy. We have that q̇ =M−1(q)p.
The desired (closed loop) enregy function is given by :

Hd(q, p) =
1

2
pTM−1d (q)p+ Vd(q) (3)

we define (q∗, 0) as the desired equilibrium. Vd is required
to have an isolated minimum at q∗. This target is achieved
by the following IDA-PBC controller [6] :

u = (G
T
G)
−1
G
T
(∇qH −MdM

−1∇qHd + J2M
−1
d p)︸ ︷︷ ︸

ues

+ (−Kv)GT∇pHd︸ ︷︷ ︸
udi

(4)
ues is the energy shaping control to assign the equilibrium
and udi injects damping to achieve asymptotic stability.
We obtain finally, the following desired (closed loop) PCH
dynamics :

(
q̇
ṗ

)
= (Jd(q, p)−Rd(q, p))

(
∇qHd

∇pHd

)
y = G(q)T∇pHd

(5)

where Md = MT
d > 0, Jd = −JTd =

(
0 M−1Md

−MdM
−1 J2

)
is

the interconnection matrix, and Rd = RTd =

(
0 0

0 GKvG
T

)
is the damping matrix [5].

III. IDA-PBC FOR DISTURBED UNDERACTUATED
MECHANICAL SYSTEMS

A. Problem formulation

Describe disturbed underactuated mechanical system by
the following PCH model :{(

q̇
ṗ

)
=

(
0 In
−In 0

)(
∇qH
∇pH

)
+

(
0

G(q)

)
(u+ δ1(x, t)) + δ2(x, t)

y = G(q)T∇pH

(6)

where t ∈ R, x = (q p)T ∈ R2n is the state, u(t) ∈ Rm is
the control, δ1(x, t) is the matched uncertainties, and δ2(x, t)
is the unmatched uncertainties. Both δ1(x, t) and δ2(x, t)
are assumed to be unmeasured and bounded in magnitude,
usually their Euclidean norm is denoted by ‖.‖. In this
paper we formulate our IDA-PBC stabilization objective as
follows : Given the disturbed PCH system (6) and a desired

2. Through the whole of the paper we present all vectors, including the
gradient, as column vectors.

equilibrium (q∗, 0), is the IDA-PBC controller (4) capable
to reject disturbances and keep (q∗, 0) always asymptotically
stable ?. In particular we treat two cases :
- Preserving asymptotic stability in spite of the existence of
matched disturbances.
- Preserving asymptotic stability in spite of the existence of
unmatched disturbances.

B. Main result

Case 1 : Matched uncertainties (δ2(x, t) = 0)
Applying the controller (4) to (6) we obtain the following
closed loop disturbed system :{(

q̇
ṗ

)
= (Jd(q, p)−Rd(q, p))

(
∇qHd

∇pHd

)
+ δ1(x, t)

′

y = G(q)T∇pHd

(7)

Note that δ1(x, t)
′
= (0 G(q)δ1(x, t))

T is also a vector of
external disturbances. Let λmin {Kv} the smallest eigenvalue
of the matrix Kv , and x̃ = (q − q∗ p)T .
The following proposition set some sufficient conditions on
the disturbances boundaries in order to get (q∗, 0) asympto-
tically stable.
Proposition1 :
Consider the closed loop dynamics (7) with the desired total
energy Hd.
If ‖δ1(x, t)‖ ≤ λmin {Kv}

∣∣(∇pHd)
TG
∣∣2, then Ḣd ≤ 0

and x̃ of (10) is an asymptotically stable equilibrium point.
Proof:

Ḣd = ∇qHdq̇ +∇pHdṗ

= (∇qHd)
T (M−1Md)∇pHd + (∇pHd)

TG(q)δ1(x, t)−
(∇pHd)

T (MdM
−1)∇qHd+

(∇pHd)
T (J2 −GKvG

T )∇pHd

= (∇pHd)
TG(q)δ1(x, t)− (∇pHd)

T (GKvG
T )∇pHd

(8)

If ‖δ1(x, t)‖ ≤ λmin {Kv}
∣∣(∇pHd)

TG
∣∣2 then

Ḣd ≤ ‖δ1(x, t)‖ − λmin {Kv}
∣∣(∇pHd)

TG
∣∣2 (9)

and Ḣd ≤ 0

Case 2 : Unmatched uncertainties (δ1(x, t) = 0)
Applying the controller (4) to (6) we obtain the following
closed loop disturbed system :{(

q̇
ṗ

)
= (Jd(q, p)−Rd(q, p))

(
∇qHd

∇pHd

)
+ δ2(x, t)

′

y = G(q)T∇pHd

(10)

Note that δ2(x, t)
′
= δ2(x, t) = (δ21(x, t) δ22(x, t))

T , let
λmin {Kv} the smallest eigenvalue of the matrix Kv , and
x̃ = (q − q∗ p)T .
The following proposition set some sufficient conditions on
the disturbances boundaries in order to get (q∗, 0) asympto-
tically stable.
Proposition2 :
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Consider the closed loop dynamics (10) with the desired total
energy Hd. If

∣∣∇TxHd.δ2(x, t)
∣∣ ≤ λmin {Kv}

∣∣(∇pHd)
TG
∣∣2

then Ḣd ≤ 0 and x̃ of (10) is an asymptotically stable equi-
librium point. The proof of the proposition 2 is completed
proceeding as in the case 1.

IV. APPLICATION : INERTIA WHEEL INVERTED
PENDULUM (IWIP)

A. IWIP : Description and modeling

θ1

θ2

PB

PC,m

WC,M

x

y

z

Fig. 1: Inertia Wheel Inverted Pendulum.

The pendulum device shown in Fig. 1 is called the Inertia
Wheel Inverted Pendulum (IWIP). It may be modeled as
a two-degrees-of-freedom serial mechanism. The first link
is the pendulum and the second one is the rotating disc.
The IWIP is an underactuated system, the torque produces
an angular acceleration of the end-mass which generates a
coupling torque at the pendulum axes.The parameters of the
(IWIP) are shown in TABLE I :

Description Notation Units
Pendulum angle with respect to vertical axis θ1 rad
Wheel angle with respect to pendulum axis θ2 rad
Mass of the pendulum m kg
Mass of the Wheel M kg
Length from pendulum base (PB) to pendu-
lum center of mass (PC)

l m

Length from pendulum base (PB) to Wheel
center of mass (WC)

L m

Rotational Inertia of pendulum about pen-
dulum center of mass (PC)

IPC kg.m2

Rotational Inertia of pendulum about pen-
dulum base (PB)

IPB kg.m2

Rotational Inertia of Wheel about Wheel
center of mass (WC)

IWC .m2

Constant of gravitational acceleration g m/s2

TABLE I: Description of dynamical parameters of the IWIP

The Euler-Lagrange equations of motion can be written as

[19] :(
(a+ IWC) IWC

IWC IWC

)(
θ̈1
θ̈2

)
−
(
bg sin θ1

0

)
=

(
0
u

)
(11)

where : θ = [θ1 θ2]
T , u is the torque applied by the motor

to spin the wheel and :

a = ML2 + IPB
b = ml +ML.

(12)

Let’s introduce the following change of coordinates :[
q1
q2

]
=

[
1 0
1 1

] [
θ1
θ2

]
(13)

This leads to a simplified model :[
a 0
0 IWC

] [
q̈1
q̈2

]
−
[
bg sin q1

0

]
=

[
−1
1

]
u. (14)

The model (14) can be written through Hamilton’s equations
of motion as [20] :

q̇1
q̇2
ṗ1
ṗ2

 =


p1
a
p2
IWC

bg sin q1 − u
u

 (15)

Where q = [q1 q2]
T and p = [p1 p2]

T = [aq̇1 IWC q̇2]
T

are the generalized positions and momenta respectively.
Whitch leads to write the Hamiltonian function :

H(q, p) =
1

2
pTM−1(q)p =

1

2
[
p21
a

+
p22
IWC

] (16)

At first we aim at applying IDA-PBC controller in order to
globally stabilize the system around its unstable equilibrium
(the upward position of the pendulum) with the inertia disk
aligned, this equilibrium corresponds to q∗1 = q∗2 = 0.
Then the desired Hamiltonian function can be defined as :

Hd(q, p) =
1

2
pTM−1d (q)p+ Vd(q) (17)

where 3
Md =

(
a1 a2
a2 a3

)
with a1 > 0, a1a3 > a22 and a1 +

a2 < 0. Secondly, the robustness of such controller will be
tested in the presence of external, matched and unmatched,
disturbances.

3. Note that the inertia matrix M of the IWIP is independent of q, so
we can take J2 = 0 and Md a constant matrix [6]
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Parameter Description Value Unit
m pendulum mass 3.228 Kg
M mass of the wheel 0.33081 Kg
l Pendulum center of mass position 0.06 m
L Wheel center of mass position 0.044 m
I1 Pendulum inertia 0.0314 Kgm2

I2 Wheel inertia 4.176e− 4 Kgm2

TABLE II: Dynamic Parameters of the IWIP

B. IDA-PBC controller

In [6] the authors proposed the following control law for
the IWIP :

u = γ1sin(q1) + kp(q2 + γ2q1) + kvk2(q̇2 + γ2q̇1) (18)

where γ1 > b, γ2 = − aγ1
IWC(γ1−b) and k2 > 0.

Together with kp and kv positive arbitrary constants, define
the tuning gains.
In this paper we propose to rewrite the control law (18) in
terms of the generalized coordinates q and momenta p as :

u = γ1sin(q1) + k1q1 + k2q2︸ ︷︷ ︸
ues

+ k3p1 + k4p2︸ ︷︷ ︸
udi

(19)

where :k1 = kpγ2, k2 = kp, k3 = kv(
a2+a3
a1a3−a22

) and k4 =

−kv( a1+a2
a1a3−a22

).

C. Simulation results

We will consider in simulations the dynamics of the PCH
model (15). The parameters of the IWIP are summarized in
TABLE II. They have been obtained from the CAD of the
system.

1) Stabilization with external disturbances: To test IDA-
PBC controller robustness for the IWIP, we will check in
this section, its capability to reject external, matched and
unmatched, disturbances.
Case 1 : Matched disturbances :
In this case a matched disturbance is added to the dynamics
(15). It consists of constant torques ‖δ1(x, t)‖ = 10 4 added
to the control (19) at time instants : t = 5s, t = 10s and
t = 15s during 0.2s at each time. The obtained simulation
results are shown in Fig.2 and prove that the IDA-PBC
controller is capable to compensate matched disturbances and
keep the system around the open loop unstable equilibrium
point. Case 2 : Unmatched disturbances :
In this case a vector of constant disturbances ‖δ2(x, t)‖ =
[0.3;−0.315] 5 is added to the dynamics of the IWIP at

4. we can check simply that‖δ1(x, t)‖ ≤ 12∗
∥∥|(∇pHd)

TG
∣∣2, leading

the theoretical results.
5. we can check simply that

∣∣∇T
xHd.δ2(x, t)

∣∣ ≤ 12 ∗
∥∥(∇pHd)

TG
∣∣2,

leading the theoretical results.
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Fig. 2: Simulation results with matched disturbances

t = 10s. Fig. 3 displays the performance of IDA-PBC
controller.
Note that we can check the disturbance boundary by varying
the amplitude of the added vector of disturbances and we can
observe the lost of stability of the system when exceeding
a limit value (determining in section III) of the amplitude
disturbance.
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Fig. 3: Simulation results with unmatched disturbances
D. Real-time experimental results

.1) Experimental testbed: . To validate the theoretical
results, real-time experiments are carried out on the inertia
wheel inverted pendulum testbed shown in Fig. 4. This
platform is designed and developed at LIRMM 6. Mechanical
stops constrain the movement of the pendulum angle θ1.

6. LIRMM (Montpellier Laboratory of Informatics, Robotics and Mi-
croelectronics) : http ://www.lirmm.fr
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inclinometer

pendulum body

inerita wheel

active joint

passive joint

frame

Fig. 4: The inertia wheel inverted pendulum

This angle is measured by an encoder linked to the actuator
of the system (Maxon EC-powermax 30 DC motor). An
inclinometer FAS-G of micro strain served to measure in
real time the angle of the pendulum with respect to the
vertical. The control approach is implemented on a computer
using C++ language. The whole system is running under
Ardence RTX real-time OS. Different control schemes have
been developed and implemented on this testbed (Fig. 5)
[21], [22], [23].

Pendulum

Inclinometer

Inerita wheel

Variable frequency drive

Power supply (12V)

Interface card

Control PC

Fig. 5: IWIP experimental testbed

2) Stabilization with external disturbances: The two cases
about external, matched and unmatched, disturbances are
emphasized experimentally by two scenarios.
Scenario 1 : It is illustrated in Fig. 6. The external torques
added to (19) are generated by pushing the pendulum at
approximately t = 6s, t = 8s and t = 12s. Experimental
results are displayed in Fig. 7. The effect of punctual
disturbances at different times can be observed as peaks on
the curves. Compensations of such disturbances are observed
in the evolution of the angular position and velocity. Matched
disturbances are also compensated by the controller. We
observe that the IDA-PBC controller compensates the added
external torques and maintain the system around the desired
equilibrium point.
Scenario 2 : The second type of external disturbances is

illustrated in Fig. 8. It consists of an additional mass attached
to the body of the pendulum. This mass generates a persistent
torque applied to the pendulum (passive joint). Fig. 9 shows
the obtained experimental results for the second scenario.

Fig. 6: Punctual disturbances applied to the pendulum
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Fig. 7: Scenario 1 : Experimental results with external
disturbances

Smooth stabilization is always guaranteed in spite of the
existence of a persistent disturbance. The permanent rotation
of the inertia wheel (θ̇2) permit to compensate the unmatched
disturbances. As a result the IDA-PBC controller reject this
type of disturbances and the pendulum is kept around its
unstable equilibrium point.

Fig. 8: Persistent disturbances applied to the pendulum
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Fig. 9: Scenario 2 : Experimental results with external
disturbances

V. CONCLUSION AND FUTURE WORK

This paper characterized the robustness of IDA-PBC
control applied to a class of underactuated mechanical sys-
tems. The effect of external disturbances is especially studied
in this paper. Two sufficient stability conditions are provided
to deal with matched and unmatched disturbances. Motivated
by the practical matter of IDA-PBC, this paper presented
experimental results shown that IDA-PBC is robust with
respect to external disturbances. The experimental platform
used is an inertia wheel inverted pendulum developed at
LIRMM. Based on results presented in this paper we note
that in the presence of unmatched disturbances the controller
cannot compensate static error. Extension of this work can
be done in the sens of improving the robustness of IDA-PBC
controller for a class of underactuated systems. An adaptive
control can be proposed to compensate errors that are caused
by uncertain parameters and unmatched disturbances.
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