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Abstract This paper deals with the tracking approach of a self-generated stable limit cycle for an underac-
tuated mechanical system: The Inertia Wheel Inverted Pendulum (IWIP). Such system is subject to unilat-
eral constraints limiting its swing motion. It is known that an Interconnection and Damping Assignment-
Passivity Based Control (IDA-PBC) can be employed to control such pendulum to its upright position. In
this work, we briefly show first that the IWIP can generate a stable period-1 limit cycle through a Hopf
bifurcation by varying some gain parameter of the IDA-PBC. Thus, such self-generated limit cycle is used
as a reference trajectory, which is chosen to be tracked by the IWIP. To achieve the tracking problem, a
supplementary control input is added. Such tracking problem is reformulated as an asymptotic stabilization
of the tracking error. Our fundamental approach hinges mainly on the use of the S-procedure to introduce
the unilateral constraints, and the Schur complement and the matrix inversion lemma to transform Bilinear
Matrix Inequalities (BMI) into Linear Matrix Inequalities (LMI). Several simulations have been presented
to corroborate the mathematical results and to show the efficiency of the proposed tracking scheme of the
self-generated stable limit cycle of the controlled IWIP, even if it is subject to external disturbances, or in
the presence of uncertainties in the friction parameters.

Keywords Inertia wheel inverted pendulum · Hopf-bifurcation · Limit cycle · Unilateral constraint ·
S-procedure · BMI · LMI

1 Introduction

Equilibrium points and limit cycles are known to be common solutions for almost all continuous-time
nonlinear dynamical systems. Limit cycles model dynamical systems that exhibit self-sustained oscillations
for some set of parameters. Thus, a self-excited system exhibits the property to generate steady state
oscillations (limit cycles) even in the absence of external periodic forcing [1–3]. Some examples of dynamical
systems that exhibit a self-excited oscillation are beating of a heart, rhythms in body temperature, hormone
secretion, chemical reactions, vibrations in bridges and airplane wings, inverted pendulums, the Van der Pol
oscillator, the Duffing oscillator, biped robots, etc. [4–7] (see also [8, 9] for further examples). In general, self-
oscillators give a regular output robustly: they approach the same limit cycle regardless of initial conditions
and transient perturbations [2]. In addition, limit cycles are generated through bifurcations, among which
the most popular and important one is the Hopf bifurcation [1, 4, 6, 10], which occurs for autonomous
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BP. 37, Le Belvédère, 1002 Tunis, Tunisia

A. Chemori
LIRMM, University of Montpellier 2, CNRS, 161 rue Ada, 34392 Montpellier, France



2 Gritli et al.

dynamical systems. Such local bifurcation gives rise to the birth of a limit cycle via a stable equilibrium
point. This limit cycle can be either stable or unstable. In the former case, the Hopf bifurcation is super-
critical. However, in the latter case, the Hopf bifurcation is sub-critical [4, 7, 10].

Recently, the interest in the control problem of underactuated mechanical systems has increased due
to their complexity and applications. Several kinds of underactuated mechanical systems exist in literature
such as the double inverted pendulum, the rotational inverted pendulum, the Furuta pendulum, the cart-
pendulum system, the wheeled inverted pendulum, the flywheel inverted pendulum, among others [11–18].
In general, inverted pendulums are very suitable to illustrate many ideas in automatic control of nonlinear
systems. A special underactuated mechanical system is the Inertia Wheel Inverted Pendulum (IWIP),
which has two degrees of freedom with only one actuator [19, 20]. Such underactuated mechanical system
has attracted the attention of several researchers in robotics and control system engineering where several
control strategies have been designed (see for example [11–17] and references therein). The most recognized
works are those based on the energy point-of-view. The general control strategy is to swing the underactuated
mechanical system, such as the Acrobot, the Pendubot, the IWIP, the Tora system, the Furuta pendulum,
in order to bring/stabilize it to the desired (upright) position.

1.1 Literature review

The control objective of the IWIP is to stabilize it at the upright position, namely around the unstable
equilibrium point. Many works related to this topic have been proposed. The passivity-based control with
saturated control input based on the feedback linearization was introduced in [19, 20]. Olfati-Saber [21, 22]
employed the standard backstepping procedure. Fantoni and Lozano [15] introduced the total energy stored
in the system in order to design a nonlinear swinging-up control strategy. Ramamoorthy and Kuipers [23]
developed an approach that uses switching between multiple controllers to robustly stabilize the upright
equilibrium. The same problem was solved in [24] with a single output feedback controller, which was
designed using a passivity-based method. Moreover, Ortega et al. [25] used the Interconnection and Damping
Assignment-Passivity Based Control (IDA-PBC) (see [26] for a survey) for the asymptotic stabilization of the
IWIP around its upward position. They formulated the designed controller for Port-Controlled Hamiltonian
models [27]. In [28, 29], the undesirable effects of the damping force was taken into account in the control
strategy. Qaiser et al. [30] presented a novel nonlinear controller design by fusing the dynamic surface control
and the control Lyapunov function method. In addition, Touati and Chemori [31] proposed a generalized
predictive control scheme. They proved via experimentation the robustness of such controller against external
disturbances and uncertainties in the inertia parameters of the IWIP. Moreover, Olivares and Albertos
[32, 33] used a simple PID controller and an observer-based state feedback controller by linearizing the
dynamics around the unstable equilibrium point. Recently, Khraief et al. [34] employed the IDA-PBC for the
asymptotic stabilization of the underactuated IWIP around its unstable upward position in the presence of
external disturbances. Some sufficient stability conditions on matched and unmatched disturbances were also
presented. Moreover, in [35], Khraief et al. enhanced the IDA-PBC by combining it with an adaptive control
technique to estimate controller gains. Ryalat and Laila [36] used a simplified IDA-PBC by considering
friction parameters. They estimated the friction parameters in order to calculate the friction compensation
term. Some other works were realized on the control of inverted pendulums [17, 37–40].

Another interesting and challenging task with the IWIP is the stabilization of periodic motions. Authors
in [41–46] developed a (quasi-continuous) high(second)-order sliding mode control to solve the tracking
control problem for the IWIP. These authors developed a reference model (trajectory) based on a two-relay
controller, which was introduced to produce oscillations where the desired amplitude and frequency were
reached by choosing the control gains properly. The two-relay controller consists of two relays switched by
the feedback received from a linear or nonlinear system, and represents a new approach to the self-generation
of periodic motions in underactuated mechanical systems and hence to design a (robust) tracking controller
[45]. The design procedures for the two-relay control and hence the periodic oscillations developed by
Aguilar and his co-workers were based on three different methodologies, namely the describing-function
method, the Poincaré maps, and the locus-of-a perturbed-relay-system method. Authors in [44] considered
the viscous friction affecting the active joint. Another approach for stabilizing periodic motions around
the upper equilibrium of the IWIP was presented by [47]. Furthermore, a constructive method introduced
in [48–50] was applied for the generation of periodic motions in underactuated nonlinear systems through
virtual holonomic constraints and for orbital stabilization via a partial feedback transformation. Gruber and
Hofbaur [51] employed the same method for planning periodic motions and designing a stabilizing controller
based on a thorough analysis of the dynamics transversal to the resulting limit cycle. In addition, Andary et

al. [52] proposed a control approach dedicated to stable limit cycle generation for the IWIP. The proposed
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approach was based on partial nonlinear feedback linearization and dynamic control for optimal periodic
reference trajectories tracking. The feedback controller presented in [52] is enhanced in [53, 54] to handle
constant disturbances in limit cycle tracking by using online iterative estimation of an equivalent disturbance
which is easily compensated by adding the estimated value to the output of the system. Moreover, Zayane-
Aissa et al. [55] introduced a high order sliding mode structure to solve the problem of trajectory tracking
problem of the IWIP in presence of unknown input perturbation. Aguilar-Ibãnez et al. [56] used the state
feedback controller to ensure the tracking of a limit cycle characterized in terms of the feedback-linearizable
single-input affine nonlinear dynamical systems and, as an application, of the IWIP.

Some analysis of the IWIP under control have been considered in literature using bifurcation theory.
Alonso et al. [57] employed the bifurcation theory to classify different dynamical behaviors arising in the
IWIP subject to bounded continuous-state-feedback control law. To limit the maximum amplitude of the
control action, the control law is subject to a smooth saturation function, which was introduced first in [58]
in order to stabilize the IWIP at the inverted position. Alonso et al. [57] showed that the global dynamics
of the IWIP changes from a stable equilibrium point to a stable limit cycle via a Hopf bifurcation as certain
control gains change. A similar work was realized on the Furuta pendulum by analyzing the Hopf bifurcation
[59]. Recently, Nikolov and Nedev [60] analyzed bifurcation and dynamic behavior of the IWP with bounded
control by means of the theory of Poincaré-Andronov-Hopf.

Moreover, in the literature, there are several design methods of the feedback controller using the Linear
Matrix Inequality (LMI henceforth) approach [61], such as the state feedback control, the static output
feedback control, the dynamic output feedback control, the observer-based feedback control, among others
(see for example [62] and references therein). However, most control synthesis problems cannot be written
in LMI setting, while in terms of a more general form known as a Bilinear Matrix Inequality (BMI).
Computations over BMI constraints are known as NP-hard and difficult to obtain a solution. There are
several approaches and different relaxed synthesis conditions proposed for conducting the BMIs into LMIs.
Generally, all these approaches use for example the Schur complement Lemma, the Finsler Lemma, the
projection Lemma, the Young relation, among others [61]. A brief review on the state feedback control design
using LMI methods for continuous-time linear systems was presented in [63]. Some extensions and numerical
comparisons between several state feedback stabilization conditions were also provided. Furthermore, a
new extended LMI characterization for the state feedback control of continuous-time linear systems with
uncertainty was presented in [64].

1.2 Motivations

The motivations of studying and controlling the underactuated IWIP mainly stem from five facts:

1. In spite of various efforts on the stabilization of the IWIP, a considerable attention is still required for
the generation of stable periodic oscillation for the IWIP and synthesis of a feedback control law to track
it. In this present paper, we use the theory of bifurcations to generate a stable one-periodic limit cycle
by means of the Hopf bifurcation by varying some control parameter.

2. According to [34, 35, 52–54], the motion of the IWIP is constrained. Indeed, the planar swing motion
of the pendulum body is subject to unilateral contacts (constraints) [65], for which its angular position
reaches a certain maximum/minimum value at standstill. Olivares and Albertos [33] worked with a
physical device having such constraints. To the best of authors’ knowledge, no previous work in the
literature has been dealt with such constrained dynamics. Only the free swing motion of the IWIP was
provided and analyzed. In this work, the dynamics of the IWIP is subject to external disturbances and
state constraints. Such state constraints are taken into account for the first time in the present work
and play an important role in the design of the tracking controller for the self-generated limit cycle.

3. The dynamics of the IWIP is a simple class of nonlinear systems with trigonometric nonlinearities, which
can occur in robotic applications, such as the single-link flexible robot manipulator [66, 67] and the pitch
dynamics of a simplified helicopter model [68, 69], and other nonlinear systems.

4. Moreover, the IWIP was known as a testbed underactuated mechanical system used to design new
controllers. It can be used for example to control the simplest model of a walking robot leg [70, 71].
Authors in [70, 71] used a liner inverted pendulum controlled via a flywheel model in the sagittal plane
[70] and in the 3D [71] in order to generate angular momentum. They showed that such flywheel-based
inverted pendulum can effectively describe the reaction of human if perturbed by external force while
walking and standing. A related approach was employed also in [72] for the SURENA III humanoid
robot using the linear inverted pendulum with a flywheel. Actually, the effect of angular momentum
of the upper-body, especially the torso and arms, of a biped robot can play an important role in push
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recovery and hence walking over rough terrain. The effect can be embedded by considering the upper
body as a flywheel that can be actuated directly [73].

5. Bipedal robot control techniques implementing self-clocking properties as presented in [74] have desirable
properties, like the ability to drive the robot step with respect to its own geometry. In [75, 76], the
motivation of adding a disk to the legged robot dynamics is to produce a desirable effect, a desired zero
moment point, and hence to design the geometry of the walking step. A related work was presented also
in [77] where authors employed the same method of reference trajectory generation introduced in [53] for
the IWIP. In addition, an adaptive control of a gyroscopically stabilized pendulum and its application to
a single-wheel pendulum Robot was presented in [78] using the conventional reaction wheel pendulum
model.

1.3 Objective and contributions

In this paper, we will use the IDA-PBC introduced in [34, 35] to control the IWIP at its upright position.
Thus, we will (briefly) show that the nonlinear dynamics of the IWIP under the IDA-PBC demonstrates
a stable limit cycle through a super-critical Hopf bifurcation as some control gain of the IDA-PBC varies.
Indeed, we will present stability conditions of the controlled equilibrium point with respect to the control
gains. Moreover, we will develop conditions for the presence of the Hopf bifurcation and then of periodic
oscillation. Furthermore, stability of these periodic oscillations is investigated numerically by means of the
first Lyapunov value. Thus, we will show that for some critical control gains, the controlled dynamics of the
IWIP exhibits both sub-critical and super-critical Hopf bifurcations. At this last critical bifurcation point,
the IWIP under the IDA-PBC experiences a stable period-1 limit cycle. However, the existence of multiple
attractors, and hence stable limit cycles, in the parameter space is a common phenomenon in nonlinear
systems. Thus, depending on initial conditions, new limit cycles or other kinds of attractors (such as chaotic
or quasi-periodic attractor) can be observed besides the already known, i.e. the stable limit cycle. Each limit
set (attractor) is defined by its basin of attraction. For the underactuated IWIP as a physical system, it
is difficult to provide the adequate initial conditions in order to guarantee that the IWIP converges to the
desired stable limit cycle. Moreover, if we assume that the system trajectory converges to the desired limit
cycle for all sets of initial conditions, the second problem lies in the speed (or time) of convergence itself. In
this work, we show that for an initial condition almost identical to the desired one and for some value of the
control gain, the trajectory of the IWIP under the IDA-PBC requires much time to converge and hence to
stabilize around its own limit cycle. Moreover, we show that the two periodic motions are not synchronized.
Then, the main contribution in this paper is to solve this problem for the underactuated IWIP by tracking
the desired generated stable limit cycle. Our methodology lies in the tracking of a reference model as a
generator of the desired limit cycle. Such reference model is the underactuated nonlinear dynamics of the
IWIP under the IDA-PBC. For some set of control gains, such dynamics exhibits a stable period-1 limit
cycle for a predefined initial condition. The objective is that the (physical) IWIP system tracks the desired
reference model, which generates the desired stable period-1 limit cycle. To achieve this goal, our approach
is to add a new control input (a limit-cycle tracking control law) to the controlled IWIP system. Thus, the
limit cycle tracking problem will be reformulated as the stabilization problem of the tracking error.

According to [34, 35, 52–54], all the states of the physical device of the IWIP are available for direct
measurement. Thus, in this paper, we will adopt a state-feedback control law to solve the self-generated
limit cycle tracking problem of for the underactuated IWIP. Moreover, the constraints in the dynamics of
the IWIP are introduced. Actually, two main keys are used in order to solve the tracking problem. The
first key is the use of the S-procedure [61] in order to reduce the conservatism of the classical Lyapunov
approach. The S-procedure gives in fact the possibility of reducing the field of verification conditions in a
useful subspace Ω, that is from R to some Ω ⊂ R. For the IWIP, the useful subspace is that limited with the
unilateral constraints. The problem of finding stability conditions of the tracking error will be recast as a
nonconvex optimization problem based on BMIs. The second key for achieving the tracking problem is the
use of the Schur complement [61] and also the matrix inversion lemma in order to transform the BMIs into
LMIs, which will be used to allow a numerical solution of the problem. We will show the effectiveness of
the developed controller for the tracking of the desired self-generated period-1 limit cycle. We will achieve
several simulations: a nominal system without uncertainties in the friction parameters and disturbance, a
system under uncertain friction parameters, and a system subject to constant and randomly time-varying
external disturbances.
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1.4 Structure of the paper

The rest of the paper is organized as follows. In Section 2, a brief description of the IWIP, its dynamics
and the IDA-PBC are presented. Self-generation of a stable limit cycle through the Hopf bifurcation is
briefly discussed also in this section. Problem formulation of the self-generated limit cycle tracking of the
underactuated IWIP under the IDA-PBC is described in Section 3. Section 4 deals with the design of the
tracking control law using the framework of LMI. Some well-known preliminaries for solving the asymptotic
stabilization problem are provided first. Transformation of the BMIs into LMIs is realized in this section
too. Section 5 is dedicated to simulation results. Concluding remarks are drawn in Section 6. Finally, an
analysis of the dynamics of the IWIP under the IDA-PBC in order to demonstrate existence of the Hopf
bifurcations and then generation of the stable limit cycle is given in Appendix.

2 The underactuated inertia wheel inverted pendulum under the IDA-PBC

2.1 Description of the underactuated inertia wheel inverted pendulum

The underactuated inertia wheel inverted pendulum (IWIP) (Fig. 1) consists of an inverted pendulum
pivoting on a frictionless point with a rotating wheel on the top. Its mechanical structure is sketched in
Fig. 2. In Fig. 2, the joint between the frame and the pendulum body is unactuated (passive), while the
joint between the body and the inertia wheel is actuated (active) via the control input u. The inertia wheel
is free to rotate about an axis parallel to the axis of rotation of the pendulum. Hence, the IWIP is a planar
mechanical system. This electromechanical system is controlled by a DC motor actuating the inertia wheel
(see [31] for further descriptions of this system). The motor torque produces an angular acceleration of
the rotating wheel, which generates a torque acting on the passive joint of the pendulum by means of the
dynamic coupling. Therefore, this passive joint can be controlled through the acceleration of the inertia
wheel. The dynamic parameters of the IWIP and its description are given in Table 1. In Fig. 2, θ1 is the
angular position of the pendulum body, whereas θ2 is the rotation angle of the inertia wheel. The motion
of the pendulum is subject to unilateral constraints defined as:

Ω = {θ1 ∈ R : −σ ≤ θ1 ≤ σ} . (1)

where σ = θ1max. According to [53], the pendulum angle value is approximately ±10◦ at standstill (i.e. at
the pendulum stop). Then, σ = 10◦.

In this work, we ignore the collision effect of the pendulum body with the stop.

Fig. 1 Physical device of the underactuated inertia wheel inverted pendulum.

2.2 Dynamic model of the IWIP

The dynamic model of the underactuated IWIP is obtained by application of the Euler-Lagrange formulation
[79]. Based on [34, 35, 53], the mathematical model of the IWIP augmented with viscous frictions in the
active and passive joints and with disturbances is described by:
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Fig. 2 Schematic representation of the underactuated inertia wheel inverted pendulum.

Table 1 Important dynamic parameters of the underactuated inertia wheel inverted pendulum.

Symbol Description Value Unit

m1 Pendulum mass 3.228 Kg
m2 Wheel mass 0.33081 Kg
l1 Pendulum center of mass position 0.06 m
l2 Wheel center of mass position 0.044 m
I1 Pendulum inertia 0.0314 Kg.m2

I2 Wheel inertia 4.176e− 4 Kg.m2

[
I + I2 I2
I2 I2

] [
θ̈1
θ̈2

]
−
[
bg sin (θ1)

0

]
+

[
δ1θ̇1
δ2θ̇2

]
=

[
0
1

]
u+

[
1
0

]
ζ (2)

where θ̇1 and θ̇2 correspond to the velocity of the pendulum body and the inertia wheel, respectively; θ̈1
and θ̈2 are their corresponding accelerations; u is the torque applied by the motor on the inertia wheel; ζ is
the external disturbing torque applied to the pendulum; I = m1l

2
1 +m2l

2
2 + I1; b = m1l1 +m2l2; δ1 and δ2

represent, respectively, the friction coefficients of the passive and the active articulations.
According to [31, 34, 35, 53], the physical device of the IWIP system (Fig. 1) was mechanically designed

so as to minimize the effects of viscous frictions. Thus, in this study the frictions of the active and passive
joints, i.e. δ1 and δ2, are so low that we have neglected. Then, in the sequel of this work, we consider the
nominal system, that is without friction (δ1 = δ2 = 0). Moreover, the torque ζ is considered to be zero,
that is the nominal system is not subject to external disturbing torque. Hence, the nominal dynamics of
the IWIP is described as follows:[

I + I2 I2
I2 I2

] [
θ̈1
θ̈2

]
−
[
bg sin (θ1)

0

]
=

[
0
1

]
u (3)

Remark 1 The effect of the friction coefficients δ1 and δ2 and the external disturbance ζ on the tracking
problem of the self-generated limit cycle of the underactuated IWIP under IDA-PBC will be analyzed in
section 5 through numerical simulations. The damping coefficients δ1 and δ2 will be considered as two
uncertain parameters.

Authors in [25, 34, 35] introduced the following change of coordinates:[
q1
q2

]
=

[
1 0
1 1

] [
θ1
θ2

]
(4)

Thus, using (4), the dynamics in (3) can be rewritten like so:
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[
I 0
0 I2

] [
q̈1
q̈2

]
−
[
bg sin (q1)

0

]
=

[
−1
1

]
u (5)

The model (5) can be rewritten through Hamilton’s equations of motion as [24, 34, 35]:
q̇1
q̇2
ṗ1
ṗ2

 =


p1

I
p2

I2
bg sin (q1)− u

u

 (6)

where p1 = Iq̇1 and p2 = I2q̇2 [25, 34, 35].

2.3 The IDA-PBC controller

According to [25, 27, 34, 35], the Interconnection and Damping Assignment-Passivity Based Control (IDA-
PBC) is expressed as follows:

u = γ sin (q1) + k1q1 + k2q2 + k3p1 + k4p2 (7)

with ki are control gains and ki > 0, ∀i = 1, 2, 3, 4, and γ > bg.
In the expression of the IDA-PBC u (7), the first three terms reveal the energy shaping control to assign

the equilibrium. However, the last two terms inject damping to the pendulum body and the inertia wheel
to achieve asymptotic stability. In [34, 35], the control gains were calculated and selected as: γ = 6.1284,
k1 = 1.0367, k2 = 0.0011, k3 = 16.62 and k4 = 3.4640. With these parameters and under the dynamic
nonlinear output feedback IDA-PBC (7), the underactuated IWIP was stabilized in its upward equilibrium
point.

2.4 Self-generation of a stable limit cycle through Hopf bifurcation

By introducing (7) in (6), the closed-loop dynamics of the underactuated IWIP is given by:
ẋ1
ẋ2
ẋ3
ẋ4

 =


x3
I
x4
I2

(bg − γ) sin (x1)− k1x1 − k2x2 − k3x3 − k4x4
γ sin (x1) + k1x1 + k2x2 + k3x3 + k4x4

 (8)

with x =
[
x1 x2 x3 x4

]T
=

[
q1 q2 p1 p2

]T
.

It is straightforward to demonstrate that the equilibrium point of the nonlinear system (8) is expressed
by:

xeq =


kπ

−kπ k1

k2

0
0

 (9)

where k ∈ Z.
Moreover, as the controlled IWIP is under the state constraints (1), then the only equilibrium point is

the origin. The Jacobian matrix around the equilibrium point xeq (we consider only the upright position)
of the closed-loop nonlinear system (8) is defined as follows:

J =


0 0 1

I 0
0 0 0 1

I2
bg − γ − k1 −k2 −k3 −k4

γ + k1 k2 k3 k4

 (10)

It is worth mentioning that as the only equilibrium point of the system (8) is the origin, then the only
way for which such equilibrium point will lose its stability is through the Hopf bifurcation. Indeed, by
varying the control gains ki and by analyzing the eigenvalues of the Jacobian matrix (10), the controlled
equilibrium point xeq loses its stability at some critical values of the gains ki. At these critical values, saying
kci , the closed-loop nonlinear dynamics (8) undergoes a Hopf bifurcation, at which there is a creation of
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either a stable limit cycle or an unstable one. Since the unstable limit cycle (as an unstable solution in
nonlinear dynamics) is not observable, and hence only the stale limit cycle has physical means.

We recall that the main objective of this paper is the design of a tracking controller of some self-
generated stable limit cycle of the IWIP for some set of gain parameters ki. Then, stability investigation of
the equilibrium point xeq with respect to the parameters ki, existence demonstration of the Hopf bifurcation
and then limit cycles and its stability are not developed in this part and only presented in Appendix 1. A
more detailed work dealing with this subject will be developed in another paper.

According to Appendix 1, by fixing the control gains k1, k2 and k3, and by varying the remaining one
k4, the Hopf bifurcation occurs at two critical values of k4: k

c
4,1 ≈ 0.8716 and kc4,2 ≈ 27.1977. For kc4,1, the

Hopf bifurcation was found to be sub-critical and hence only unstable limit cycles were born. However, for
the second critical value kc4,2, the Hopf bifurcation is super-critical and accordingly a period-1 stable limit
cycle was born. For k4 lying between kc4,1 and kc4,2, the equilibrium point is asymptotically stable.

In order to investigate the dynamic behavior of the IWIP as the parameter k4 varies, we used bifurcation
diagrams where some measure (for example x1, i.e. θ1) of the solution state is plotted against the parameter
k4. Moreover, as the origin is the only equilibrium point, then we will focus on the generated stable limit
cycle through the super-critical Hopf bifurcation. Figure 3 shows a bifurcation diagram of the controlled
underactuated IWIP as the parameter k4 varies. For k4 < kc4,2, the controlled IWIP converges to the stable
equilibrium point (marked as SEP in Fig. 3). As k4 increases, the SEP loses its stability and hence becomes
an unstable focus (indicated as UEP) via the Hopf bifurcation (marked as HB in Fig. 3). At the critical
point kc4,2 ≈ 27.1977, the controlled IWIP experiences a stable period-1 limit cycle. As k4 increases, the
amplitude of this limit cycle grows rapidly (according to a certain square function). Thus, the stable limit
cycle persists for a small interval of the control gain k4, i.e. k

c
4,2 < k4 < 30.

Fig. 3 Bifurcation diagram displaying the steady solutions of the closed-loop unconstrained IWIP as the control gain k4
varies. This diagram shows the maximum angular position, θ1 = q1 = x1, of the pendulum body versus k4.

Figure 4(a) (resp. Figure 4(b)) reveals some stable period-1 limit cycles in the phase portrait of the
pendulum (resp. the inertia wheel) for some values of the parameter k4. The smallest limit cycle is depicted
for k4 = 27.201 and the largest one is plotted for k4 = 27.25. For k4 = 27.201, the pendulum body reaches
the angular position about 9◦. Whereas, for k4 = 27.25, the maximum angular position of the pendulum
is about 30◦. It is obvious how the limit cycle of the pendulum grows in terms of amplitude as the control
gain k4 increases slightly.

We emphasize that stable limit cycles in the bifurcation diagram in Fig. 3 are computed using an iterative
method called as the Poincaré shooting method [80] by defining first a Poincaré section:

PS =
{
x ∈ R4×1, h(x) = x3 = CSx = 0, CS ẋ < 0

}
, (11)

with CS =
[
0 0 1 0

]
. The condition CS ẋ < 0 in (11) is added to ensure that the flow intersects the

hyperplane defined by CSx = 0 in only one direction.
It is worth noting that for a stable period-1 limit cycle, the flow starting from its fixed point x⋆ located

on the Poincaré section (11) returns to the Poincaré section and intersects it in the same fixed point x⋆.
The return time, say τr, represents the time between two successive intersections with the Poincaré section
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(a) (b)

Fig. 4 Limit cycles of the pendulum for some values of the control gain parameter k4. From inside to outside: k4 = 27.201,
k4 = 27.21, k4 = 27.22 and k4 = 27.25. (a) shows the limit cycles of the pendulum body, whereas (b) displays the limit
cycles of the inertia wheel.

and it defines the period of the stable period-1 limit cycle. We note that the return time is calculated when
integrating the nonlinear dynamics (8) and hence locating the fixed point x⋆ through the Shooting method.
For example, the smallest stable limit cycle, i.e. for k4 = 27.201, has a self-sustained oscillation period about
0.5900 [s]. However, for k4 = 27.25, the self-sustained oscillation period is about 0.5989 [s]. We stress that
the first value of the period (i.e. for k4 = 27.201) is almost identical to that calculated theoretically through
expression (91) (see Appendix 1).

3 Problem formulation

We emphasize that the bifurcation diagram in Fig. 3 and the limit cycles in Fig. 4 are plotted without
taking into account the constraints on the motion of the pendulum body of the IWIP. We note that in some
previous papers such as that of Ortega and his co-workers, the motion of the IWIP was totally free and no
constraint was considered. Then, if we consider here that the motion of the IWIP is subject to unilateral
constraints defined by (1) and as presented in Fig. 1 and Fig. 2, some limit cycles in Fig. 3 and in Fig. 4
will not be considered. The maximum angular position that can be reached by the pendulum body is about
10◦. Then, in the sequel of this paper, we will interest only in the first stable limit cycle in Fig. 4(a), i.e.
for k4 = 27.201. This stable limit cycle will be used as a reference trajectory, which was generated via
the nonlinear dynamics (8) under the IDA-PBC. The initial condition of such limit cycle is chosen to be:(
θr1(0), θ

r
2(0), θ̇

r
1(0), θ̇

r
2(0)

)
= (−8.8579◦, 23.0117 rad, 0.0066 rad/s,−0.9831 rad/s).

We want to show the motion of the IWIP under the IDA-PBC for the same gain parameter k4 = 27.201
and for another initial condition:

(
θ1(0), θ2(0), θ̇1(0), θ̇2(0)

)
= (−10◦, 0◦, 0 rad/s, 0 rad/s). The choice of θ1(0)

is motivated by the physical properties of the IWIP since simulation is started from the rest position at
standstill, for which θ1(0) = ±10◦. Here, we chosen θ1(0) = −10◦ in order that such initial position of the
pendulum body is almost identical to that of the desired one θr1(0). Figure 5 shows the temporal evolution
of both the desired (reference) angular position θr1 and the angular position θ1 of the pendulum body. The
numerical simulation was achieved for 500 [s]. Figure 5(a) reveals behavior of the IWIP during the first three
seconds, whereas Fig. 5(b) depicts the motion during the last three seconds. It is obvious that for almost
two identical initial positions of the pendulum body, the motion of the IWIP diverges progressively in time
and the IWIP becomes in phase lag with respect to the reference. Furthermore, even after the stabilization
of the motion of the IWIP, the resulting behavior is found to be completely different to the desired one,
where the two motions are not synchronized.

It is worth noting that such result is very meaningful from chaos and bifurcation theory. Indeed, for
k4 > kc4,2 the limit set is the stable period-1 limit cycle. By decreasing the value of the bifurcation parameter
k4, one among the eigenvalues of the Jacobian matrix of the Poincaré map associated to the stable limit cycle
becomes very near to the boundary of the unit circle. Thus, robustness of the stable period-1 stable limit
cycle towards perturbations decreases. Hence the limit cycle becomes very sensitive to weak perturbation
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(a) (b)

Fig. 5 Behavior of the IWIP under IDA-PBC for the gain parameter k4 = 27.201 and for neighborhood initial conditions.

Here, only the motion of the angular position is depicted. The trajectory θref1 is the desired one and which reveals the
stable limit cycle. However, θ1 represents the trajectory of the IWIP for another initial condition. (a) shows the motion for
the first three seconds, and (b) shows the motion during the last three seconds.

around it. As a result, for a neighborhood initial condition, the system trajectory needs a long time in order
to converge to the stable period-1 limit cycle.

Our objective is then to solve such problem by synchronizing the periodic motion of the IWIP with the
desired self-sustained oscillation, that is with the desired stable limit cycle. Thus, this self-generated stable
limit cycle will be used as a reference trajectory, which was generated via the nonlinear dynamics (8) under
the IDA-PBC. In other words, the controlled nonlinear dynamics (8) will be considered as a reference model
to track.

Relying on (8), the nonlinear dynamics of the IWIP under the unilateral constraints can be reformulated
as:

ẋ = Jx+Df (x1) where −σ ≤ x1 ≤ σ , (12)

with D =


0
0

bg − γ

γ

, and f (x) = sin (x)− x.

It is straightforward to demonstrate that:

sin (σ)− σ ≤ f (x) ≤ σ − sin (σ) for all −σ ≤ x ≤ σ , (13)

The objective is then to add a control input v to the nonlinear dynamics (8) of the IWIP to track
the self-generated period-1 stable limit cycle. Such additional control input v is added first to the original
nonlinear dynamics (2). Thus, we obtain the following new dynamic system of the IWIP:[

I + I2 I2
I2 I2

] [
θ̈1
θ̈2

]
−
[
bg sin (θ1)

0

]
+

[
δ1θ̇1
δ2θ̇2

]
=

[
0
1

]
u+

[
0
1

]
v +

[
1
0

]
ζ (14)

According to previous results, system (12) and nonlinear dynamics (14), the dynamics of the controlled
IWIP under the additional control input v can be recast as:

ẋ = Jx+Df (x1) +Bv where −σ ≤ x1 ≤ σ , (15)

with B =


0
0
−1
1

.
The objective is then to design the controller v in order to track the one-periodic stable limit cycle,

which is generated via the following reference model:
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ẋr = Jxr +Df (xr1) where −σ ≤ xr1 ≤ σ , (16)

Remark 2 Relying on the dynamics (2) of the underactuated IWIP with parametric uncertainties in the
two friction coefficients δ1 and δ2 and subject to the external disturbance ζ, the IDA-PBC u in (7) and
according to the system (15), the state space representation of the controlled IWIP under the parametric
uncertainties and the external disturbance can be reformulated as follows:

ẋ = Jx+Df (x1) +Bv + J̃x+ D̃ζ where −σ ≤ x1 ≤ σ , (17)

where J̃ =


0 0 0 0
0 0 0 0

0 0 − δ1+δ2
I

δ2
I2

0 0 δ2
I − δ2

I2

 and D̃ =


0
0
1
0

.
Thus, our goal is to design the new control law v such that the constrained nonlinear system (15) of

the controlled IWIP tracks the reference model (16). The tracking error, e = x−xr, between the nonlinear
dynamics (15) and the reference model (16) is defined as:

ė = Je+D (f (x1)− f (xr1)) +Bv where −2σ ≤ e1 ≤ 2σ , (18)

with e1 = x1 − xr1.
Therefore, our approach for achieving the tracking problem lies in the design of the control law v

stabilizing the tracking error of the nonlinear system (18), which is the objective of the next section.

Remark 3 The nonlinear dynamics (12) of the IWIP is under state constraints in which the motion of
pendulum or the state x1 = θ1 evolves in a small region (1) defined as |x1| ≤ 10◦. Moreover, the nonlinear
term f (x1) presented in the dynamics of the IWIP depends only on the state x1, f (x1) = sin (x1) − x1.
Thus, it is possible to use the approximated linear model instead of the nonlinear model to solve the tracking
control problem. In this case, we will have f (x1) = 0 since sin (x1) ≈ x1. Hence, the error dynamics in (18)
becomes

ė = Je+Bv where −2σ ≤ e1 ≤ 2σ (19)

It is worth to note that there is no remarkable difference between the obtained results using the nonlinear
system (18) or the linear system (19). However, the strategy developed in this work for the controller
synthesis by considering the nonlinear dynamics (18) can be applied for more general constrained nonlinear
systems for which the states evolve in a large region as for the case of the single-link rotary flexible joint
robot studied in [67].

4 Design of the tracking control law

The tracking control law is adopted to be defined like so:

v = −k2e2 + w (20)

with k2 is the control gain in the IDA-PBC (7), e2 = x2 − xr2, and w is an auxiliary tracking control law.
By substituting expression of v in the dynamics (18), it follows that the second state variable e2 does

not affect any other variable. Therefore, there is no interest on its evolution and hence it can be discarded.
Then, the nonlinear dynamics (18) can be simplified as:

˙̄e = Aē+ D̄ (f (x1)− f (xr1)) + B̄w where −2σ ≤ e1 ≤ 2σ , (21)

with ē =
[
e1 e3 e4

]T
, A =

 0 1
I 0

bg − γ − k1 −k3 −k4
γ + k1 k3 k4

, D̄ =

 0
bg − γ

γ

, and B̄ =

 0
−1
1

.
Thus, the tracking problem will be recast as an asymptotic stability problem of the tracking error ē of

the nonlinear system (21) by means of the control law w. To achieve such asymptotic stability, we adopt a
simple state-feedback linear control law as:

w =

{
Kē whenever ∥ē∥ > ϵ

0 elsewhere
(22)
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where K is a constant gain matrix which will be obtained later, and ϵ is very small positive constant.
Substituting this control law into (21), it yields the new closed-loop dynamics:

˙̄e =
(
A+ B̄K

)
ē+ D̄ (f (x1)− f (xr1)) where −2σ ≤ e1 ≤ 2σ and ∥ē∥ > ϵ , (23)

The problem lies then in the stabilization of the nonlinear dynamics (23) by designing the gain matrix
K. Designing the gain matrix K of the control law (22) stabilizing the nonlinear system (23) can be realized
though the classical Lyapunov method. However, this method requires that the error state ē belong to the
complete state space R3 (here, the nonlinear system (23) is three-dimensional). However, for our stabilization
problem, the error state ē is constrained and hence it belongs to a certain subspace Ω in R3. Then, using the
Lyapunov method, the stability conditions must be only verified in the working state space Ω and not in R.
As a result, this will give stability conditions less conservative. Furthermore, looking for stability conditions
in the subspace Ω ⊂ R3 can conduct to obtain a control effort that is less than that in R3. Therefore, our
methodology to solve the tracking problem hinges mainly on the use of the S-procedure [61] in order to
reduce the conservatism of the classical Lyapunov approach.

The S-procedure Lemma and other preliminaries are defined next.

4.1 Preliminary Lemmas

Lemma 1 the Young relation [81–83]

Given constant matrices X and Y with appropriate dimensions and any positive symmetric matrix M , the

following inequality holds:

XTY + Y TX ≤ XTMX + Y TM−1Y (24)

Lemma 2 The matrix inversion Lemma [84, 85]

Given invertible matrices X and Y such that X ∈ Rn×n and Y ∈ Rm×m. Moreover, given matrices U and

V with appropriate dimensions: U ∈ Rn×m and V ∈ Rm×n. Then, the matrix inversion Lemma (known also as

the Woodbury matrix identity) is:

(X +UY V )−1 = X−1 −X−1U
(
Y −1 + V X−1U

)−1

V X−1 (25)

Lemma 3 The Schur complement Lemma [61]

Given matrices Q = QT, R = RT and S with appropriate dimensions, the following propositions are equiva-

lent: [
Q S

ST R

]
> 0 (26a){

R > 0
Q− SR−1ST > 0

(26b){
Q > 0
R− STQ−1S > 0

(26c)

Lemma 4 The S-procedure Lemma [61, 86]

Let F0, . . ., Fp ∈ Rn×n be symmetric matrices. We consider the following condition on F0, . . ., Fp:

ζTF0ζ > 0 for all ζ ̸= 0 such that ζTFiζ ≥ 0, i = 1, . . . , p. (27)

If

there exist scalar variables τ1 ≥ 0, . . . , τp ≥ 0 such that F0 −
∑p

i=1 τiFi > 0, (28)

then (27) holds.

Remark 4 In the sequel of the paper, (⋆) denotes a transposed symmetric element. For example,

[
X Y

(⋆) Z

]
=[

X Y

Y T Z

]
, and X + (⋆) = X + XT. Moreover, O and I denote the zero matrix and the identity matrix,

respectively, with appropriate dimension.



Limit cycle tracking of the IWIP under IDA-PBC 13

4.2 Asymptotic stabilization of the tracking error

In this section, we derive conditions on asymptotic stability of the constrained nonlinear dynamics (23) of
the tracking error. We state then the following theorem.

Theorem 1 If there exist a matrix P = PT, a matrix K, some positive constants µ1, µ2, µ3, η1, η2 and η3,

and a matrix M = MT > 0 such that the following matrix inequalities[
P − µ3I (µ1 − µ2)C

(⋆) ϵµ3 − 4σ (µ1 + µ2)

]
> 0 (29a)[

PA+ PB̄K + (⋆) + PMP + η3I − (η1 − η2)C

(⋆) γ2D̄TM−1D̄ − ϵη3 + 4σ (η1 + η2)

]
< 0 (29b)

are feasible, then the nonlinear dynamics (23) of the tracking error is asymptotically stable.

Proof To demonstrate Theorem 1, we consider first a classical candidate Lyapunov function V (ē) = ēTP ē,
with P = PT. Then, the tracking error (23) is asymptotically stable if there exists P such that:

V (ē) = ēTP ē > 0, such that −2σ ≤ e1 ≤ 2σ and ∥ē∥ > ϵ , (30a)

V̇ (ē) = 2ēTP ˙̄e < 0, such that −2σ ≤ e1 ≤ 2σ and ∥ē∥ > ϵ , (30b)

Using expression in (23), it follows that:

V̇ (ē) = 2ēTP
(
A+ B̄K

)
ē+ 2ēTPD̄ (f (x1)− f (xr1)) (31)

Relying on the Young relation (Lemma 1), it yields:

2ēTPD̄ (f (x1)− f (xr1)) ≤ ēTPMPē+ D̄TM−1D̄ (f (x1)− f (xr1))
2

(32)

with M = MT > 0.
According to (13), it follows that: f (x1) − f (xr1) ≤ γ, with γ = 2 (σ − sin (σ)). Accordingly, condition

(32) can be recast as:

2ēTPD̄ (sin (x1)− sin (xr1)) ≤ ēTPMPē+ γ2D̄TM−1D̄ (33)

Hence, using expressions (31) and (33), it follows that:

V̇ (ē) ≤ 2ēTP
(
A+ B̄K

)
ē+ ēTPMPē+ γ2D̄TM−1D̄ (34)

Posing U (ē) = 2ēTP
(
A+ B̄K

)
ē + ēTPMPē + γ2D̄TM−1D̄. Then, the right-hand side in (34) can

be rewritten in the following quadratic representation:

U (ē) =

[
ē

1

]T [
PA+ PB̄K + (⋆) + PMP O

(⋆) γ2D̄TM−1D̄

] [
ē

1

]
(35)

In addition, the quantity V (ē) = ēTP ē in (30a) can be rewritten in the following form:

V (ē) =

[
ē

1

]T [
P O
(⋆) 0

] [
ē

1

]
(36)

Furthermore, the two constraints on the Lyapunov function V (ē) in (30) are equivalent to:

W1 (ē) =

[
ē

1

]T [
O C

(⋆) −4σ

] [
ē

1

]
≤ 0 (37a)

W2 (ē) =

[
ē

1

]T [
O −C

(⋆) −4σ

] [
ē

1

]
≤ 0 (37b)

W3 (ē) =

[
ē

1

]T [
I O
(⋆) −ϵ

] [
ē

1

]
≥ 0 (37c)

where CT =
[
1 0 0 0

]
.

Accordingly, relying on previous relations, the two constrained inequalities in (30) can be recast as:
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V (ē) > 0 such that W1 (ē) ≤ 0 and W2 (ē) ≤ 0 and W3 (ē) ≥ 0 , (38a)

U (ē) < 0 such that W1 (ē) ≤ 0 and W2 (ē) ≤ 0 and W3 (ē) ≥ 0 , (38b)

Using quadratic representation of each term in (38) and applying the S-procedure (Lemma 4), (38a) and
(38b) are equivalent to the existence of positive scalar variables µ1, µ2, µ3, η1, η2 and η3, and a positive
matrix M such that the two matrix inequalities in (29) hold. This ends the proof of Theorem 1.

It is worth noting that the matrix inequality (29a) is linear in P , µ1, µ2 and µ3. However, the second
matrix inequality (29b) is bilinear in terms of P , K, M , η1, η2 and η3. Then, we stress that the stabilization
problem of the tracking error is transformed into the solving problem of two BMIs. Here, the LMI (29a)
can be considered as a BMI as (29b). However, the BMIs problem in Theorem 1 is nonconvex and difficult
to obtain a solution. Therefore, our objective lies in the transformation of these two BMIs (29a) and (29b)
into LMIs, which will be used to allow a numerical solution of the stabilization problem. In the sequel, we
deal with the linearization of these BMIs.

Remark 5 According to Remark 2, if we consider an underactuated IWIP subject to external disturbances
and under parametric uncertainties where its dynamics is described by (17), we will obtain (almost) the
same optimization problem in Theorem 1 with the two BMIs (29a) and (29b). In fact, the BMI (29a) is
unchanged. However, the BMI (29b) is slightly modified and replaced by the BMI (95) (see Appendix 2 for
further details on this obtained BMI).

4.3 Linearization of the BMIs

In this part, we deal with the linearization of the two BMIs in (29). Then, we will linearize first the second
BMI (29b). The linearization of the first BMI (29a) will be achieved almost with the same method.

4.3.1 Linearization of the BMI (29b)

We linearize first the BMI (29b). Posing S = P−1. Left and right multiplying expression (29b) by

[
S O
(⋆) 1

]
yields the following condition[

AS + B̄R+ (⋆) +M + η3S
2 − (η1 − η2)SC

(⋆) γ2D̄TM−1D̄ − ϵη3 + 4σ (η1 + η2)

]
< 0 (39)

with R = KS.
Relying on the Schur complement, and since M > 0, it is easy to demonstrate that (39) is equivalent to:AS + B̄R+ (⋆) +M + η3S

2 − (η1 − η2)SC O
(⋆) −ϵη3 + 4σ (η1 + η2) γD̄

T

(⋆) (⋆) −M

 < 0 (40)

Furthermore, left and right multiplying expression (40) by

 I O O
O O I
O I O

 gives:

AS + B̄R+ (⋆) +M + η3S
2 O − (η1 − η2)SC

(⋆) −M γD̄

(⋆) (⋆) −ϵη3 + 4σ (η1 + η2)

 < 0 (41)

For simplicity, posing X =

[
AS + B̄R+ (⋆) +M + η3S

2 O
(⋆) −M

]
, Y =

[
O
γD̄

]
, Z =

[
− (η1 − η2)SC

O

]
,

and φ1 = −ϵη3 + 4σ (η1 + η2). Then, inequality (41) can be reformulated like so:[
X Y +Z

(⋆) φ1

]
< 0 (42)

Applying the Schur complement Lemma yields:

X − (Y +Z)φ−1
1 (Y +Z)T < 0 (43a)
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φ1 < 0 (43b)

Moreover, posing L =

[
1
1

]
, N =

[
β1 0
0 β2

]
, β1 = η−1

1 , β2 = η−1
2 , Q−1 = 4σI and ξ−1

1 = −ϵη3, where

ξ1 < 0 and N > 0. Then, we obtain:

φ1 = ξ−1
1 +LTN−1Q−1L (44)

Applying now the matrix inversion lemma to the expression of φ1 in (44). Hence, it yields:

φ−1
1 = ξ1 − ξ21L

TH−1L (45)

with

H = ξ1LLT +QN (46)

In addition, we can show that: Z = GN−1L, with G =

[
−SC SC

O O

]
. Then, using expression (45), we

can write the following relation:

Φ = (Y +Z)φ−1
1 (Y +Z)T =

(
Y +GN−1L

)(
ξ1 − ξ21L

TH−1L
)(

Y +GN−1L
)T

(47)

By developing the right-hand side of relation (47), we obtain:

Φ = ξ1Y Y T + ξ1Y LTN−1GT + ξ1GN−1LY T + ξ1GN−1LLTN−1GT − ξ21Y LTH−1LY T−
ξ21Y LTH−1LLTN−1GT − ξ21GN−1LLTH−1LY T − ξ21GN−1LLTH−1LLTN−1GT (48)

Moreover, using expression (46) of H, it easy to show that:

ξ1GN−1LLTN−1GT = GN−1HN−1GT −GQN−1GT (49a)

ξ21GN−1LLTH−1LLTN−1GT = GN−1HN−1GT − 2GQN−1GT +GQH−1QGT (49b)

ξ21GN−1LLTH−1LY T = ξ1GN−1LY T − ξ1GQH−1LY T (49c)

Then, using expressions in (49), relation (48) can be simplified like so:

Φ = ξ1Y Y T − ξ21Y LTH−1LY T + ξ1GQH−1LY T+
ξ1Y LTH−1QGT +GQN−1GT −GQH−1QGT (50)

This expression (50) can be rewritten as follows:

Φ = ξ1Y Y T −
(
ξ1Y LT −QG

)
H−1

(
ξ1Y LT −QG

)T

+GQN−1GT (51)

Therefore, substituting expression of Φ = (Y +Z)φ−1
1 (Y +Z)T in the inequality (43a) yields:

X − ξ1Y Y T +
(
ξ1Y LT −QG

)
H−1

(
ξ1Y LT −QG

)T

−GQN−1GT < 0 (52)

Since N > 0, then inequality (52) can be simplified as:

X − ξ1Y Y T +
(
ξ1Y LT −QG

)
H−1

(
ξ1Y LT −QG

)T

< 0 (53)

Moreover, as ξ1 < 0, LLT ≥ 0 and N > 0, then relying on expression (46), we can obtain H > 0.
Accordingly, based on the Schur complement, the inequality (53) is equivalent to:[

X − ξ1Y Y T ξ1Y LT −QG

(⋆) −H

]
< 0 (54)

Substituting expressions of X, Y , G, L, Q, H in (54), and using the Schur complement for the quantity
η3S

2, and as ξ−1
1 = −ϵη3 < 0, we obtain then the following LMI:
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AS + B̄R+ (⋆) +M O 1

4σSC − 1
4σSC S

(⋆) −M − ξ1γ
2D̄D̄T ξ1γD̄ ξ1γD̄ O

(⋆) (⋆) − 1
4σβ1 − ξ1 −ξ1 O

(⋆) (⋆) (⋆) − 1
4σβ2 − ξ1 O

(⋆) (⋆) (⋆) (⋆) ϵξ1I

 < 0 (55)

Moreover, using expression (44) in (43b) and multiplying it by the quantity ξ21 , we obtain the following
inequality:

ξ1 + ξ21L
TN−1Q−1L < 0 (56)

As ξ1 < 0 and N > 0, then based on the Schur complement, expression (56) is equivalent to:[
ξ1 ξ1L

T

(⋆) −QN

]
< 0 (57)

Therefore, we obtain the following LMI: ξ1 ξ1 ξ1

(⋆) − β1

4σ 0

(⋆) (⋆) − β2

4σ

 < 0 (58)

Hence, the two inequalities (43a) and (43b) are transformed into the two matrix inequalities (55) and
(58), respectively.

4.3.2 Linearization of the BMI (29a)

Linearization of the BMI (29a) is almost identical to that of the BMI (29b). As S = P−1, and left and right

multiplying expression (29a) by the matrix

[
S O
(⋆) 1

]
, we will obtain then the following result:[

S − µ3S
2 (µ1 − µ2)SC

(⋆) ϵµ3 − 4σ (µ1 + µ2)

]
> 0 (59)

Let us pose φ2 = ϵµ3 − 4σ (µ1 + µ2), N =

[
α1 0
0 α2

]
, α1 = µ−1

1 , α2 = µ−1
2 , and ξ−1

2 = ϵµ3, where ξ2 > 0

and N > 0. Then, we obtain:

φ2 = ξ−1
2 −LTN−1Q−1L (60)

Moreover, we can show that: (µ1 − µ2)SC = −GN−1L.
Based on the Schur complement, the matrix inequality (59) is equivalent to:

S − (ϵξ2)
−1

S2 −GN−1Lφ−1
2 LTN−1GT > 0 (61a)

φ2 > 0 (61b)

The matrix inversion lemma states that:

φ−1
2 = ξ2 − ξ22L

TH−1L (62)

with

H = ξ2LLT −QN (63)

Substituting expression (62) in (61a) yields:

S − (ϵξ2)
−1

S2 − ξ2GN−1LLTN−1GT + ξ22GN−1LLTH−1LLTN−1GT > 0 (64)

Based on expression of H in (63), we can show that:

ξ2GN−1LLTN−1GT = GN−1HN−1GT +GQN−1GT (65a)

ξ21GN−1LLTH−1LLTN−1GT = GN−1HN−1GT + 2GQN−1GT +GQH−1QGT (65b)

Substituting these two expressions into (63) leads to a simplified inequality:
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S − (ϵξ2)
−1

S2 +GQN−1GT +GQH−1QGT > 0 (66)

As N > 0, it follows that inequality (66) can be recast as:

S − (ϵξ2)
−1

S2 +GQH−1QGT > 0 (67)

In addition, according to expression (63) and as we can have H < 0, the Schur complement states that
the matrix inequality (67) is equivalent to:  S QG S

(⋆) −H O
(⋆) (⋆) ϵξ2I

 > 0 (68)

Accordingly, we obtain the following LMI:
S − 1

4σSC 1
4σSC S

(⋆) 1
4σα1 − ξ2 −ξ2 O

(⋆) (⋆) 1
4σα2 − ξ2 O

(⋆) (⋆) (⋆) ϵξ2I

 > 0 (69)

Furthermore, relying on the previous subsection, we can show that the condition (61b) is equivalent to: ξ2 ξ2 ξ2
(⋆) α1

4σ 0
(⋆) (⋆) α2

4σ

 > 0 (70)

Then, the two inequalities (61a) and (61b) are reformulated by the two matrix inequalities (69) and
(70), respectively.

Hence, relying on previous results, we can state the following theorem.

Theorem 2 If there exist a symmetric matrix S, a matrix R, a positive-definite symmetric matrix M , some

constants α1 > 0, α2 > 0, β1 > 0, β2 > 0, ξ1 < 0 and ξ2 > 0, such that the following LMIs ξ2 ξ2 ξ2
(⋆) α1

4σ 0
(⋆) (⋆) α2

4σ

 > 0 (71a)

 ξ1 ξ1 ξ1

(⋆) − β1

4σ 0

(⋆) (⋆) − β2

4σ

 < 0 (71b)


S − 1

4σSC 1
4σSC S

(⋆) 1
4σα1 − ξ2 −ξ2 O

(⋆) (⋆) 1
4σα2 − ξ2 O

(⋆) (⋆) (⋆) ϵξ2I

 > 0 (71c)


AS + B̄R+ (⋆) +M O 1

4σSC − 1
4σSC S

(⋆) −M − ξ1γ
2D̄D̄T ξ1γD̄ ξ1γD̄ O

(⋆) (⋆) − 1
4σβ1 − ξ1 −ξ1 O

(⋆) (⋆) (⋆) − 1
4σβ2 − ξ1 O

(⋆) (⋆) (⋆) (⋆) ϵξ1I

 < 0 (71d)

are feasible, then the nonlinear dynamics (18) of the tracking error is asymptotically stable. In addition, the gain

matrix of the control law (22) is defined by: K = RS−1.

It is worth mentioning that in Theorem 2, the stability conditions of the nonlinear system (18) are
reformulated by four LMIs (71a)-(71d). These LMIs are defined with respect to the unknown matrices S, R
and M , and unknown variables ξ1, ξ2, α1, α2, β1 and β2. Then, the problem lies in finding such unknown
matrices and variables satisfying the four LMIs in Theorem 2, which can be easily and effectively solved
numerically via LMI control toolbox [87]. Once the solving problem is feasible, then the gain matrix K is
computed by means of relation: K = RS−1.
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5 Simulation results of the limit cycle tracking

Simulation results are presented and discussed in the following. They attest to the effectiveness of the de-
signed control law (20) for the tracking of the self-generated period-1 stable limit cycle using the gain matrix
K, which is solution of LMIs in Theorem 2. We recall that the matrices A, B̄, D̄ and C are given in the
beginning of Section 4. Moreover, σ = 10◦. Thus, by choosing ϵ = 0.1, the resolution of the four LMIs in (71)

by means of the LMI toolbox of MATLAB gives the following results: S =

 49.5559 −16.3793 −10.6745
−16.3793 20.9659 −20.6407
−10.6745 −20.6407 50.1719

,
M =

 398.7800 −21.5710 −21.5706
−21.5710 324.4302 −298.2469
−21.5706 −298.2469 324.5022

,R =
[
1088.26 171.7705 −844.0613

]
, ξ1 = −570.8652, ξ2 = 886.3538,

α1 = α2 = 1497.858, and β1 = β2 = 1070.568. Therefore, the control gain K is computed to be: K =[
48.5437 66.7622 20.9706

]
.

Table 2 shows some numerical values of the matrix gain K for some values of the parameter ϵ. We
emphasize that as ϵ decreases, the gain K increases. This increase in K will provoke a considerable increase
in the control effort. However, the tracking error will be canceled rapidly as K increases. This will be shown
next.

Table 2 Numerical values of the gain matrix K for different values of ϵ.

ϵ K

0.1 [ 48.5437 66.7622 20.9706 ]
0.05 [ 304.4274 603.7444 298.4429 ]
0.01 [ 239.0992 500.4151 196.2109 ]
0.005 [ 343.4758 786.0560 290.5334 ]
0.001 [ 4768.16 10418.68 4837.79 ]
0.0005 [ 3230.59 7633.10 2909.52 ]

We recall that K is the gain matrix of the stabilizing control law w defined by expression (22). Moreover,
it is worth noting that the tracking control law (20) can be rewritten as:

v = K̂e = K̂ (x− xr) (72)

with K̂ =
[
K (1) −k2 K (2) K (3)

]
, where K (i) is the ith element of the gain matrix K.

Furthermore, in order to avoid high gain of the tracking control law v in (72), we use a saturation
function as follows:

v =


vmax if v > vmax

K̂ (x− xr) if −vmax ≤ v ≤ vmax

−vmax if v < −vmax

(73)

where vmax = 10. Here, this value of vmax is an arbitrary choice.

We recall that xr is the state of the reference model (16), which generates the desired period-1 stable
limit cycle, whereas x is the state of the IWIP, as the physical system modeled via the nonlinear dynamics
(15), under the tracking control law v (73).

Our objective is to investigate the influence of the designed control law v with the gain K on the
dynamic behavior of the controlled IWIP and then the tracking of the self-generated period-1 stable limit
cycle. Moreover, we will consider three different scenarios. The first scenario is the nominal case, for which the
system is without parametric uncertainties and without external disturbing torque. In the second scenario,
we will take into account uncertain parameters in the dynamics of the controlled IWIP. However, in the
third scenario, we will consider the external disturbance. We recall that the dynamics of the IWIP under
parametric uncertainties in the friction coefficients δ1 and δ2 and subject to the external disturbing torque
ζ is given by (17). The reference model generating the desired period-1 stable limit cycle is always the
nominal one given by the dynamics (16). Moreover, in order to show how well behaved the closed-loop
system is to the uncertainties in the two friction parameters δ1 and δ2 and the external disturbance ζ,
we will realize several simulations. Indeed, we will consider and analyze different cases: constant uncertain
friction parameters, randomly time-varying uncertain parameters, a constant external disturbance, and a
randomly time-varying external disturbance.
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As noted previously, it was assumed that the physical device of the IWIP was mechanically designed
in order to minimize the effects of viscous frictions [31, 34, 35, 53]. Thus, the frictions of the active and
passive joints are completely neglected. Authors in [44] calculated the viscous friction coefficient affecting
the actuator, the active joint. It was found to be about 10−4. In the next, we take a common value for the
two friction parameters δ1 and δ2, δ1 = δ2 = 10−2.

5.1 First scenario: Nominal dynamics of the IWIP

In this first scenario, the IWIP is without uncertainties and external disturbances. As in [53], the proposed
simulation is started from the initial condition

(
θ1(0), θ2(0), θ̇1(0), θ̇2(0)

)
= (10◦, 0◦, 0 rad/s, 0 rad/s). The

choice of θ1(0) is motivated by the physical properties of the IWIP since simulation is started from the rest
position at standstill. Moreover, we will take the gain matrix K computed for the parameter ϵ = 0.1 (see
Table 2).

Then, application of the control law (73) to the nominal nonlinear dynamics (15) of IWIP gives the
results in Fig. 6. In each portrait of Fig. 6, we show the variable of the reference model and that of the
controlled IWIP system, which is given by (15). Figure 6(a) shows the temporal evolution of the angular
position of the pendulum body, θ1. Figure 6(b) reveals the angular velocity of the pendulum θ̇1. Figure 6(c)
depicts the angular velocity of the inertia wheel θ̇2. Figure 6(d) shows the desired period-1 stable limit cycle
and the trajectory of the IWIP system under the control law (73) from the proposed initial condition. These
results show clearly the convergence of the trajectory of the controlled IWIP to the reference trajectory
and hence to the desired stable period-1 limit cycle. It can be observed from the displayed results that the
tracking was achieved within almost three periods, since the period of the reference limit cycle is about
0.6 [s]. Figure. 7 represents the tracking control law v. When the tracking was reached, the control law v

remains constant about the value −0.0614 [N ]. It is clear that the control effort is initially saturated at the
value 10 [N ].

We have chosen another initial condition for the controlled IWIP such that θ1(0) is away from the track-
ing trajectory. Then, using the same matrix gain K and the initial condition

(
θ1(0), θ2(0), θ̇1(0), θ̇2(0)

)
=

(0◦, 0◦, 0 rad/s, 0 rad/s), we obtained the simulation results in Fig. 8. Figure 8(a) shows the trajectory of the
controlled IWIP in the state space with the desired period-1 stable limit cycle. Figure 8(b) shows temporal
evolution of the tracking control law v.

In the two last simulation results, the initial condition was selected to respect the unilateral state
constraints of the inverted pendulum given by (1). We have chosen other initial positions of the inverted
pendulum such that the angular position θ1 is outside the interval [−σ σ]. In this case, the physical device
of the underactuated IWIP is not that given in Fig. 1. The IWIP is not under the unilateral constraints
and its swing motion is completely free. In this case, we will have the inertial wheel pendulum studied
by Aguilar and his co-workers (see for example [45]) and other authors with different physical parameters.
Figure 9 reveals simulation results of the underactuated IWIP for two initial positions of the inverted
pendulum lying outside the defined working space (1). Figure 9(a) and Fig. 9(c) show the trajectory of the
inverted pendulum in the state space and the corresponding self-generated limit cycle. However, Fig. 9(b)
and Fig. 9(d) represent the tracking control law v. Figure 9(a) and Fig. 9(b) are plotted for the initial
condition θ1(0) = 90◦, whereas Fig. 9(c) and Fig. 9(d) are depicted for θ1(0) = 180◦. It is obvious that in
these two cases the trajectory of the IWIP follows the desired period-1 stable limit cycle. Moreover, the
control law v tends to a very small value (almost zero). It is worth noting that initially the control law v is
saturated at ±10 [N ]. This is because the IWIP needs an important control effort to bring the IWIP from
its initial position to the desired one where the initial position was chosen to be far away from the tracking
trajectory.

5.2 Second scenario: IWIP under uncertain friction parameters

As noted before, in this second scenario, the two friction coefficients δ1 and δ2 of the passive and the active
articulations of the controlled underactuated IWIP are considered to be uncertain. Moreover, we will assume
that 0 ≤ δ1, δ2 ≤ 10−3. In this analysis, the initial condition of the IWIP is

(
θ1(0), θ2(0), θ̇1(0), θ̇2(0)

)
=

(10◦, 0◦, 0 rad/s, 0 rad/s). Furthermore, the gain matrix K is that calculated for the parameter ϵ = 0.005 in
Table 2.

Figs. 10(a)-10(c) show simulation results for the case δ1 = δ2 = 10−3. In Fig. 10(a) and Fig. 10(b), we
plotted the tracking errors e1 and e4, respectively. Figure 10(c) represents the signal of the control law v. It
is obvious that the tracking error e1 of the inverted pendulum is almost zero (|e1| < 0.04◦). Moreover, the



20 Gritli et al.

(a) (b)

(c) (d)

Fig. 6 Simulation results of the self-generated limit cycle tracking in the nominal case (i.e. the underactuated IWIP
is without parametric uncertainties and external disturbance). Here, the IWIP was emanated from the initial condition(
θ1(0), θ2(0), θ̇1(0), θ̇2(0)

)
= (10◦, 0◦, 0 rad/s, 0 rad/s).

tracking error e4 is also almost zero, |e4| < 2 [rad/s]. In addition, the control signal v looks like a sinusoidal
signal with a weak amplitude about 0.25 [N ].

As the two friction coefficients δ1 and δ2 are unknown, then we have considered them as uncertain
parameters and randomly time-varying such that 0 ≤ δ1, δ2 ≤ 10−3. In this case, we used the random
function of MATLAB to generate the uncertainties. Figs. 10(d)-10(f) show the corresponding simulation
results. As in the previous case, the tracking errors are nearly zero and the control effort is very small.

We stress that the control gain K chosen for the parameter ϵ = 0.005 in the present simulation is the
ideal one. Indeed, for ϵ < 0.005 and using the corresponding gain matrix K, the tracking error will increase
as ϵ decreases. For example, for ϵ = 0.1, the tracking error |e1| < 0.3◦, whereas |e4| < 8 [rad/s]. However,
for ϵ > 0.005, and then for high control gains K, the control effort v was found to toggle between the two
saturation thresholds ±10 [N ]. Nevertheless, the tracking of the limit cycle in the presence of the constant
uncertainties in the friction parameters was achieved.

5.3 Third scenario: IWIP under external disturbance

In this third scenario, we will investigate the effect of the external disturbing torque ζ on the tracking of the
self-generated stable period-1 limit cycle of the IWIP. Moreover, we will assume that the IWIP is without
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Fig. 7 Tracking control law v for the nominal dynamics of the underactuated IWIP for a first initial condition:(
θ1(0), θ2(0), θ̇1(0), θ̇2(0)

)
= (10◦, 0◦, 0 rad/s, 0 rad/s).

(a) (b)

Fig. 8 Simulation results of the self-generated limit cycle tracking in the nominal case for a new initial condition:(
θ1(0), θ2(0), θ̇1(0), θ̇2(0)

)
= (0◦, 0◦, 0 rad/s, 0 rad/s).

uncertainties, i.e. δ1 = δ2 = 0. We recall that the dynamics of the controlled IWIP under the disturbance ζ is
given by (17). This disturbance is applied on the pendulum body. Furthermore, we assume that |ζ| ≤ ρ, with
ρ > 0. We will consider two cases: a constant disturbing torque ζ = ρ, and a randomly time-varying disturbing
torque ζ = ρ (2Rand− 1), with Rand is the function that generates random values between 0 and 1. In this
analysis, the initial condition of the simulation is

(
θ1(0), θ2(0), θ̇1(0), θ̇2(0)

)
= (10◦, 0◦, 0 rad/s, 0 rad/s). In

addition, the disturbance ζ is applied during 3 [s] at the instant t = 2 [s]. Moreover, as in the previous study,
the gain matrix K is chosen to be that calculated for the parameter ϵ = 0.005 in Table 2.

5.3.1 Case 1: Constant disturbance

In this first scenario, the value of the disturbing torque ζ applied to the controlled IWIP is constant: ζ = ρ.
Figure 11 shows simulation results obtained for two different values of ρ. Figs. 11(a)-11(d) reveal the tracking
under the disturbance ζ = ρ = 0.5 [N ], whereas Fig. 11(e)-Fig. 11(h) depict the self-generated stable limit
cycle tracking under the constant disturbance torque ζ = ρ = 1.5 [N ]. It is obvious that initially the desired
trajectory (stable period-1 limit cycle) of the controlled IWIP was tracked. Once the disturbance ζ was
applied on the IWIP, its behavior will be completely different. The motion of the pendulum and that of the
inertia wheel diverge from the desired one. Moreover, it is worth noting that the angular position of the
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(a) (b)

(c) (d)

Fig. 9 Self-generated limit cycle tracking of the underactuated IWIP in the nominal case for two initial conditions θ1(0)
of the inverted pendulum lying outside the defined working state space (1). (a) and (b) for θ1(0) = 90◦. (c) and (d) for
θ1(0) = 180◦.

inverted pendulum was found to not respect the unilateral constraints (1) (see Figs. 11(a) and 11(e)). This
result, although it is not real for the case of the physical device of the IWIP under study in this work, shows
that the proposed controller v was found to be able to bring the trajectory of the IWIP to the desired one
despite the presence of the constant disturbance ζ. Moreover, we emphasize that for ζ = ρ = 0.5 [N ], the
control law v converges to a constant value about −6 [N ] when the IWIP is under disturbance. However, if
ζ = ρ = 1.5 [N ] then the control law was found to be saturated at −10 [N ]. Once the disturbance vanishes,
the tracking was achieved again and the controller v becomes almost zero.

We stress that for ρ > 2 [N ] the motion of the controlled IWIP diverges completely from the desired one.
The controller was found to be not able to bring the motion of the IWIP to the period-1 stable limit cycle
when the disturbance was canceled.

5.3.2 Case 2: Randomly time-varying disturbance

In this second case, the external disturbing torque ζ varies randomly in time: ζ = ρ (2Rand− 1), with Rand
is the function that generates random values between 0 and 1. Thus, −ρ ≤ ζ ≤ ρ. Figure 12 reveal simulation
results for the controlled IWIP subject to the randomly time-varying external disturbing torque ζ. In this
analysis, we have chosen ρ = 5. It is obvious that when the disturbance vanishes, the motion of the controlled
IWIP returns to the period-1 stable oscillation. Moreover, the controller was found to compensate the effect
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(a) (b) (c)

(d) (e) (f)

Fig. 10 Simulation results for the limit cycle tracking of the controlled IWIP for two different cases of frictions δ1 and δ2.
In (a)-(c), δ1 = δ2 = 10−3. Whereas in (d)-(f), δ1 and δ2 are randomly time-varying. (a) and (d) show the tracking error
e1 of the angular position of the inverted pendulum. (b) and (e) show the tracking error e4 of the angular velocity of the
inertia wheel. (c) and (f) reveal the tracking control law v.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11 Simulation results for the limit cycle tracking of the controlled IWIP under a constant disturbance torque ζ. In
(a)-(d), ζ = ρ = 0.5 [N ], whereas in (e)-(h), ζ = ρ = 1.5 [N ]. (a) and (e) show the angular position of the inverted pendulum.
(b) and (f) depict the angular velocity of the inverted pendulum. (c) and (g) represent the angular velocity of the inertia
wheel. (d) and (h) reveal the tracking control law v.

of the external disturbing torque ζ. We stress that for ρ < 5, we have obtained almost the same results
except the effect of the disturbance ζ decreases as ρ decreases.

We note that in Fig. 11 and Fig. 12, the motion area of pendulum (angular position θ1 in Fig. 11(a) and
Fig. 12(a)) is larger than 10◦. This fact contradicts with the motion constraint (1). In fact, in the numerical
simulation when the external disturbance ζ is applied, the condition (1) was not taken into account because
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(a) (b) (c) (d)

Fig. 12 Simulation results for the limit cycle tracking of the controlled IWIP subject to a randomly time-varying external
disturbing torque ζ. The maximal amplitude of such disturbance is ρ = 5. (a) shows the angular position of the inverted
pendulum. (b) reveals the angular velocity of the inverted pendulum. (c) shows the angular velocity of the inertia wheel.
(d) represents the control law v.

our main objective is to show the ability of the controlled IWIP to re-track the desired self-generated limit
cycle even if it is subject to an external disturbance with a large amplitude under which the IWIP is very
far from the desired one (as in Fig. 10 with an initial condition outside the required region). Thus, if we take
the state constraint (1) into consideration, then under the external disturbance, the pendulum will stuck
(with some small oscillations) to the left/right mechanical stop until the disturbance is canceled or another
external disturbance with small amplitude is applied. Hence, we will have θ1 = 10◦ for some stretches of
time.

Remark 6 It is worth pointing out that the choice of the external disturbing torque ζ to be randomly time-
varying is arbitrary. It can be seen as a vibration signal applied to the IWIP. We can choose a regular form of
the disturbing torque ζ, for example ζ(t) = Aζsin(wζt), where Aζ and wζ are respectively the amplitude and
the frequency of the disturbing torque ζ. Thus, we obtained almost the same results. When the disturbance
was canceled, the controlled IWIP returns to its self-generated stable limit cycle. Moreover, we can choose
another regular form of the disturbing torque such as: ζ(t) = Aζe(−λζt). Here, the disturbing torque ζ will
vanish progressively in time. We obtained also the same behavior of the controlled IWIP.

6 Conclusion and future works

In this paper, a control design approach is proposed for the tracking of a stable period-1 limit cycle of
an underactuated mechanical system: the inertia wheel inverted pendulum (IWIP). Such system is subject
to unilateral constraints limiting the swing motion of the pendulum body around its unstable equilibrium
point. Moreover, an IDA-PBC was applied to the IWIP to control the underactuated IWIP at its upright
position. By analyzing stability of the equilibrium point of the IWIP under the IDA-PBC and then existence
of the Hopf bifurcation, we showed that the controlled IWIP generated a stable limit cycle.

For some value of the gain parameter of the IDA-PBC, the nonlinear dynamics of the controlled IWIP
was adopted as the reference model generating the period-1 stable limit cycle, which is used as the track-
ing trajectory for the IWIP. Thus, the tracking problem was transformed into a stabilization problem of
the tracking error. We used first a predefined control law, which gave us a simplified model. Moreover, we
adopted a state-feedback linear control law to asymptotically stabilize the tracking error. For this purpose,
our methodology was based on the use of the second Lyapunov method and the S-procedure lemma. Thus,
the stabilization problem was converted into a solving problem of BMIs. We employed the Schur comple-
ment lemma and the matrix inversion lemma in order to transform such BMIs into LMIs. Finally, several
simulations have been presented to corroborate the mathematical results and hence to show the feasibility
of the designed controller for the tracking of the self-generated limit cycle of the IWIP under the IDA-PBC.
We analyzed three different scenarios: (1) a nominal dynamics of the IWIP, i.e. without uncertainties in pa-
rameters and without disturbance, (2) IWIP under constant and randomly time-varying uncertain friction
parameters, and (3) IWIP subject to constant and randomly time-varying external disturbing torque applied
on the pendulum body. Simulation results showed that the control law was able, for some defined control
gain and a reasonable amplitude of the external disturbance, to compensate the effects of the uncertainties
in the friction parameters and the external disturbance.

In this work, the control scheme is designed in the special case of the IWIP. However, our methodology
for limit cycle tracking can be easily generalized to the more general case of underactuated mechanical
flat systems [12]. Moreover, as a future direction, we look for designing a robust tracking controller for the
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IWIP with uncertain parameters and/or under external disturbances using the nonlinear dynamics (17).
In addition, we look for designing an observer or an observer-based controller to control the IWIP to its
upright position or to track a desired trajectory.

Furthermore, we aim at verifying the obtained results in simulation via real-time experiments using the
constrained IWIP as in [34, 35, 53, 54] or that employed by [33].

Moreover, we showed that the control effort on the IWIP displayed oscillations if a constant friction
parameter is introduced. Thus, using the theory of the Hopf bifurcation as realized in this paper for the
generation of periodic oscillations by varying the parameters of the IDA-PBC controller, we can demonstrate
theoretically the birth of these oscillations by varying the friction parameter. This will be considered as our
main future work.

In addition, we aim at extending our developed method of the state-feedback controller for the robust
tracking of a desired limit cycle to more complex nonlinear systems. Our concern will be impulsive hybrid
nonlinear dynamics of biped robots studied by us in [88–90], and more particularly the passive dynamic
walking of the planar compass-gait biped robot [88] and the semi-passive dynamic walking of the torso-
driven biped robot [89, 90]. Our design methodology of the tracking controller will be based on the LMI
techniques.

Appendix 1: Self-generation of a limit cycle through Hopf bifurcation

In this Appendix, we show generation of a self-sustained oscillation (limit cycle) in the nonlinear dynamics of
the underactuated IWIP under the IDA-PBC. Thus, we present first stability conditions of the equilibrium
point xeq, given by expression (9), of the nonlinear dynamics (8). Moreover, we derive conditions proving
existence of the Hopf bifurcation and hence the periodic solutions in the nonlinear dynamics (8). Finally, we
discuss briefly stability of the periodic solutions using the fist Lyapunov value [4]. This quantity is calculated
numerically in this paper. Its mathematical description will be developed and presented in another new
paper. It is worth to note that analysis of 3D or 4D nonlinear dynamics has been widely investigated, as in
[91–96], just to mention a few.

Appendix 1.1: Stability of the equilibrium point

We look for determining conditions on the control gains ki (i = 1, 2, 3, 4) for which the equilibrium point is
stable and hence the Hopf bifurcation occurs.

For simplicity, posing a = 1
I , b = bg and c = 1

I2
. Then, the characteristic equation of the Jacobian matrix

(10) is defined as:

P (λ) = λ4 + (k3 − k4)λ
3 + (a (γ − b+ k1)− ck2)λ

2 + abk4λ+ abck2 = 0 (74)

In order to study the stability conditions of the equilibrium point xeq, we apply Routh-Hurwitz criterion,
which states that all real eigenvalues and all real parts of complex conjugate eigenvalues of the characteristic
polynomial P (λ) are negative if and only if the following conditions hold:

(i) a1 > 0, (ii) a3 > 0, (iii) a4 > 0 and (iv) a1a2a3 > a23 + a21a4 (75)

with ai (i = 1, 2, 3, 4), are defined such that:

P (λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0 (76)

Applying Routh-Hurwitz criterion (75) to the characteristic polynomial (74), and as ki > 0 for i =
1, 2, 3, 4, we find that necessary and sufficient conditions for the equilibrium point xeq to be asymptotically
stable are:

C1 = k3 − k4 > 0 (77a)

C2 = a (γ − b+ k1)− ck2 − ab
k4

k3 − k4
− ck2

k3 − k4
k4

> 0 (77b)
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Appendix 1.2: Existence of Hopf bifurcation and periodic solutions

In this part, we will investigate existence of the Hopf bifurcation [4] at the equilibrium point regarding k4
as the bifurcation parameter. Assume that (74) has a pure imaginary root λ = iw, w ∈ R+. Substituting it
into (74) yields

w4 − (a (γ − b+ k1)− ck2)w
2 + abck2 + iw

(
− (k3 − k4)w

2 + abk4

)
= 0 (78)

It then follows that:

w4 − (a (γ − b+ k1)− ck2)w
2 + abck2 = 0 (79a)

(k4 − k3)w
2 + abk4 = 0 (79b)

From relation (79b), we obtain the following expression:

k4 =
w2

ab+ w2
k3 (80)

We stress that w is the solution of (79a) and it depends only on the two parameters k1 and k2. Moreover,
according to expression (80), k4 is proportional to k3 and it depends on w. Then, by fixing the value of the
parameters k1, k2 and k3, we can calculate the value of the gain k4 at which the Hopf bifurcation occurs.

By solving relation (79a), it is easy to show that there are two solutions wc
1 and wc

2 defined as follows:

wc
1 =

√√√√a (γ − b+ k1)− ck2 −
√
(a (γ − b+ k1)− ck2)

2 − 4abck2

2
(81a)

wc
2 =

√√√√a (γ − b+ k1)− ck2 +
√
(a (γ − b+ k1)− ck2)

2 − 4abck2

2
(81b)

In (81), we have wc
1 < wc

2. Actually, these two solutions, wc
1 and wc

2, exist if and only if the following
three conditions hold:

(a (γ − b+ k1)− ck2)
2 − 4abck2 > 0 (82a)

a (γ − b+ k1)− ck2 −
√
(a (γ − b+ k1)− ck2)

2 − 4abck2 > 0 (82b)

a (γ − b+ k1)− ck2 +

√
(a (γ − b+ k1)− ck2)

2 − 4abck2 > 0 (82c)

As k1 > 0 and k2 > 0, then according to conditions (82b) and (82c), it follows that: a (γ − b+ k1)−ck2 > 0.
Therefore, relying on (82a), it easy to show that:

k1 > b− γ +
c

a
k2 + 2

√
bc

a

√
k2 (83)

This expression represents the condition on k1 with respect to k2 for the existence of the Hopf bifurcation.
In addition, we emphasize that the system (8) exhibits two Hopf bifurcations at two different critical values
kc4,1 and kc4,2 that are associated to wc

1 and wc
2, respectively. These two critical parameters kc4,1 and kc4,2 are

defined like so:

kc4,1 = k3
a (γ − b+ k1)− ck2 −

√
(a (γ − b+ k1)− ck2)

2 − 4abck2

a (γ + b+ k1)− ck2 −
√
(a (γ − b+ k1)− ck2)

2 − 4abck2

(84a)

kc4,2 = k3
a (γ − b+ k1)− ck2 +

√
(a (γ − b+ k1)− ck2)

2 − 4abck2

a (γ + b+ k1)− ck2 +
√
(a (γ − b+ k1)− ck2)

2 − 4abck2

(84b)

For example, for k1 = 1.036692, k2 = 0.0011 and k3 = 38.4, the two critical values of k4 at which the
Hopf bifurcation occurs are calculated to be about: kc4,1 = 0.87159917 and kc4,2 = 27.19772529. Moreover,
we have: wc

1 = 1.04160466 and wc
2 = 10.64970853.
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It is worth noting that for k4 = kc4,i, (i = 1, 2), the relation C2 = 0 in (77b) takes place, for which
the stability of the equilibrium is violated. Moreover, if the condition (83) is not satisfied, the two Hopf
bifurcations disappear. In fact, there are two cases. The two Hopf bifurcations collide with each other and
are replaced by only one Hopf bifurcation if the following condition is met:

k1 = b− γ +
c

a
k2 + 2

√
bc

a

√
k2 (85)

Hence, for such expression (90), we will obtain: wc
1 = wc

2 = wc
⋆ =

√√
abc

√
k2, and then:

kc4,⋆ = k3

√
ck2√

ab+
√
ck2

(86)

Moreover, if k1 < b− γ + c
ak2 + 2

√
bc
a

√
k2, then no Hopf bifurcation exits.

Now, we aim at developing the analytical expression of the transversality condition for the occurrence
of the Hopf bifurcation. From (74), it follows that:

dλ (k4)

dk4
=

iw
(
w2 + ab

)
abk4 − 3 (k3 − k4)w2 + 2iw (a (γ − b+ k1)− ck2 − 2w2)

(87)

Thus, we obtain:

Re

(
dλ (k4)

dk4

)
=

2w2
(
w2 + ab

) (
a (γ − b+ k1)− ck2 − 2w2

)
(abk4 − 3 (k3 − k4)w2)2 + 4w2 (a (γ − b+ k1)− ck2 − 2w2)2

(88)

It is clear that the sign of the condition (88) depends on the quantity ϑ = a (γ − b+ k1) − ck2 − 2w2.

Using expressions of wc
1 and wc

2, it follows that: ϑ =
√
(a (γ − b+ k1)− ck2)

2 − 4abck2 for w = wc
1, and

ϑ = −
√

(a (γ − b+ k1)− ck2)
2 − 4abck2 for w = wc

2. Furthermore, based on condition (83), we obtain ϑ ̸= 0

for the two cases. Therefore,

Re

(
dλ (k4)

dk4

∣∣∣k4=kc
4,i

,w=wc
i

)
̸= 0 (89)

Accordingly, the second condition for the existence of a Hopf bifurcation [4] is also met. In addition, we
have:

Re

(
dλ (k4)

dk4

∣∣∣k4=kc
4,1,w=wc

1

)
> 0 (90a)

Re

(
dλ (k4)

dk4

∣∣∣k4=kc
4,2,w=wc

2

)
< 0 (90b)

Hence, according to condition (90a) the equilibrium point is stable when k4 > kc4,1 and periodic solutions
exist when k4 < kc4,1. Furthermore, according to condition (90b) the equilibrium point is stable when
k4 < kc4,2 and periodic solutions exist when k4 > kc4,2. Furthermore, the period Ti of oscillations around the
bifurcation point kc4,i is defined as follows:

Ti =
2π

wc
i

(91)

Appendix 1.3: Stability of the periodic solutions

In order to characterize the stability of the periodic solutions generated through each Hopf bifurcation, the
so-called fist Lyapunov value (coefficient) [4], say ℓ1, must be computed and analyzed for the system (8).
In the bifurcation points, a positive first Lyapunov value represents a subcritical bifurcation and predicts
that the system presents unstable periodic oscillations, which can fold back and coexist with the stable
equilibrium point. In contrast, a negative value for ℓ1 indicates a supercritical bifurcation and stable self-
oscillations emerge from the bifurcation point.

Analytical calculation of the fist Lyapunov coefficient ℓ1 can be achieved, but it is very long. It can be
calculated according to the formula given in [97]. For the sake of brevity, we omit this calculation in this
paper. In fact, this analysis on stability of the periodic oscillations and bifurcation through the first Lyapunov
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value and the center manifold theory will be developed with further details in another work. Then, in this
study we will perform a numerical computation of ℓ1 using the well-known MATCONT package [97, 98].
Alonso et al. [57, 58] used the AUTO package to the numerical continuation of limit cycles and the stability
index for the underactuated IWP.

Thus, using MATCONT package, the fist Lyapunov coefficient ℓ1 is computed to be: ℓ1,1 = 3.121836×
10−9 at kc4,1 = 0.87159917, whereas ℓ1,2 = −1.081602 × 10−5 at kc4,2 = 27.19772529. Therefore, as ℓ1,1 > 0
then the periodic solution emanating from the first Hopf bifurcation at kc4,1 is unstable, and which arises
at the side where the equilibrium is stable. However, because ℓ1,2 < 0 hence the generated sustained
oscillation at the parameter kc4,2 is stable. Moreover, this stable periodic oscillation arises at the side where
the equilibrium is unstable. Relying on relation (91), the period of the stable self-sustained oscillation (stable
limit cycle) around the critical parameter kc4,2 is: T2 = 0.5899866 [s].

Appendix 2: Equivalent BMI (29b) for a IWIP with uncertain friction parameters and an external

disturbance

Using the reference dynamics (16) and the uncertain disturbed nonlinear dynamics (17), we obtain the
following tracking error dynamics:

ė = Je+D (f (x1)− f (xr1)) +Bv + J̃x+ D̃ζ (92)

By substituting the tracking control law (20) in (92), system (92) will be simplified as follows:

˙̄e = Aē+ D̄ (f (x1)− f (xr1)) + B̄w + Ãx+D5ζ (93)

with Ã =

 0 0 0

0 − δ1+δ2
I

δ2
I2

0 δ2
I − δ2

I2

 and D5 =

 0
1
0

.
Moreover, the term Ãx in (93) can be rewritten like so: Ãx = δ1D2x3 + δ2D3x3 + δ2D4x4, with

D2 = 1
I

 0
−1
0

, D3 = 1
I

 0
−1
1

, D4 = 1
I2

 0
1
−1

.
In addition, if we consider that:

– the two uncertain friction parameters δ1 and δ2 are norm-bounded, i.e. δ1 ≤ δ̄1 and δ2 ≤ δ̄2,
– the two states x3 and x4 are bounded such that |x3| < x̄3 and |x4| < x̄4, for some constants x̄3 > 0 and

x̄4 > 0,
– the disturbance ζ is bounded such that |ζ| < ρ, with ρ > 0.

then, according to section 4.2 and relying on the Young relation, we obtain the following conditions:

2ēTPÃx ≤ ēTP (M2 +M3 +M4)P ē+
(
δ̄1x̄3

)2
DT

2 M−1
2 D2 +

(
δ̄2x̄3

)2
DT

3 M−1
3 D3 +

(
δ̄2x̄4

)2
DT

4 M−1
4 D4

(94a)

2ēTPD5ζ ≤ ēTPM5P ē+ ρ2DT
5 M−1

5 D5 (94b)

with Mi = MT
i > 0, i = 2, . . . , 5.

Let us pose J =


I
I
I
I
I

, M = diag (M1,M2,M3,M4,M5), and D =


γD̄

δ̄1x̄3D2

δ̄2x̄3D3

δ̄2x̄4D4

ρD5

. Thus, based on results

in section 4.2, the BMI (29b) will be replaced by the following one:

[
PA+ PB̄K + (⋆) + PJTMJP + η3I − (η1 − η2)C

(⋆) DTM−1D − ϵη3 + 4σ (η1 + η2)

]
< 0 (95)
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gies for trajectory tracking of the inertia wheel pendulum: neural networks vis à vis model regressor,
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four-dimensional hyperchaotic system, Nonlinear Dynamics 60 (4) (2010) 615–630.

94. X. Li, P. Wang, Hopf bifurcation and heteroclinic orbit in a 3D autonomous chaotic system, Nonlinear
Dynamics 73 (1) (2013) 621–632.

95. A. Algaba, M. C. Domı́nguez-Moreno, M. Merino, A. J. Rodŕıguez-Luis, Study of the Hopf bifurcation
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