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Abstract This paper deals with the tracking approach of a self-generated stable limit cycle for an underac-
tuated mechanical system: The Inertia Wheel Inverted Pendulum (IWIP). Such system is subject to unilat-
eral constraints limiting its swing motion. It is known that an Interconnection and Damping Assignment-
Passivity Based Control (IDA-PBC) can be employed to control such pendulum to its upright position. In
this work, we briefly show first that the IWIP can generate a stable period-1 limit cycle through a Hopf
bifurcation by varying some gain parameter of the IDA-PBC. Thus, such self-generated limit cycle is used
as a reference trajectory, which is chosen to be tracked by the IWIP. To achieve the tracking problem, a
supplementary control input is added. Such tracking problem is reformulated as an asymptotic stabilization
of the tracking error. Our fundamental approach hinges mainly on the use of the S-procedure to introduce
the unilateral constraints, and the Schur complement and the matrix inversion lemma to transform Bilinear
Matrix Inequalities (BMI) into Linear Matrix Inequalities (LMI). Several simulations have been presented
to corroborate the mathematical results and to show the efficiency of the proposed tracking scheme of the
self-generated stable limit cycle of the controlled IWIP, even if it is subject to external disturbances, or in
the presence of uncertainties in the friction parameters.

Keywords Inertia wheel inverted pendulum - Hopf-bifurcation - Limit cycle - Unilateral constraint -
S-procedure - BMI - LMI

1 Introduction

Equilibrium points and limit cycles are known to be common solutions for almost all continuous-time
nonlinear dynamical systems. Limit cycles model dynamical systems that exhibit self-sustained oscillations
for some set of parameters. Thus, a self-excited system exhibits the property to generate steady state
oscillations (limit cycles) even in the absence of external periodic forcing [1-3]. Some examples of dynamical
systems that exhibit a self-excited oscillation are beating of a heart, rhythms in body temperature, hormone
secretion, chemical reactions, vibrations in bridges and airplane wings, inverted pendulums, the Van der Pol
oscillator, the Duffing oscillator, biped robots, etc. [4-7] (see also [8, 9] for further examples). In general, self-
oscillators give a regular output robustly: they approach the same limit cycle regardless of initial conditions
and transient perturbations [2]. In addition, limit cycles are generated through bifurcations, among which
the most popular and important one is the Hopf bifurcation [1, 4, 6, 10], which occurs for autonomous

H. Gritli*

Institut Supérieur des Technologies de I'Information et de la Communication,
Université de Carthage, 1164 Borj Cedria, Tunis, Tunisia

*E-mail: grhass@yahoo.fr

H. Gritli - N. Khraief - S. Belghith

Laboratoire Robotique, Informatique et Systémes Complexes (RISC-LR16ES07),
Ecole Nationale d’Ingénieurs de Tunis, Université de Tunis El-Manar,

BP. 37, Le Belvédere, 1002 Tunis, Tunisia

A. Chemori
LIRMM, University of Montpellier 2, CNRS, 161 rue Ada, 34392 Montpellier, France



2 Gritli et al.

dynamical systems. Such local bifurcation gives rise to the birth of a limit cycle via a stable equilibrium
point. This limit cycle can be either stable or unstable. In the former case, the Hopf bifurcation is super-
critical. However, in the latter case, the Hopf bifurcation is sub-critical [4, 7, 10].

Recently, the interest in the control problem of underactuated mechanical systems has increased due
to their complexity and applications. Several kinds of underactuated mechanical systems exist in literature
such as the double inverted pendulum, the rotational inverted pendulum, the Furuta pendulum, the cart-
pendulum system, the wheeled inverted pendulum, the flywheel inverted pendulum, among others [11-18].
In general, inverted pendulums are very suitable to illustrate many ideas in automatic control of nonlinear
systems. A special underactuated mechanical system is the Inertia Wheel Inverted Pendulum (IWIP),
which has two degrees of freedom with only one actuator [19, 20]. Such underactuated mechanical system
has attracted the attention of several researchers in robotics and control system engineering where several
control strategies have been designed (see for example [11-17] and references therein). The most recognized
works are those based on the energy point-of-view. The general control strategy is to swing the underactuated
mechanical system, such as the Acrobot, the Pendubot, the IWIP, the Tora system, the Furuta pendulum,
in order to bring/stabilize it to the desired (upright) position.

1.1 Literature review

The control objective of the IWIP is to stabilize it at the upright position, namely around the unstable
equilibrium point. Many works related to this topic have been proposed. The passivity-based control with
saturated control input based on the feedback linearization was introduced in [19, 20]. Olfati-Saber [21, 22]
employed the standard backstepping procedure. Fantoni and Lozano [15] introduced the total energy stored
in the system in order to design a nonlinear swinging-up control strategy. Ramamoorthy and Kuipers [23]
developed an approach that uses switching between multiple controllers to robustly stabilize the upright
equilibrium. The same problem was solved in [24] with a single output feedback controller, which was
designed using a passivity-based method. Moreover, Ortega et al. [25] used the Interconnection and Damping
Assignment-Passivity Based Control (IDA-PBC) (see [26] for a survey) for the asymptotic stabilization of the
IWIP around its upward position. They formulated the designed controller for Port-Controlled Hamiltonian
models [27]. In [28, 29], the undesirable effects of the damping force was taken into account in the control
strategy. Qaiser et al. [30] presented a novel nonlinear controller design by fusing the dynamic surface control
and the control Lyapunov function method. In addition, Touati and Chemori [31] proposed a generalized
predictive control scheme. They proved via experimentation the robustness of such controller against external
disturbances and uncertainties in the inertia parameters of the IWIP. Moreover, Olivares and Albertos
[32, 33] used a simple PID controller and an observer-based state feedback controller by linearizing the
dynamics around the unstable equilibrium point. Recently, Khraief et al. [34] employed the IDA-PBC for the
asymptotic stabilization of the underactuated IWIP around its unstable upward position in the presence of
external disturbances. Some sufficient stability conditions on matched and unmatched disturbances were also
presented. Moreover, in [35], Khraief et al. enhanced the IDA-PBC by combining it with an adaptive control
technique to estimate controller gains. Ryalat and Laila [36] used a simplified IDA-PBC by considering
friction parameters. They estimated the friction parameters in order to calculate the friction compensation
term. Some other works were realized on the control of inverted pendulums [17, 37-40].

Another interesting and challenging task with the IWIP is the stabilization of periodic motions. Authors
in [41-46] developed a (quasi-continuous) high(second)-order sliding mode control to solve the tracking
control problem for the IWIP. These authors developed a reference model (trajectory) based on a two-relay
controller, which was introduced to produce oscillations where the desired amplitude and frequency were
reached by choosing the control gains properly. The two-relay controller consists of two relays switched by
the feedback received from a linear or nonlinear system, and represents a new approach to the self-generation
of periodic motions in underactuated mechanical systems and hence to design a (robust) tracking controller
[45]. The design procedures for the two-relay control and hence the periodic oscillations developed by
Aguilar and his co-workers were based on three different methodologies, namely the describing-function
method, the Poincaré maps, and the locus-of-a perturbed-relay-system method. Authors in [44] considered
the viscous friction affecting the active joint. Another approach for stabilizing periodic motions around
the upper equilibrium of the IWIP was presented by [47]. Furthermore, a constructive method introduced
in [48-50] was applied for the generation of periodic motions in underactuated nonlinear systems through
virtual holonomic constraints and for orbital stabilization via a partial feedback transformation. Gruber and
Hofbaur [51] employed the same method for planning periodic motions and designing a stabilizing controller
based on a thorough analysis of the dynamics transversal to the resulting limit cycle. In addition, Andary et
al. [52] proposed a control approach dedicated to stable limit cycle generation for the IWIP. The proposed
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approach was based on partial nonlinear feedback linearization and dynamic control for optimal periodic
reference trajectories tracking. The feedback controller presented in [52] is enhanced in [53, 54] to handle
constant disturbances in limit cycle tracking by using online iterative estimation of an equivalent disturbance
which is easily compensated by adding the estimated value to the output of the system. Moreover, Zayane-
Aissa et al. [55] introduced a high order sliding mode structure to solve the problem of trajectory tracking
problem of the IWIP in presence of unknown input perturbation. Aguilar-Ibanez et al. [56] used the state
feedback controller to ensure the tracking of a limit cycle characterized in terms of the feedback-linearizable
single-input affine nonlinear dynamical systems and, as an application, of the IWIP.

Some analysis of the IWIP under control have been considered in literature using bifurcation theory.
Alonso et al. [57] employed the bifurcation theory to classify different dynamical behaviors arising in the
IWIP subject to bounded continuous-state-feedback control law. To limit the maximum amplitude of the
control action, the control law is subject to a smooth saturation function, which was introduced first in [58]
in order to stabilize the IWIP at the inverted position. Alonso et al. [57] showed that the global dynamics
of the IWIP changes from a stable equilibrium point to a stable limit cycle via a Hopf bifurcation as certain
control gains change. A similar work was realized on the Furuta pendulum by analyzing the Hopf bifurcation
[59]. Recently, Nikolov and Nedev [60] analyzed bifurcation and dynamic behavior of the IWP with bounded
control by means of the theory of Poincaré-Andronov-Hopf.

Moreover, in the literature, there are several design methods of the feedback controller using the Linear
Matrix Inequality (LMI henceforth) approach [61], such as the state feedback control, the static output
feedback control, the dynamic output feedback control, the observer-based feedback control, among others
(see for example [62] and references therein). However, most control synthesis problems cannot be written
in LMI setting, while in terms of a more general form known as a Bilinear Matrix Inequality (BMI).
Computations over BMI constraints are known as NP-hard and difficult to obtain a solution. There are
several approaches and different relaxed synthesis conditions proposed for conducting the BMIs into LMIs.
Generally, all these approaches use for example the Schur complement Lemma, the Finsler Lemma, the
projection Lemma, the Young relation, among others [61]. A brief review on the state feedback control design
using LMI methods for continuous-time linear systems was presented in [63]. Some extensions and numerical
comparisons between several state feedback stabilization conditions were also provided. Furthermore, a
new extended LMI characterization for the state feedback control of continuous-time linear systems with
uncertainty was presented in [64].

1.2 Motivations

The motivations of studying and controlling the underactuated IWIP mainly stem from five facts:

1. In spite of various efforts on the stabilization of the IWIP, a considerable attention is still required for
the generation of stable periodic oscillation for the IWIP and synthesis of a feedback control law to track
it. In this present paper, we use the theory of bifurcations to generate a stable one-periodic limit cycle
by means of the Hopf bifurcation by varying some control parameter.

2. According to [34, 35, 52-54], the motion of the IWIP is constrained. Indeed, the planar swing motion
of the pendulum body is subject to unilateral contacts (constraints) [65], for which its angular position
reaches a certain maximum/minimum value at standstill. Olivares and Albertos [33] worked with a
physical device having such constraints. To the best of authors’ knowledge, no previous work in the
literature has been dealt with such constrained dynamics. Only the free swing motion of the IWIP was
provided and analyzed. In this work, the dynamics of the IWIP is subject to external disturbances and
state constraints. Such state constraints are taken into account for the first time in the present work
and play an important role in the design of the tracking controller for the self-generated limit cycle.

3. The dynamics of the IWIP is a simple class of nonlinear systems with trigonometric nonlinearities, which
can occur in robotic applications, such as the single-link flexible robot manipulator [66, 67] and the pitch
dynamics of a simplified helicopter model [68, 69], and other nonlinear systems.

4. Moreover, the IWIP was known as a testbed underactuated mechanical system used to design new
controllers. It can be used for example to control the simplest model of a walking robot leg [70, 71].
Authors in [70, 71] used a liner inverted pendulum controlled via a flywheel model in the sagittal plane
[70] and in the 3D [71] in order to generate angular momentum. They showed that such flywheel-based
inverted pendulum can effectively describe the reaction of human if perturbed by external force while
walking and standing. A related approach was employed also in [72] for the SURENA IIT humanoid
robot using the linear inverted pendulum with a flywheel. Actually, the effect of angular momentum
of the upper-body, especially the torso and arms, of a biped robot can play an important role in push
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recovery and hence walking over rough terrain. The effect can be embedded by considering the upper
body as a flywheel that can be actuated directly [73].

5. Bipedal robot control techniques implementing self-clocking properties as presented in [74] have desirable
properties, like the ability to drive the robot step with respect to its own geometry. In [75, 76], the
motivation of adding a disk to the legged robot dynamics is to produce a desirable effect, a desired zero
moment point, and hence to design the geometry of the walking step. A related work was presented also
in [77] where authors employed the same method of reference trajectory generation introduced in [53] for
the IWIP. In addition, an adaptive control of a gyroscopically stabilized pendulum and its application to
a single-wheel pendulum Robot was presented in [78] using the conventional reaction wheel pendulum
model.

1.3 Objective and contributions

In this paper, we will use the IDA-PBC introduced in [34, 35] to control the IWIP at its upright position.
Thus, we will (briefly) show that the nonlinear dynamics of the IWIP under the IDA-PBC demonstrates
a stable limit cycle through a super-critical Hopf bifurcation as some control gain of the IDA-PBC varies.
Indeed, we will present stability conditions of the controlled equilibrium point with respect to the control
gains. Moreover, we will develop conditions for the presence of the Hopf bifurcation and then of periodic
oscillation. Furthermore, stability of these periodic oscillations is investigated numerically by means of the
first Lyapunov value. Thus, we will show that for some critical control gains, the controlled dynamics of the
IWIP exhibits both sub-critical and super-critical Hopf bifurcations. At this last critical bifurcation point,
the IWIP under the IDA-PBC experiences a stable period-1 limit cycle. However, the existence of multiple
attractors, and hence stable limit cycles, in the parameter space is a common phenomenon in nonlinear
systems. Thus, depending on initial conditions, new limit cycles or other kinds of attractors (such as chaotic
or quasi-periodic attractor) can be observed besides the already known, i.e. the stable limit cycle. Each limit
set (attractor) is defined by its basin of attraction. For the underactuated IWIP as a physical system, it
is difficult to provide the adequate initial conditions in order to guarantee that the IWIP converges to the
desired stable limit cycle. Moreover, if we assume that the system trajectory converges to the desired limit
cycle for all sets of initial conditions, the second problem lies in the speed (or time) of convergence itself. In
this work, we show that for an initial condition almost identical to the desired one and for some value of the
control gain, the trajectory of the IWIP under the IDA-PBC requires much time to converge and hence to
stabilize around its own limit cycle. Moreover, we show that the two periodic motions are not synchronized.
Then, the main contribution in this paper is to solve this problem for the underactuated IWIP by tracking
the desired generated stable limit cycle. Our methodology lies in the tracking of a reference model as a
generator of the desired limit cycle. Such reference model is the underactuated nonlinear dynamics of the
IWIP under the IDA-PBC. For some set of control gains, such dynamics exhibits a stable period-1 limit
cycle for a predefined initial condition. The objective is that the (physical) IWIP system tracks the desired
reference model, which generates the desired stable period-1 limit cycle. To achieve this goal, our approach
is to add a new control input (a limit-cycle tracking control law) to the controlled IWIP system. Thus, the
limit cycle tracking problem will be reformulated as the stabilization problem of the tracking error.

According to [34, 35, 52-54], all the states of the physical device of the IWIP are available for direct
measurement. Thus, in this paper, we will adopt a state-feedback control law to solve the self-generated
limit cycle tracking problem of for the underactuated IWIP. Moreover, the constraints in the dynamics of
the IWIP are introduced. Actually, two main keys are used in order to solve the tracking problem. The
first key is the use of the S-procedure [61] in order to reduce the conservatism of the classical Lyapunov
approach. The S-procedure gives in fact the possibility of reducing the field of verification conditions in a
useful subspace 2, that is from R to some 2 C R. For the IWIP, the useful subspace is that limited with the
unilateral constraints. The problem of finding stability conditions of the tracking error will be recast as a
nonconvex optimization problem based on BMIs. The second key for achieving the tracking problem is the
use of the Schur complement [61] and also the matrix inversion lemma in order to transform the BMIs into
LMIs, which will be used to allow a numerical solution of the problem. We will show the effectiveness of
the developed controller for the tracking of the desired self-generated period-1 limit cycle. We will achieve
several simulations: a nominal system without uncertainties in the friction parameters and disturbance, a
system under uncertain friction parameters, and a system subject to constant and randomly time-varying
external disturbances.
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1.4 Structure of the paper

The rest of the paper is organized as follows. In Section 2, a brief description of the IWIP, its dynamics
and the IDA-PBC are presented. Self-generation of a stable limit cycle through the Hopf bifurcation is
briefly discussed also in this section. Problem formulation of the self-generated limit cycle tracking of the
underactuated IWIP under the IDA-PBC is described in Section 3. Section 4 deals with the design of the
tracking control law using the framework of LMI. Some well-known preliminaries for solving the asymptotic
stabilization problem are provided first. Transformation of the BMIs into LMIs is realized in this section
too. Section 5 is dedicated to simulation results. Concluding remarks are drawn in Section 6. Finally, an
analysis of the dynamics of the IWIP under the IDA-PBC in order to demonstrate existence of the Hopf
bifurcations and then generation of the stable limit cycle is given in Appendix.

2 The underactuated inertia wheel inverted pendulum under the IDA-PBC
2.1 Description of the underactuated inertia wheel inverted pendulum

The underactuated inertia wheel inverted pendulum (IWIP) (Fig. 1) consists of an inverted pendulum
pivoting on a frictionless point with a rotating wheel on the top. Its mechanical structure is sketched in
Fig. 2. In Fig. 2, the joint between the frame and the pendulum body is unactuated (passive), while the
joint between the body and the inertia wheel is actuated (active) via the control input u. The inertia wheel
is free to rotate about an axis parallel to the axis of rotation of the pendulum. Hence, the IWIP is a planar
mechanical system. This electromechanical system is controlled by a DC motor actuating the inertia wheel
(see [31] for further descriptions of this system). The motor torque produces an angular acceleration of
the rotating wheel, which generates a torque acting on the passive joint of the pendulum by means of the
dynamic coupling. Therefore, this passive joint can be controlled through the acceleration of the inertia
wheel. The dynamic parameters of the IWIP and its description are given in Table 1. In Fig. 2, 6; is the
angular position of the pendulum body, whereas 62 is the rotation angle of the inertia wheel. The motion
of the pendulum is subject to unilateral constraints defined as:

N={0e€R : —0<6; <o}. (1)
where 0 = 01,.x. According to [53], the pendulum angle value is approximately +£10° at standstill (i.e. at

the pendulum stop). Then, o = 10°.
In this work, we ignore the collision effect of the pendulum body with the stop.

Inclinometer
Pendulum Body
Inerita Wheel
Active Joint

Passive Point

Pendulum Stop
Frame

Fig. 1 Physical device of the underactuated inertia wheel inverted pendulum.

2.2 Dynamic model of the IWIP

The dynamic model of the underactuated IWIP is obtained by application of the Euler-Lagrange formulation
[79]. Based on [34, 35, 53], the mathematical model of the IWIP augmented with viscous frictions in the
active and passive joints and with disturbances is described by:



6 Gritli et al.

Pendulum Stop

Fig. 2 Schematic representation of the underactuated inertia wheel inverted pendulum.

Table 1 Important dynamic parameters of the underactuated inertia wheel inverted pendulum.

Symbol  Description Value Unit
mi Pendulum mass 3.228 Kg
ma ‘Wheel mass 0.33081 Kg
I Pendulum center of mass position  0.06 m
la Wheel center of mass position 0.044 m
I Pendulum inertia 0.0314 Kg.m2
I Wheel inertia 4.176e — 4 Kg.m2

I+ ][0 bg sin (0 616 0 1

22| [01] _ |bgsin(61) PR ut ¢ 2)
Iy 1> 0o 0 0205 1 0

where 6; and 6 correspond to the velocity of the pendulum body and the inertia wheel, respectively; 6;
and 6 are their corresponding accelerations; u is the torque applied by the motor on the inertia wheel; ¢ is
the external disturbing torque applied to the pendulum; I = m1i? + mal2 + I1; b = myly + male; 61 and o
represent, respectively, the friction coefficients of the passive and the active articulations.

According to [31, 34, 35, 53], the physical device of the IWIP system (Fig. 1) was mechanically designed
so as to minimize the effects of viscous frictions. Thus, in this study the frictions of the active and passive
joints, i.e. 41 and d2, are so low that we have neglected. Then, in the sequel of this work, we consider the
nominal system, that is without friction (67 = d2 = 0). Moreover, the torque ¢ is considered to be zero,

that is the nominal system is not subject to external disturbing torque. Hence, the nominal dynamics of
the IWIP is described as follows:

I+1I313| [61] [bgsin(61)] _ [0
[ Iy bHég} { 0 1" 3)
Remark 1 The effect of the friction coefficients §; and d2 and the external disturbance ¢ on the tracking
problem of the self-generated limit cycle of the underactuated IWIP under IDA-PBC will be analyzed in
section 5 through numerical simulations. The damping coefficients §; and d2 will be considered as two
uncertain parameters.
Authors in [25, 34, 35] introduced the following change of coordinates:
g| |10 61
=0 1a) @

Thus, using (4), the dynamics in (3) can be rewritten like so:
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o) (8] [ = 3] o

The model (5) can be rewritten through Hamilton’s equations of motion as [24, 34, 35]:

q [ B 1

2] = T (6)
P1 bg sin (q1) — u

D2 u

where 1= Iql and p2 = Ig(jg [25, 34, 35].

2.3 The IDA-PBC controller

According to [25, 27, 34, 35], the Interconnection and Damping Assignment-Passivity Based Control (IDA-
PBC) is expressed as follows:

u =y sin (q1) + k1q1 + k2g2 + kap1 + kap2 (7

with k; are control gains and k; > 0, Vi = 1,2,3,4, and v > bg.

In the expression of the IDA-PBC w (7), the first three terms reveal the energy shaping control to assign
the equilibrium. However, the last two terms inject damping to the pendulum body and the inertia wheel
to achieve asymptotic stability. In [34, 35], the control gains were calculated and selected as: v = 6.1284,
k1 = 1.0367, k2 = 0.0011, k3 = 16.62 and k4 = 3.4640. With these parameters and under the dynamic
nonlinear output feedback IDA-PBC (7), the underactuated IWIP was stabilized in its upward equilibrium
point.

2.4 Self-generation of a stable limit cycle through Hopf bifurcation

By introducing (7) in (6), the closed-loop dynamics of the underactuated IWIP is given by:

i1 z
- . L ()
I3 (bg — ’y) Sin (:L'l) — klml — kng — k)3:L'3 - k4174

T4 v sin (x1) + k1@ + kawe + k3xs + kaxa

. T T
with @ = [21 22 23 24| = [q1 @2 p1 p2] -
It is straightforward to demonstrate that the equilibrium point of the nonlinear system (8) is expressed
by:

z (9)

where k € Z.

Moreover, as the controlled IWIP is under the state constraints (1), then the only equilibrium point is
the origin. The Jacobian matrix around the equilibrium point ¢4 (we consider only the upright position)
of the closed-loop nonlinear system (8) is defined as follows:

0 0 7 O
0 0o o0 +
J = I 10

bg—~v— k1 —ko —k3 —ka (10)

v+ k1 ko k3 ks

It is worth mentioning that as the only equilibrium point of the system (8) is the origin, then the only
way for which such equilibrium point will lose its stability is through the Hopf bifurcation. Indeed, by
varying the control gains k; and by analyzing the eigenvalues of the Jacobian matrix (10), the controlled
equilibrium point x4 loses its stability at some critical values of the gains k;. At these critical values, saying
ki, the closed-loop nonlinear dynamics (8) undergoes a Hopf bifurcation, at which there is a creation of
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either a stable limit cycle or an unstable one. Since the unstable limit cycle (as an unstable solution in
nonlinear dynamics) is not observable, and hence only the stale limit cycle has physical means.

We recall that the main objective of this paper is the design of a tracking controller of some self-
generated stable limit cycle of the IWIP for some set of gain parameters k;. Then, stability investigation of
the equilibrium point x.; with respect to the parameters k;, existence demonstration of the Hopf bifurcation
and then limit cycles and its stability are not developed in this part and only presented in Appendix 1. A
more detailed work dealing with this subject will be developed in another paper.

According to Appendix 1, by fixing the control gains k1, k2 and ks, and by varying the remaining one
k4, the Hopf bifurcation occurs at two critical values of k4: k§ ; ~ 0.8716 and kf 5 ~ 27.1977. For kf ;, the
Hopf bifurcation was found to be sub-critical and hence only unstable limit cycles were born. However, for
the second critical value k§ 5, the Hopf bifurcation is super-critical and accordingly a period-1 stable limit
cycle was born. For k4 lying between kf ; and kj 5, the equilibrium point is asymptotically stable.

In order to investigate the dynamic behavior of the IWIP as the parameter k4 varies, we used bifurcation
diagrams where some measure (for example 1, i.e. 61) of the solution state is plotted against the parameter
ka. Moreover, as the origin is the only equilibrium point, then we will focus on the generated stable limit
cycle through the super-critical Hopf bifurcation. Figure 3 shows a bifurcation diagram of the controlled
underactuated IWIP as the parameter k4 varies. For kg < kf 5, the controlled IWIP converges to the stable
equilibrium point (marked as SEP in Fig. 3). As k4 increases, the SEP loses its stability and hence becomes
an unstable focus (indicated as UEP) via the Hopf bifurcation (marked as HB in Fig. 3). At the critical
point kf o ~ 27.1977, the controlled IWIP experiences a stable period-1 limit cycle. As k4 increases, the
amplitude of this limit cycle grows rapidly (according to a certain square function). Thus, the stable limit
cycle persists for a small interval of the control gain k4, i.e. kf o < k4 < 30.

&, [deg]

Fig. 3 Bifurcation diagram displaying the steady solutions of the closed-loop unconstrained IWIP as the control gain k4
varies. This diagram shows the maximum angular position, 61 = ¢1 = z1, of the pendulum body versus k4.

Figure 4(a) (resp. Figure 4(b)) reveals some stable period-1 limit cycles in the phase portrait of the
pendulum (resp. the inertia wheel) for some values of the parameter k4. The smallest limit cycle is depicted
for k4 = 27.201 and the largest one is plotted for k4 = 27.25. For k4 = 27.201, the pendulum body reaches
the angular position about 9°. Whereas, for k4 = 27.25, the maximum angular position of the pendulum
is about 30°. It is obvious how the limit cycle of the pendulum grows in terms of amplitude as the control
gain k4 increases slightly.

We emphasize that stable limit cycles in the bifurcation diagram in Fig. 3 are computed using an iterative
method called as the Poincaré shooting method [80] by defining first a Poincaré section:

Psz{cce]R4X1, h(z) = 23 = Cs@ = 0, Cga'c<0}, (11)

with Cs = [O 01 O]. The condition Csz < 0 in (11) is added to ensure that the flow intersects the
hyperplane defined by Csx = 0 in only one direction.

It is worth noting that for a stable period-1 limit cycle, the flow starting from its fixed point x4 located
on the Poincaré section (11) returns to the Poincaré section and intersects it in the same fixed point .
The return time, say 7, represents the time between two successive intersections with the Poincaré section
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Fig. 4 Limit cycles of the pendulum for some values of the control gain parameter k4. From inside to outside: k4 = 27.201,
ka = 27.21, kg = 27.22 and kg = 27.25. (a) shows the limit cycles of the pendulum body, whereas (b) displays the limit
cycles of the inertia wheel.

and it defines the period of the stable period-1 limit cycle. We note that the return time is calculated when
integrating the nonlinear dynamics (8) and hence locating the fixed point z, through the Shooting method.
For example, the smallest stable limit cycle, i.e. for k4 = 27.201, has a self-sustained oscillation period about
0.5900 [s]. However, for ks = 27.25, the self-sustained oscillation period is about 0.5989 [s]. We stress that
the first value of the period (i.e. for k4 = 27.201) is almost identical to that calculated theoretically through
expression (91) (see Appendix 1).

3 Pr