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Today, it has become more frequent and relatively easy to digitize the surface of 3D objects and then to reconstruct a boundary representation (B-Rep). However, the obtained results suffer from various inaccuracies, mainly caused by noisy data. In this paper, we present an efficient method to detect and rectify many regularities approximately present in an object. We propose to extract global parallelism and orthogonality constraints, then locally and independently adjust the geometric primitives (planes, cylinders, spheres, cones). We first retrieve orientations from primitives (normals, axes), then compute an orthonormal coordinate system. Finally, we adjust each primitive orientation according to spherical coordinates. Our objective is to design a fast and automatic method, which is seldom seen in reverse engineering. Experimental results applied on reverse engineered 3D meshes show the efficiency and the robustness of our proposed method.

INTRODUCTION

An industrial reverse engineering application aims to reconstruct an object as a combination of geometric primitives, from a digitized 3D mesh or a 3D point cloud [START_REF] Benkő | Algorithms for reverse engineering boundary representation models[END_REF] [START_REF] Bénière | A comprehensive process of reverse engineering from 3d meshes to cad models[END_REF]. For mechanical objects, we search for geometric primitives such as planes, spheres, cylinders and cones, but also tori and more generally developable or ruled surfaces. To reconstruct the original geometry, we must take into account the shape of each primitive and their relationships with each other. But an objects shapes can be very complex, and the measured data can often be noisy. It then requires a post-processing step to adjust and regularize the primitive parameters according to some practical, applicative or design rules based in general on parallelism, orthogonality, quantization of parameters and regularity. This is known as the beautification step [START_REF] Langbein | Recognizing geometric patterns for beautification of reconstructed solid models[END_REF].

Moreover, the objective of a reverse engineering process is also to retrieve the design intent of an object. In this paper, we propose a method to adjust the different orientations present in a reverse engineered model. We first use the geometric primitive orientations to detect parallelism and orthogonality constraints. Then, we extract an implicit orthonormal coordinate system from the object, which is then used to adjust the orientations according to some geometric dimensioning and tolerancing constraints (GD&T). This allows us to adjust each primitive independently according to global orientation constraints, avoiding many problems such as error propagation for example.

This paper is organized as follows. Previous work in this topic is presented in Section 2. In Section 3, we present in detail our orientation beautification process. In Section 4, we apply our proposed beautification on reverse engineered 3D models and we show that our method improves the obtained results. Finally, in Section 5, we conclude and propose directions for future research.

PREVIOUS WORK

In reverse engineering, several methods propose to extract geometric primitives with minimal user help [START_REF] Buonamici | Recent strategies for 3d reconstruction using reverse engineering: a bird's eye view[END_REF]. They result in providing a reverse engineered model, i.e. a set of geometric parameterized primitives (segments of planes, spheres, cylinders, cones, tori) but they do not formally take into account geometric constraints like parallelism, orthogonality or concentricity, which are induced by the design process [START_REF] Wang | A framework for 3d model reconstruction in reverse engineering[END_REF]. For this purpose, it is possible to apply a separate step called beautification [START_REF] Langbein | Numerical methods for beautification of reverse engineered geometric models[END_REF].

The beautification method proposed in [START_REF] Langbein | Choosing consistent constraints for beautification of reverse engineered geometric models[END_REF] consists in detecting many regularities that are approximately present in the reverse engineered model, like constant angles (resp. distances) between pairs of directions (resp. positions) for example. Then, a selection of a constraint subset is applied to reduce the complexity and ensure that the constraint system have at least one solution. Finally, other constraints are iteratively added to the system until a fully constrained model is obtained. The difficulty in this method is to guarantee the consistency of the constraint subset. Indeed, at each step, many verifications are required to ensure that there are no contradictions between the constraints.

In [START_REF] Li | Globfit: Consistently fitting primitives by discovering global relations[END_REF], the beautification process is associated with a RANSAC approach to iteratively add new geometric primitives and adjust them to respect global alignments. At each step, the primitive extraction algorithm is more accurate, but a large number of primitives needs to be adjusted. Since this method investigates primitives by pairs, this can lead to an undesired error accumulation across primitives.

The beautification process proposed by [START_REF] Kovács | Applying geometric constraints for perfecting cad models in reverse engineering[END_REF] consists in detecting local and global symmetry and continuity constraints between the primitives. In this method, a constrained fitting is proposed to respect continuity constraints, like tangency, between the primitives. Moreover, a Gaussian sphere of plane orientations is used to determine dominant clusters. A grid is then constructed to detect symmetries and adjust the primitives. The Gaussian sphere used in this method is very interesting, since it allows to extract global orientations. A keypoint to highlight is the constrained fitting method, which is comprehensively analyzed in [START_REF] Benkő | Algorithms for reverse engineering boundary representation models[END_REF].

To simplify the beautification step, we propose to detect global constraints, which are easier to satisfy. In this paper, we present a new method which deals with object orientations, and particular angle constraints, including parallelism and orthogonality.

BEAUTIFICATION PROCESS

In the following, we assume that we have extracted geometric primitives (planes, spheres, cylinders and cones) and their parameters from a digitized 3D mesh. We used the method described in [START_REF] Gauthier | Analysis of digitized 3d mesh curvature histograms for reverse engineering[END_REF] but many other methods are available [START_REF] Buonamici | Recent strategies for 3d reconstruction using reverse engineering: a bird's eye view[END_REF].

Overview of the Process

As illustrated in Fig. 1, our proposed method is composed of six steps. First, we extract orientations directly from the parameters of geometric primitives, but also from other geometric features such as the intersections between planes and we clusterize them into orientation groups (Section 3.3). These orientation groups allow us to compute an intrinsic orthonormal coordinate system from the object (Section 3.4). Then, we use this coordinate system to adjust the orientation clusters (Section 3.5), according to some geometric dimensioning and tolerancing parameters (Section 3.2). Finally, we can adjust each primitive according to these adjusted orientations, and optimize them without orientation modification (Section 3.6). 

Geometric Dimensioning and

Tolerancing (GD&T)

Geometric Dimensioning and Tolerancing (GD&T) is a system defining engineering tolerances. It is used by designers when they model (3D) mechanical objects. There are several standards available worldwide, like ASME (https://www.asme.org/) and ISO (https://www.iso.org/), but these are too complex to use in a reverse engineering process. Thus, we define very simplified rules using simple geometric tolerances.

We are going to use two tolerance parameters in order to control our orientation beautification process:

• Tolerance: Angle tolerance to define two similar orientations.

• Quantization: Array of possible angles between an orientation and a plane of an orthonormal coordinate system, which is implicitly defined by the model itself (see Section 3.4).

Orientation Extraction and Clustering

Orientation Extraction

In a 3D object, we can intuitively find several orientations (see Fig. 2). These are mostly defined by the parameters of the geometric primitives (e.g. the axis of a cylinder or the normal to a plane), but they may also be given by other geometric features, such as intersection lines between planes or alignments between the centers or the apices of identical primitives for example. These geometric features are very important as the reverse engineering process can fail to extract some primitives and their associated parameters.

Orientation Clustering

Extracted orientations often suffer from inaccuracies, mostly caused by noise in the reverse engineered model. We then have to clusterize similar orientations into groups. In our method, similar orientations correspond to pairs of lines with an angle less than Tolerance (see Section 3.2).

We first need to separate orientation vectors into similar vector sets, with a clustering algorithm. The clustering process is straightforward. We perform the three steps until all the orientation vectors have been processed:

• Take an orientation vector at random which is not clustered. It will create a new cluster/group.

• Retrieve similar orientation vectors according to the tolerance and add them to the group.

• Iterate this last step by comparing the orientation vectors with all the ones belonging to the cluster until there are no vectors left to add.

Then, for each group, we can compute an average orientation by:

C = ∑ n i=1 ω i V i ∑ n i=1 ω i , ( 1 
)
where C is the average orientation, V i a normalized orientation vector from the similar vector set and ω i the weight associated to V i , corresponding to the area of the geometric primitive.

And a group weight W c by:

W c = n ∑ i=1 ω i . (2) 
Implicitly, this clustering groups parallel orientations, according to the tolerance. This allows us to extract global constraints of parallelism, since all the parallel primitives are grouped at the same time. This is an important point in our process, which simplifies the global adjustment of the orientations and avoids many problems like error propagation. Indeed, many processes can begin by a particular primitive and adjust the neighbors by propagation [START_REF] Chen | Idealization of scanning-derived triangle mesh models of prismatic engineering parts[END_REF]. But the first primitive, often the most accurate one, is not necessarily the best one to minimize a global error. With our process, each primitive is adjusted independently and according to global informations.

Model Reference Frame Extraction

We use the orientation clusters to construct the orientation graph, as illustrated in Fig. 3: • A primitive node represents a primitive which is defined by an orientation (green squares for planes and red circles for cylinders). Its value is given by the primitive area.

• A cluster node (grey and purple stars) represents an orientation cluster. Its value is given by the weight W c .

• An edge between a primitive node and a cluster node represents the inclusion of the primitive orientation in the cluster. These edges represent the parallelism constraints.

• An edge between two cluster nodes is added when the orientation of two clusters are orthogonal, according to the tolerance parameter.

This graph allows us to display parallelism and orthogonality relationships between all the oriented primitives of the reverse engineered model. We can now detect all the cycles of 3 cluster nodes. The cycle with the highest sum of cluster weights is the one that maximizes the covered area of the object (see Fig. 3). If we take this cycle, we find a set of three orthogonal orientations which are related at best to the primitives. This defines a reference frame intrinsic to the model which could be considered as the frame used by the CAD operator to design the object. This frame will then be used to define all the allowed orientations with respect to the quantization parameter. If there is no cycle, we take the maximal segment of 2 clusters and we compute the cross-product between the two cluster orientations to complete the reference If, unfortunately, there is neither a cycle nor a segment, we take the maximal orientation cluster as the reference frame only axis.

Orientation Quantization

In this section, we aim to adjust all the primitive orientations, according to the global frame and the quantization parameter (see Section 3.2). If we assume that the reference frame was the one used by the designer, we can use spherical coordinates to quantify orientations and we get the following:

   x = ρ sin φ cos θ y = ρ sin φ sin θ z = ρ cos φ , ( 3 
)
where the vector (x, y, z) is an allowed orientation vector, ρ its norm and (φ, θ) a couple of angles from Quantization (see Section 3.2). Each possible couple (φ, θ) defines a different reference orientation.

Note that the order of the frame axes is important for spherical coordinates. Since we do not know ex-actly the original order, we must take into account the 3 possible systems of spherical coordinates by permutating O x , O y and O z . Each cluster orientation is then adjusted according to the closest allowed orientation (i.e. the one defining the smallest angle with the clusterized orientation whatever the order of axes). This implies that all the primitives belonging to this cluster should be adjusted with respect to the cluster orientation. Fig. 4 illustrates the 3 possible systems on a specifically designed object. 

Primitive Adjustment

The last step of our method consists in adjusting each geometric primitive by using its quantified orientation. It is not sufficient to modify the orientation parameter of the primitive by applying a 3D rotation leaving the other parameters unchanged. We have to apply a constrained optimization on each primitive, with respect to the fitted mesh, as illustrated in Fig. 5. In this step, the orientation is fixed but all the other parameters (a 3D point for a plane, a 3D point and a radius for a cylinder, the apex and the angle for a cone) are optimized. We used the formulas proposed in [START_REF] Shakarji | Least-squares fitting algorithms of the nist algorithm testing system[END_REF].

EXPERIMENTAL RESULTS

In this section, we applied our method on the digitized mesh of a case study to show each step in detail. After, we performed some experiments on more complex digitized 3D meshes. All of these results were obtained with the same parameters:

Tolerance = 1 • and Quantization = {0 • , 30 • , 45 • , 60 • , 90 • , 120 • , 135 • , 150 • }.

Case Study: Lattice

Using a CAD application, we designed a latticeshaped object which is mainly composed of cylinders, as illustrated in Fig. 6. We designed it with particular orientations, according to the reference frame XY Z. Then, we printed it using a professional 3D printer (Ultimaker3), which is accurate to within 20 microns. Finally, we have digitized it with a structured light scanner (IMetric), which is accurate to within 10 microns (see Fig. 7). No post-processing was performed.

We extracted the geometric primitives (i.e. the type of primitives and their parameters) with the method described in [START_REF] Gauthier | Analysis of digitized 3d mesh curvature histograms for reverse engineering[END_REF] and we obtained all of the 21 cylinders . Nevertheless, when we display the parameters of the axes, we can observe that they have slightly deviated with respect to the theoretical directions, as illustrated in Fig. 8. We applied our orientation beautification process and we can see in Fig. 9 the constructed graph (Fig. 9.a) and the computed reference frame (Fig. 9.b). The orientation graph contains two cycles of 3 cluster nodes, corresponding to possible coordinate systems. Our algorithm finds a reference frame corresponding to XY Z, which is the coordinate system used while designing the object.

In Fig. 10, we show final results after beautification. Note that the adjusted orientations exactly correspond to the designed ones (Fig. 6), and so respect the particular angles of 45 degrees. Table 1 summarizes the different extracted orientations. The first column corresponds to the orientations from the extracted primitives in Fig. 8.a, and the second column shows the orientations of the adjusted primitives in Fig. 10.a.

Table 1: Results of our beautification on Lattice. See Fig. 8.a for the first column and Fig. 10.a for the second column.

Orientation Before After V 1 = [0.026, 0.003, 0.999] [0, 0, 1] = C 1 V 2 = [0.024, 0.013, 0.999] [0, 0, 1] = C 1 V 3 = [0.015, 0.012, 0.999] [0, 0, 1] = C 1 V 4 = [0.023, -0.007, 0.999] [0, 0, 1] = C 1 V 5 = [-0.020, -0.004, -0.999] [0, 0, -1] = C 1 V 6 = [0.014, 0.010, 0.999] [0, 0, 1] = C 1 V 7 = [0.016, -0.005, 0.999] [0, 0, 1] = C 1 V 8 = [0.012, -0.014, 0.999] [0, 0, 1] = C 1 V 9 = [0.022, -0.012, 0.999] [0, 0, 1] = C 1 V 10 = [-0.018, -0.011, -0.999] [0, 0, -1] = C 1 V 11 = [-0.022, -0.016, -0.999] [0, 0, -1] = C 1 V 12 = [-0.018, 0.005, -0.999] [0, 0, -1] = C 1 V 13 = [-0.021, 0.002, -0.999] [0, 0, -1] = C 1 V 14 = [-0.024, 0.000, -0.999] [0, 0, -1] = C 1 V 15 = [-0.028, 0.001, -0.999] [0, 0, -1] = C 1 V 16 = [-0.018, 0.020, -0.999] [0, 0, -1] = C 1 V 17 = [-0.022, 0.026, -0.999] [0, 0, -1] = C 1 V 18 = [-0.029, 0.021, -0.999] [0, 0, -1] = C 1 V 19 = [-0.999, 0.026, 0.034] [-1, 0, 0] = C 2 V 20 = [-0.999, 0.012, 0.026] [-1, 0, 0] = C 2 V 21 = [-0.037, -0.999, 0.002] [0, -1, 0] = C 3 V 22 = [0.686, -0.728, -0.015] [ √ 2 2 , - √ 2 2 , 0] = C 4 V 23 = [0.732, 0.682, 0.017] [ √ 2 2 , √ 2 2 , 0] = C 5 V 24 = [-0.013, -0.999, 0.015] [0, -1, 0] = C 3 V 25 = [-0.018, -0.999, -0.021] [0, -1, 0] = C 3 V 26 = [0.732, 0.682, 0.006] [ √ 2 2 , √ 2 2 , 0] = C 5 V 27 = [0.687, -0.726, -0.004] [ √ 2 2 , - √ 2 2 , 0] = C 4 V 28 = [-0.036, -0.999, 0.003] [0, -1, 0] = C 3 V 29 = [-0.999, 0.027, 0.014] [-1, 0, 0] = C 2 V 30 = [-0.999, 0.031, 0.035] [-1, 0, 0] = C 2
Before beautification, the Lattice digitized mesh contains 30 different orientations. After the clustering step, we obtain only 5 different orientations. Finally, after the orientation adjustement, we obtain orientations which exactly correspond to the designed ones. Indeed, the resulting orientations are either colinear to coordinate system axis, or rotated by 45 degrees around Oz. Angles formed by pairs of orientations are summarized in Table 2, before and after the global orientation beautification.

Other Digitized Meshes

We can see that our process correctly adjusts orientations to satisfy parallelism and orthogonality. We can also observe that our method does not round an- gles, as illustrated in Table 2 in bold. Indeed, we can believe that these angles were rounded because the initial object is accurate enough to almost respect the parallelism and orthogonality constraints. Table 3 shows the computational time and the mean of corrected orientation angles, in degrees, for each presented object. As we can see, our presented method is fast: only one second to process hundreds of primitives. This is thanks to our global constraint detection and local independent primitive adjustment. Therefore, our beautification process is suitable for an industrial application like reverse engineering. Moreover, these results were obtained according to the input tolerances, which allows a certain flexibility and adaptability in primitive adjustments. Fig. 12 shows a complex object, Watertight (unknown scanner). As illustrated in Fig. 12.a, we successfully extracted a reference frame corresponding to the main and side holes. Since the digitized 3D mesh is noisy, we extracted many inaccurate orientations before beautification and therefore different angles between primitive orientations (see Fig. As illustrated in Fig. 14, we notice that our beautification does not only improve parallelism and orthogonality, but also other particular angles. 

CONCLUSION

In this paper, we presented a new beautification method to optimize orientations of geometric primitives detected in a digitized 3D object. We first detect global parallelism and orthogonality constraints, then compute an intrinsic orthonormal coordinate system, we cluster all the orientations of the detected primitives with respect to tolerance and quantization parameters, and finally adjust orientations using spherical coordinates. We also apply a constrained optimization of geometric primitives to guarantee the adjustment accuracy.

Computing an orthonormal coordinate system intrinsic to the object is essential, as it allows us to define global and consistent constraints of parallelism and orthogonality for all the primitives at the same time. Thanks to these constraints, we can independently adjust the orientation of each geometric primitive and avoid major problems like error propagation for example. This process is a step towards a fully automatic reverse engineering process, which aims to retrieve the initial intent of the designer.

We have implemented the method in the 3D environment of the C4W society and tested it on several different objects. The process is fast (a few seconds) and it allows us to reduce the number of orientations. We can see from our results that the computed reference coordinate system on each object most likely corresponds to the one used to design it. Moreover, primitive orientations can be sucessfully adjusted with respect to numerous particular angle values.

In future work, we propose to extend our method to adjust not only orientations but other primitive parameters such as radius for spheres and cylinders, or apex and angle for cones. Then we will extend it to adjust the geometric primitive positions, respecting several alignments and intersections.
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 1 Figure 1: Overview of the beautification process.

Figure 2 :

 2 Figure 2: Orientation extraction from other informations: a) Original 3D mesh, b) Extracted primitives, c) Intersection lines between planes.

Figure 3 :

 3 Figure 3: Orientation graph from Fig.2.b.

Figure 4

 4 Figure 4: a) Gaussian sphere of allowed orientations and b) Cylinders along the 3 possible systems for 45 • rotations.
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 5 Figure 5: Constrained optimization with locked orientation: a) Reoriented cylinder, b) Constrained optimization.
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 6 Figure 6: 3D CAD mesh of Lattice.
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 7 Figure 7: 3D digitized mesh of Lattice.
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 8 Figure 8: Lattice: a) Extracted primitives and b) Gaussian sphere of orientations, without orientation beautification.

Figure 9 :

 9 Figure 9: Lattice: a) Constructed orientation graph and b) Computed reference frame.

Figure 10 :

 10 Figure 10: Lattice: a) Adjusted primitives and b) Gaussian sphere of orientations, with orientation beautification.

Fig. 11

 11 Fig.11shows some angles between the different orientations of the digitized object Lego small (structured light scanner accurate to within 10 microns), before (Fig.11.b) and after (Fig.11.c) the beautification step. We can see that no two orientations are exactly

Figure 11 :

 11 Figure 11: Local orientation angles on Lego small: a) 3D mesh and computed orthonormal coordinate system, b) Angles before beautification, c) Angles after.

  Fig.12shows a complex object, Watertight (unknown scanner). As illustrated in Fig.12.a, we successfully extracted a reference frame corresponding to the main and side holes. Since the digitized 3D mesh is noisy, we extracted many inaccurate orientations before beautification and therefore different angles between primitive orientations (see Fig.12.b).

Figure 12 :

 12 Figure 12: Beautification on Watertight: a) 3D mesh and computed reference frame, b) c) Angles between selected and other orientations b) Before beautification and c) After.

Fig. 13

 13 Fig.13shows another object, Aerospace (structured light scanner accurate to within 10 microns). As illustrated in Fig.13.a, the computed orthonormal coordinate system most likely corresponds to the one used by the designer. This object contains several different orientations which are neither parallel nor or-
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 13 Figure 13: Beautification on Aerospace: a) 3D mesh and computed reference frame, b) c) Angles between selected and other orientations b) Before beautification and c) After.

Figure 14 :

 14 Figure 14: Aube: Angles between selected and other orientations a) Before beautification and b) After.

  

  

Table 2 :

 2 Local results of our beautification on Lego small.

	Orientation Angle before couple beautification beautification Angle after 1 -2 89.67 • 90.00 • 1 -3 90.36 • 90.00 • 1 -4 90.19 • 90.00 • 1 -5 89.93 • 90.00 • 1 -6 0.41 • 0.00 • 1 -7 90.28 • 90.00 • 2 -3 89.84 • 90.00 • 2 -4 89.88 • 90.00 • 2 -5 90.02 • 90.00 • 2 -6 89.71 • 90.00 • 2 -7 0.68 • 0.00 • 3 -4 0.16 • 0.00 • 3 -5 0.46 • 0.00 • 3 -6 89.94 • 90.00 • 3 -7 89.54 • 90.00 • 4 -5 0.30 • 0.00 • 4 -6 89.78 • 90.00 • 4 -7 89.58 • 90.00 • 5 -6 89.51 • 90.00 • 5 -7 89.72 • 90.00 • 6 -7 90.32 • 90.00 •

Table 3 :

 3 Mean angle correction of orientations.

	Mesh Lego small Aerospace Watertight	Primitives Time Correction 9 <1s 0.39 • 115 1s 0.64 • 306 1s 0.71 •