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Abstract
In the last years, kernelization with structural parameters has been an active area of research
within the field of parameterized complexity. As a relevant example, Gajarskỳ et al. [ESA 2013]
proved that every graph problem satisfying a property called finite integer index admits a linear
kernel on graphs of bounded expansion and an almost linear kernel on nowhere dense graphs,
parameterized by the size of a c-treedepth modulator, which is a vertex set whose removal results
in a graph of treedepth at most c for a fixed integer c ≥ 1. The authors left as further research
to investigate this parameter on general graphs, and in particular to find problems that, while
admitting polynomial kernels on sparse graphs, behave differently on general graphs.

In this article we answer this question by finding two very natural such problems: we prove
that Vertex Cover admits a polynomial kernel on general graphs for any integer c ≥ 1, and
that Dominating Set does not for any integer c ≥ 2 even on degenerate graphs, unless NP ⊆
coNP/poly. For the positive result, we build on the techniques of Jansen and Bodlaender [STACS
2011], and for the negative result we use a polynomial parameter transformation for c ≥ 3 and
an or-cross-composition for c = 2. As existing results imply that Dominating Set admits a
polynomial kernel on degenerate graphs for c = 1, our result provides a dichotomy about the
existence of polynomial problems for Dominating Set on degenerate graphs with this parameter.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases parameterized complexity, polynomial kernels, structural parameters,
treedepth, treewidth, sparse graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.10

1 Introduction

Motivation. There is a whole area of parameterized algorithms and kernelization invest-
igating the complexity ecology (see for example [18]), where the objective is to consider a
structural parameter measuring how “complex” is the input, rather than the size of the
solution. For instance, parameterizing a problem by the treewidth of its input graph has
been a great success for FPT algorithms, triggered by Courcelle’s theorem [4] stating that
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any problem expressible in MSO logic is FPT parameterized by treewidth. However, the
situation is not as good for kernelization, as many problems do not admit polynomial kernels
when parameterized by treewidth unless NP ⊆ coNP/poly [2].

Of fundamental importance within structural parameters are parameters measuring the
so-called “distance from triviality” of the input graphs (a term that was first coined by
Guo et al. [13]), like the size of a vertex cover (distance to an independent set) or of a
feedback vertex set (distance to a forest). Unlike treewidth, these parameters may lead to
both positive and negative results for polynomial kernelization. An elegant way to generalize
these parameters is to consider a parameter allowing to quantify the triviality of the resulting
instance, measured in terms of its treewidth. More precisely, for a positive integer c, a
c-treewidth modulator of a graph G is a set of vertices X such that the treewidth of G−X
is at most c. Note that for c = 0 (resp. c = 1), a c-treewidth modulator corresponds to a
vertex cover (resp. feedback vertex set).

Treewidth modulators have been extensively studied in kernelization, especially on classes
of sparse graphs, where they have been at the heart of the recent developments of meta-
theorems for obtaining linear and polynomial kernels on graphs on surfaces [3], minor-free
graphs [8], and topological-minor-free graphs [12, 15], all based in a generic technique known
as protrusion replacement. However, as observed in [11, 15], if one tries to move further
in the families of sparse graphs by considering, for instance, graphs of bounded expansion,
for several natural problems such as Treewidth-t Vertex Deletion (minimizing the
number of vertices to be removed to get a graph of treewidth at most t), parameterizing by
a treewidth modulator is as hard as on general graphs.

This observation led Gajarskỳ et al. [11] to consider another type of modulators, namely
c-treedepth modulators (defined analogously to c-treewidth modulators), where treedepth is
a graph invariant – which we define in Section 2 – that plays a crucial structural role on
graphs of bounded expansion and nowhere dense graphs [17]. Gajarskỳ et al. [11] proved that
any graph problem satisfying a property called finite integer index admits a linear kernel on
graphs of bounded expansion and an almost linear kernel on nowhere dense graphs when
parameterized by the size of a c-treedepth modulator. Shortly afterwards this result was
obtained, the authors asked [5] to investigate this parameter on general graphs, namely to
find natural problems that admit and that do not admit polynomial kernels parameterized
by the size of a c-treedepth modulator. More precisely, are there natural problems Π1 and
Π2 fitting into the framework of [11] such that Π1/c-tdmod admits a polynomial kernel on
general graphs, but Π2/c-tdmod does not? (As defined in Section 2, “/c-tdmod” means
“parameterized by the size of a c-treedepth modulator”.)

Our results. In this article we answer the above question by proving that Vertex Cover
and Dominating Set are such problems Π1 and Π2, respectively. Let us now elaborate a
bit more on our results, the techniques we use to prove them, and how do they compare to
previous work in the area (see the preliminaries of Section 2 for any undefined terminology).

Note first that both VC/c-tdmod and DS/c-tdmod (where VC and DS stand for Vertex
Cover and Dominating Set, respectively) are FPT on general graphs, as they are FPT by
treewidth [4], which is a smaller parameter than c-tdmod, as for any graph G and any integer
c ≥ 0, it holds that tw(G) ≤ td(G)− 1 ≤ c-tdmod(G) + c− 1. Thus, asking for polynomial
kernels is a pertinent question.

In Section 3 we prove that VC/c-tdmod admits a polynomial kernel on general graphs.
Our approach is based on the techniques introduced by Jansen and Bodlaender [14] to prove
that VC/1-twmod (or equivalently, VC/FVS, where FVS stands for Feedback Vertex
Set) admits a polynomial kernel. More precisely, we use three reduction rules inspired from



M. Bougeret and I. Sau 10:3

the rules given in [14], and we present a recursive algorithm that, starting from a c-treedepth
modulator, constructs an appropriate (c− 1)-treedepth modulator and calls itself inductively.
The kernel obtained in this manner has x2O(c2) vertices, where x is the size of the c-treedepth
modulator. This result completes the following panorama of structural parameterization for
Vertex Cover, which has been a testbed for structural parameterizations in the last years:

VC/1-twmod (or equivalently, VC/FVS) admits a polynomial kernel [14].
VC/c-twmod for c ≥ 2 does not admit a polynomial kernel unless NP ⊆ coNP/poly [6].
VC/2-degmod (distance to a graph of maximum degree 2) and VC/c-CVD (distance to a
disjoint collection of cliques of size at most c) admit a polynomial kernel [16]. Note that
our result generalizes the latter kernel, as a disjoint collection of cliques of size at most c
is a particular case of a graph having treedepth at most c.
VC/pfm (distance to a pseudoforest, a graph in which every connected component has at
most one cycle) admits a polynomial kernel [9].

In Section 4 we turn to negative results for Dominating Set. We provide a characteriz-
ation, according to the value of c, of the existence of polynomial kernels for DS/c-tdmod on
degenerate graphs. Indeed, using the results of Philip et al. [19] it is almost immediate to
prove that DS/1-tdmod (or equivalently, DS/VC) admits a polynomial kernel on degenerate
graphs. For c ≥ 3, we rule out the existence of polynomial kernels for DS/c-tdmod on
2-degenerate graphs by a simple polynomial parameter transformation from DS/1-tdmod on
general graphs, which does not admit polynomial kernels unless NP ⊆ coNP/poly [7]. The
remaining case, namely DS/2-tdmod, turns out to be more interesting, and we rule out the
existence of polynomial kernels on 4-degenerate graphs by providing an or-cross-composition
from 3-Sat. This dichotomy for the existence of polynomial kernels for DS/c-tdmod on
degenerate graphs is to be compared with the dichotomy for VC/c-twmod on general graphs
discussed above [14, 6].

As mentioned before, it is commonly admitted that almost no natural problem admits
a polynomial kernel parameterized by tw, or even with td. However, to the best of our
knowledge the only published negative results are those in [2], which together with [10] imply
that IS/tw and DS/tw do not admit a polynomial kernel unless NP ⊆ coNP/poly. As this
result only holds for general graphs, for the sake of completeness we complete it in the full
version, by showing that a large majority of the problems considered in [11] having an almost
linear kernel parameterized by c-tdmod on nowhere dense graphs do not admit polynomial
kernels parameterized by td, even on planar graphs of bounded maximum degree.

Due to space limitations, the proofs of the results marked with ‘(?)’ have been moved to
the full version. We also refer the reader to the full version for the definition and acronyms
of problems considered in the paper.

2 Preliminaries

We present here just some preliminaries about graphs. The basic definitions about paramet-
erized complexity can be found in the full version.

Unless explicitly mentioned, all graphs considered here are simple and undirected. Given
a graph G = (V,E) and X ⊆ V , we denote NX(v) = N(v) ∩ X, where N(v) = {u ∈ V |
{u, v} ∈ E}. We denote by α(G) the size of a maximum independent set of G. For any
function f defined on any induced subgraph of a given graph G, given a subset of vertices V ′
of G, we denote f(V ′) = f(G[V ′]) (for example, α(V ′) = α(G[V ′])). For any integer n, we
denote [n] = {i ∈ N | 1 ≤ i ≤ n}.

For the following definitions related to treedepth, bounded expansion, and nowhere dense
graph classes, we refer the reader to [17] for more details, and we only recall here some basic
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notations and facts. The treedepth of a graph G (denoted td(G)) is the minimum height of a
rooted forest F (called a treedepth decomposition) such that G is a subgraph of the closure
of F , where the closure of a rooted tree is the graph obtained by adding an edge between
any internal vertex and all its ancestors, and the height of a rooted tree is the number of
vertices in a longest path from the root to a leaf. Let c ≥ 1 be an integer. A c-treedepth
modulator is a subset of vertices X ⊆ V such that td(G[V \ X]) ≤ c, and we denote by
c-tdmod(G) the size of a smallest c-treedepth modulator of G. A c-treewidth modulator is
defined in the same way. Recall that as these parameters are greater than their associated
measure (i.e., tw(G) ≤ c-twmod(G) + c) the negative results for kernelization by treewidth
and treedepth do not immediately apply, but the positive FPT results do.

Concerning graph classes, we recall that in the sparse graph hierarchy, graphs of bounded
expansion (BE) and nowhere dense graphs (ND) are related to classic sparse families as
follows (see [17] for the definitions): planar graphs ⊆ minor-free graphs ⊆ BE ⊆ ND. Note
also that the class of graphs of bounded degeneracy is a natural superclass of BE (intuitively,
BE also requires the shallow minors to be degenerate), and is incomparable with ND.

3 A polynomial kernel for VC/c-tdmod on general graphs

In this section we prove that for any positive integer c, VC/c-tdmod admits a polynomial
kernel on general graphs. Recall that this was only known for VC/1-tdmod and VC/2-tdmod,
as for c = 1 this corresponds to the standard parameterization and we can use the linear
kernel of [1], and for c = 2 we have 1-twmod ≤ 2-tdmod (as a 1-twmod corresponds to the
distance to a forest, while 2-tdmod corresponds to the distance to a star forest), and thus we
can use the polynomial kernel of [14] for VC/1-twmod. We also recall that we cannot expect
to extend our result to VC/c-twmod for any c ≥ 2 [6].

As VC/c-tdmod and IS/c-tdmod are clearly equivalent for this parameterization, we
provide the result for IS/c-tdmod. More specifically, in Subsection 3.1 we provide a polynomial
kernel for a-c-tdmod-IS, an annotated version of our problem on hypergraphs defined below,
and in Subsection 3.2 we derive a polynomial kernel for IS/c-tdmod.

3.1 A polynomial kernel for a-c-tdmod-IS/(|X| + |H|)

Working with hypergraphs is useful because we will use a reduction rule identifying a subset
X ′ of the modulator that cannot be entirely contained in a solution; this will be modeled by
adding a hyperedge on the set X ′.

Annotated c-treedepth modulator Independent Set (a-c-tdmod-IS)
Instance: (G,X, k) where

•G = (V,E,H) is a hypergraph structured as follows: V = X ]R,
E = EX,R ] ER,R is a set of edges where edges in EA,B have one endpoint
in A and the other in B, and H ⊆ 2X is a set of hyperedges where each
H ∈ H is entirely contained in X.

•X is a c-treedepth modulator (as G[V \X] is no longer a hypergraph,
its treedepth is correctly defined and we have td(V \X) ≤ c).

•k is a positive integer.
Question: Decide whether α(G) ≥ k (where an independent set in a hypergraph is a

subset of vertices that does not contain any hyperedge, corresponding here
to a subset S ⊆ V such that for every h ∈ E ∪H, h * S).
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Throughout this subsection I = (G,X, k) denotes the input of a-c-tdmod-IS with G =
(V,E,H) and V = X ]R. Note that G[X] is a hypergraph and that G[R] is a graph, and
that the parameter we consider here is |X|+ |H|. For any X ′ ⊆ X and R′ ⊆ R, observe that
the notation NR′(X ′) is not ambiguous and denotes {v ∈ R′ | ∃x ∈ X ′ with {x, v} ∈ E}.

We use the following definition that was introduced in [14] for VC/1-twmod.

I Definition 1 ([14]). Given X ′ ⊆ X and R′ ⊆ R, let confR′(X ′) = α(R′)− α(R′ \NR′(X ′))
be the conflicts induced by X ′ on R′.

Intuitively, confR′(X ′) measures the loss in the size of a maximum independent set of R′
due to X ′. We extend the previous definition in the following way: for any R′ ⊆ R and any
Y ′ ⊆ R′, let confR′(Y ′) = α(R′)− α(R′ \ Y ′). We can see that confR′(Y ′) = 0 is equivalent
to the existence of an independent set S∗ ⊆ R′ such that |S∗| = α(R′) and S∗ ∩ Y ′ = ∅.

I Lemma 2. Let R′ ⊆ R be a connected component of R and let Y ′ ⊆ R′. If confR′(Y ′) > 0,
there exists Ȳ ′ ⊆ Y ′ such that confR′(Ȳ ′) > 0 and |Ȳ ′| ≤ f(c) with f(c) = 2c.

Proof. As it holds that td(R′) ≤ c, let us consider a treedepth decomposition of R′ with
root r and t ≥ 1 subtrees, where Ai, i ∈ [t] is the vertex set of subtree i. We can partition
Y ′ =

⋃
i∈[t+1] Y

′
i with Y ′i ⊆ Ai for i ∈ [t], Y ′t+1 ⊆ {r}, where the Y ′i ’s are possibly empty. We

will prove the lemma by induction on c. Observe that
∑
i∈[t] α(Ai) ≤ α(R′) ≤ 1+

∑
i∈[t] α(Ai),

and thus we distinguish two cases according to the value of α(R′).

Case 1. α(R′) = 1 +
∑
i∈[t] α(Ai). In this case any maximum independent set S∗ of R′

contains r. Hence for every i ∈ [t], S∗ ∩ Ai is a maximum independent set in Ai \NAi(r),
and thus α(Ai \NAi

(r)) = α(Ai). Indeed, if we had α(Ai \NAi
(r)) < α(Ai) for some i, then

|S∗| would be strictly smaller than 1 +
∑
i∈[t] α(Ai).

If r ∈ Y ′ (i.e., if Y ′t+1 6= ∅) then we can take Ȳ ′ = {r} (as any optimal solution of R′ must
contain r we get α(R′ \ {r}) < α(R′), and |Ȳ ′| = 1 ≤ 2c), and thus we suppose henceforth
that Y ′t+1 = ∅.

We claim that there exists i0 ∈ [t] such that confAi0\NAi0
(r)(Y ′i0) > 0. Indeed, otherwise

we could define for any i ∈ [t] an independent set Si ⊆ Ai\NAi(r) with |Si| = α(Ai\NAi(r)) =
α(Ai) and Si∩Y ′i = ∅. Thus, S∗ = {r}∪i∈[t]Si would be an independent set of size α(R′), and
as Y ′t+1 = ∅ we would have S∗∩Y ′ = ∅, a contradiction to the hypothesis that confR′(Y ′) > 0.
Thus, there exists i0 ∈ [t] such that confAi0\NAi0

(r)(Y ′i0) > 0, and as td(Ai0 \NAi0
(r)) < c,

by induction hypothesis there exists Ȳ ′i0 ⊆ Y ′i0 such that confAi0\NAi0
(r)(Ȳ ′i0) > 0 and

|Ȳ ′i0 | ≤ 2c−1. Let us verify that Ȳ ′ = Ȳ ′i0 satisfies confR′(Ȳ ′) > 0. Let S∗ be an independent
set of R′ with S∗ ∩ Ȳ ′ = ∅. If r /∈ S∗ then clearly |S∗| < α(R′). Otherwise, |S∗| =
(
∑
i∈[t] |S∗∩(Ai\NAi(r))|)+1 ≤ α(Ai0\NAi0

(r))−1+(
∑
i∈[t],i6=i0 α(Ai\NAi(r)))+1 < α(R′).

Case 2. α(R′) =
∑
i∈[t] α(Ai). In this case there exists i0 ∈ [t] such that confAi0

(Y ′i0) > 0.
Indeed, otherwise we could define for any i ∈ [t] an independent set Si ⊆ Ai with |Si| = α(Ai)
and Si∩Y ′i = ∅, and the existence of S∗ = ∪i∈[t]Si would be a contradiction to the hypothesis
that confR′(Y ′) > 0. Thus, by the induction hypothesis there exists Ȳ ′i0 ⊆ Y ′i0 such that
confAi0

(Ȳ ′i0) > 0 and |Ȳ ′i0 | ≤ 2c−1.
If r ∈ Y ′ (i.e., if Y ′t+1 6= ∅) then we can take Ȳ ′ = Ȳ ′i0 ∪ {r}. Let us verify that

confR′(Ȳ ′) > 0. Let S∗ be an independent set of R′ with S∗ ∩ Ȳ ′ = ∅. As S∗ cannot contain
r we have |S∗| =

∑
i∈[t] |S∗ ∩Ai| < α(Ai0) +

∑
i∈[t],i6=i0 |S

∗ ∩Ai| = α(R′). Thus, we suppose
from now on property p1 : Y ′t+1 = ∅.

IPEC 2017
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Figure 1 (a) Example of a graph G[R′] (left) with an associated treedepth decomposition (right)
as used in Lemma 2, with Y ′ = {c1, c2}. This case corresponds to one of the subcases treated in
Case 2 of Lemma 2, as α(R′) = α(A1) + α(A2) = 4, confA1 (Y ′

1 ) > 0, confA2 (Y ′
2 ) = 0. Moreover, p2

and p′
2 are true, while p3 is false (but p′

3 is true). (b) Example for t = 2 of the construction of
Lemma 3, where the circled vertices belong to S.

Note that in this case (when p1 is true) we cannot simply set Ȳ ′ = Ȳ ′i0 , as shown in
the example depicted in Figure 1. Indeed, in this example we would have Ȳ ′ = Ȳ ′i0 = {c1},
however confR′({c1}) = 0 as S∗ = {b1, v1, c2, v2} verifies |S∗| = α(R′) and S∗ ∩ {c1} = ∅.

Properties related to α. We claim that we can assume property p2 : for every i 6= i0,
α(Ai \ NAi

(r)) = α(Ai). Indeed, if p2 is not true, then there exists i1 6= i0, i1 ∈ [t]
such that α(Ai1 \ NAi1

(r)) < α(Ai1), and we set Ȳ ′ = Ȳ ′i0 . Let S∗ be an independent
set of R′ with S∗ ∩ Ȳ ′ = ∅. If r /∈ S∗ then as previously |S∗| < α(R′), otherwise we get
|S∗| ≤ α(Ai0)− 1 + α(Ai1)− 1 + (

∑
i∈[t],i6=i0,i6=i1 α(Ai)) + 1 < α(R′). Thus, we now assume

p2.
Let us now prove the following property p′2 : α(Ai0 ∪ {r}) = α(Ai0). By contradiction,

suppose that there exists an independent set S∗1 of Ai0 ∪ {r} containing r such that |S∗1 | =
α(Ai0)+1. According to p2, for every i 6= i0 there exists an independent set Si of Ai \NAi

(r)
of size α(Ai), and thus α(R′) >

∑
i∈[t] α(Ai), a contradiction. Thus, we now assume p′2.

Properties related to confAi
(Y ′i ). Let us prove than we can assume the following property

p3 : for every i 6= i0, confAi\NAi
(r)(Y ′i ) = 0. Indeed, if p3 is not true we can get the

desired result as follows. Let i1 6= i0, i1 ∈ [t] such that confAi1\NAi1
(r)(Y ′i1) > 0. We use

the same arguments as in the previous paragraph and define Ȳ ′ = Ȳ ′i0 ∪ Ȳ
′
i1
. Note that

|Ȳ ′| ≤ |Ȳ ′i0 |+ |Ȳ
′
i1
| ≤ 2c. Using the same notation, if r /∈ S∗ then |S∗| = (

∑
i∈[t] |S∗ ∩Ai|) ≤

α(Ai0)−1+(
∑
i∈[t],i6=i0 α(Ai)) < α(R′), and otherwise |S∗| = (

∑
i∈[t] |S∗∩(Ai\NAi

(r))|)+1 ≤
α(Ai0) − 1 + α(Ai1) − 1 + (

∑
i∈[t],i6=i0,i6=i1 α(Ai)) + 1 < α(R′). Thus, we now assume p3.

Note that p2 and p3 imply property p′3 : for every i 6= i0, confAi
(Y ′i ) = 0.

Case 2a. @S∗ maximum independent set of R′ such that r ∈ S∗. In this case, we set
Ȳ ′ = Ȳ ′i0 . Let us prove that confR′(Ȳ ′) > 0. Let S∗ be a maximum independent set of R′ with
S∗∩Ȳ ′ = ∅. As r /∈ S∗, we get |S∗| =

∑
i∈[t] |S∗∩Ai| ≤ α(Ai0)−1+

∑
i∈[t],i6=i0 α(Ai) < α(R′).

Case 2b. ∃S∗ maximum independent set of R′ such that r ∈ S∗. This implies that
α(Ai0 \NAi0

(r)) = α(Ai0)− 1. Let us prove that confAi0\NAi0
(r)(Y ′i0) > 0. If it was not the

case, there would exist an independent set S∗i0 of Ai0 \NAi0
(r) of size α(Ai0 \NAi0

(r)) =
α(Ai0)− 1 such that S∗i0 ∩Y

′
i0

= ∅. By p3, there would exist, for every i 6= i0, an independent
set S∗i of Ai \NAi(r) of size α(Ai \NAi(r)) = α(Ai) (by p2) such that S∗i ∩ Y ′i = ∅. Thus,
S∗ = {r}∪ (

⋃
i∈[t] S

∗
i ) would be an independent set of size α(R′) such that S∗∩Y ′ = ∅ (recall

that by p1, r /∈ Y ′), a contradiction. Thus, we know that both confAi0\NAi0
(r)(Y ′i0) > 0
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and confAi0
(Y ′i0) > 0 (which was established at the beginning of Case 2). Using twice the

induction hypothesis we get that there exists Ȳ ′i0
1
⊆ Y ′i0 such that confAi0\NAi0

(r)(Ȳ ′i0
1) > 0

and there exists Ȳ ′i0
2
⊆ Y ′i0 such that confAi0

(Ȳ ′i0
2) > 0, with both |Ȳ ′i0

1
| and |Ȳ ′i0

2
| bounded

by 2c−1. Thus, we set Ȳ ′ = Ȳ ′i0
1
∪ Ȳ ′i0

2. Let us verify that confR′(Ȳ ′) > 0. Let S∗ be an
independent set of R′ with S∗∩Ȳ ′ = ∅. If r ∈ S∗, then |S∗| =

∑
i∈[t] |S∗∩(Ai\NAi

(r))|+1 =
α(Ai0 \ NAi0

(r)) − 1 +
∑
i∈[t],i6=i0 α(Ai) + 1 = α(Ai0) − 2 +

∑
i∈[t],i6=i0 α(Ai) + 1 < α(R′).

Otherwise, |S∗| =
∑
i∈[t] |S∗ ∩Ai| = α(Ai0)− 1 +

∑
i∈[t],i6=i0 α(Ai) < α(R′). J

A first lower bound on the function f of Lemma 2 can be obtained by considering a
clique R′ on c vertices (hence, with td(R′) = c) and Y ′ = R′, as any Ȳ ′ ( Y ′ satisfies
confR′(Ȳ ′) = 0. However, as shown in Lemma 3 below, we can even obtain an exponential
lower bound, showing that the function f(c) = 2c of Lemma 2 is almost tight.

I Lemma 3 (?). There exists a constant λ such that for any c ≥ λ there exists a graph
G = (R,E) and Y ⊆ R such that td(G) = c, |Y | ≥ 2c−3, confR(Y ) > 0, and for every
Ȳ ( Y , confR(Ȳ ) = 0.

I Remark. Lemma 2 was proven in [14] when R′ is a forest and with |Ȳ ′| ≤ 2. Even if we
already know that IS/2-twmod does not admit a polynomial kernel unless NP ⊆ coNP/poly [6],
it remains interesting to observe that, in particular, this lemma becomes false for 2-twmod,
as the graph of Lemma 3 has treewidth 2. This points out one crucial difference between
c-treewidth and c-treedepth modulators.

Let us now start the description of the kernel for a-c-tdmod-IS/(|X|+ |H|). Given an
input (G,X, k) of a-c-tdmod-IS, we define the following three rules. Note that these rules
and definitions (and the associated safeness proofs) correspond to Rules 1, 2, and 3 of [14],
except that we now bound the sizes of the subsets by a function f(c) instead of by 2.

I Definition 4. Given an input (G,X, k) of a-c-tdmod-IS (with td(G[R]) ≤ c where R = V \
X), the chunks of the input are defined by X = {X ′ ⊆ X | there is no H ∈ H such that H ⊆
X ′, and 0 < |X ′| ≤ f(c)}, where f(c) = 2c.

Intuitively, the chunks correspond to all possible small traces of an independent set of G in
X. We are now ready to define the first two rules.

Reduction Rule 1: If there exists u ∈ X such that confR({u}) > |X|, remove u from X.

Reduction Rule 2: If there exists X ′ ∈ X such that confR(X ′) > |X|, add X ′ to H.

I Lemma 5 (?). Rule 1 and Rule 2 are safe: if I = (G,X, k) is the original input of
a-c-tdmod-IS and I1 = (G1, X1, k) is the input after the application of Rule 1 or Rule 2,
then I and I1 are equivalent.

Reduction Rule 3: If R contains a connected component R′ such that for every X ′ ∈ X ,
confR′(X ′) = 0, delete R′ from the graph and decrease k by α(R′).

To prove that Rule 3 is safe we need the following lemma. Recall that we say that X ′ ⊆ X
is an independent set if and only if there is no H ∈ H such that H ⊆ X ′.

I Lemma 6 (?). Let I = (G,X, k) be an instance of a-c-tdmod-IS. Let R′ be a connected
component of R. If there exists an independent set X ′ ⊆ X such that confR′(X ′) > 0, then
there exists X̄ ′ ∈ X such that confR′(X̄ ′) > 0.
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I Lemma 7 (?). Rule 3 is safe: if I = (G,X, k) is the original input of a-c-tdmod-IS and
I ′ = (G′, X ′, k′) is the input after the application of Rule 3, then I and I ′ are equivalent.

I Lemma 8 (?). Let I = (G,X, k) be an instance of a-c-tdmod-IS, and let s be the number
of connected components of R = V \X. If none of Rule 1, Rule 2, or Rule 3 can be applied,
then s = O(|X|f(c)+2), where f is the function of Lemma 2.

We are now ready to present our polynomial kernel for a-c-tdmod-IS in Algorithm A
below, which receives as input (I, c), where I = (G,X, k) and X is a c-treedepth modulator.

A(I, c):
1. If c = 0, return X. Otherwise:
2. While it is possible, apply Rule 1 (this rule suppresses vertices of X).
3. While it is possible, apply Rule 2 (this rule adds hyperedges of size at most f(c) to H).
4. Define the set X , and while it is possible, apply Rule 3 (this rule suppresses some

connected components of R and decreases k accordingly). Let I3 = (G3, X3, k3) be the
obtained instance, where G3 = (V3, E3) and R3 = V3 \X3.

5. For every connected component R′ ⊆ R3, compute an optimal treedepth decomposition
of root rR′ . Let Xr = ∪R′⊆R3,R′ connected{rR′} be the set of roots.

6. Let I ′ = (G′ = (V ′, E′, H ′), X ′, k′) be defined as follows. Let V ′ = V3, X ′ = X3 ∪Xr,
and Z = {e ∈ E3 | e ∩ Xr 6= ∅ and e ∩ X3 6= ∅}. Let E′ = E3 \ Z,H′ = H3 ∪ Z and
k′ = k3 (I ′ corresponds to I3 where we added Xr to the modulator, and consequently
removed edges Z from E3 and added them as hyperedges included in X ′. Note that X ′
is now a (c− 1)-treedepth modulator).

7. Return A(I ′, c− 1).

I Theorem 9. For any fixed c ≥ 0, Algorithm A is a polynomial kernel for a-c-tdmod-
IS/(|X| + |H|). More precisely, for any input I = (G,X, k) (with G = (V,E,H), R =
V \X) where X is a c-treedepth modulator, Algorithm A produces an equivalent instance
Ĩ = (G̃, X̃, k̃) (with G̃ = (Ṽ , Ẽ, H̃), R̃ = Ṽ \ X̃) where |X̃| ≤ O(|X|2(c+1)(c+2)/2), |H̃| ≤
|H|+O(|X|2(c+1)(c+2)/2), and R̃ = ∅.

Proof. Observe first that Algorithm A is polynomial for fixed c. Indeed, computing
confR′(X ′) is polynomial (as tw(R′) ≤ td(R′) and it is well-known that IS/tw is FPT [4])
and there are at most O(|X|c) applications of Rules 1 and 2, and O(s|X|c) applications of
Rule 3. Moreover, an optimal treedepth decomposition of each connected component can
be computed in FPT time parameterized by c, using [17] or [20]. Let us prove the result by
induction on c. The result is trivially true for c = 0. Let us suppose that the result holds for
c− 1 and prove it for c. Observe that X ′ is now a (c− 1)-treedepth modulator, and thus we
can apply the induction hypothesis on A(I ′, c− 1). For any ` ∈ [3], let I` = (G`, X`, k`) with
G` = (V`, E`,H`) and R` = V` \X` denote the instance after exhaustive application of Rule
`, respectively.

Equivalence of the output. By Lemma 5 and Lemma 7, we know that Rules 1, 2, and 3
are safe, and thus that I and I3 are equivalent. Note that I3 is equivalent to I ′ as the
underlying input is the same (except that some vertices were added to the modulator). As
using induction hypothesis A(I ′, c − 1) outputs an instance Ĩ equivalent to I ′, we get the
desired result.

Size of the output. We have |X1| ≤ |X|, |H1| = |H|, |X2| = |X1|, |H2| ≤ |H1| + |X1|f(c),
|X3| = |X2|, |H3| = |H2| (by Lemma 8, s, the number of connected components of R3,
verifies s = O(|X3|f(c)+2)), and |X ′| ≤ |X3|+ s, and |H′| ≤ |H3|+ s|X3|.
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Thus we get |X ′| = O(|X|f(c)+2) = O(|X|2c+1) and |H′| = |H| + O(|X|f(c)+3). Using
induction hypothesis we get that |X̃| = O(|X ′|2c(c+1)/2) = O(|X|2(c+1)(c+2)/2), and that |H̃| =
|H′|+O(|X ′|2c(c+1)/2) = |H|+O(|X|2c+3)+O(|X|2(c+1)(c+2)/2) = |H|+O(|X|2(c+1)(c+2)/2). J

3.2 Deducing a polynomial kernel for IS/c-tdmod
Observe first that we can suppose that the modulator is given in the input, i.e., that
IS/c-tdmod ≤ppt c-tdmod-IS/|X| (≤ppt is defined in the full version). Indeed, given an
input (G, x, k) of IS/c-tdmod (where x denotes the size of a c-treedepth modulator), using
the 2c-approximation algorithm of [11] for computing a c-treedepth modulator, wet get in
polynomial time a set X such that |X| ≤ 2c · x and td(R) ≤ c, where R = V \X.

Observe also that IS/|X| ≤ppt a-c-tdmod-IS/(|X|+ |H|) using the same set X and with
|H| ≤ |X|2. Now, as usual when using bikernels, we could claim that as IS is Karp NP-hard
and as a-c-tdmod-IS is in NP, there exists a polynomial reduction from a-c-tdmod-IS, implying
the existence of a polynomial kernel for IS/c-tdmod. However, let us make such a reduction
explicit to provide an explicit bound on the size of the kernel.

I Lemma 10 (?). Let I = (G, k) with G = (X,H) be an instance of a-c-tdmod-IS as
produced by Theorem 9 (as R = ∅ the set of vertices is reduced to X, and H is a set of
hyperedges on X). We can build in polynomial time an equivalent instance I ′ = (G′, k′) of
IS with G′ = (V ′, E′) where |V ′| ≤ O(|X| · |H|).

Putting pieces together we immediately get the main theorem of this section.

I Theorem 11. For every integer c ≥ 1, IS/c-tdmod (or equivalently, VC/c-tdmod) admits
a polynomial kernel on general graphs with O(x2

1
2 (c+1)(c+2)+1

) vertices, where x is the size of
a c-treedepth modulator.

4 Excluding polynomial kernels for DS/c-tdmod on degenerate
graphs

Given a graph G, we define Gc-sub as the graph obtained from G by subdividing each edge c
times. In other words, we add a set Xe = {x`e | ` ∈ [c]} of c vertices of degree 2 for every
edge e ∈ E of G.

I Observation 12 (?). For any c ≥ 0 and any k ≥ 0, G has a dominating set of size k if
and only if G3c-sub has a dominating set of size k+mc, where m is the number of edges of G.

Let us start with the following proposition, which follows from existing negative results
for Dominating Set parameterized by the size of a vertex cover [7].

I Proposition 13 (?). DS/c-tdmod does not admit a polynomial kernel on 2-degenerate
graphs for any c ≥ 3 unless NP ⊆ coNP/poly.

I Observation 14. DS/1-tdmod (or equivalently DS/VC) admits a polynomial kernel on
degenerate graphs. Indeed, given an instance (G, k) of DS/VC, we compute in polynomial
time a 2-approximate vertex cover X of G. If |X| ≤ k then we output a trivial Yes-instance,
otherwise VC(G) ≥ k

2 and we can apply the polynomial kernel for DS/k on degenerate graphs
of Philip et al. [19].

Thus, by Proposition 13 and Observation 14, the only remaining case for degenerate
graphs is DS/2-tdmod. We would like to point out that the composition of [7] for DS/(k+VC)
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Figure 2 Example of the or-cross-composition of Theorem 15.

on general graphs cannot be easily adapted to DS/2-tdmod on degenerate graphs, as for
example subdividing each edge also leads to a result for DS/3-tdmod. Thus, we treat the
case DS/2-tdmod on degenerate graphs using an ad-hoc reduction.

I Theorem 15. DS/2-tdmod does not admit a polynomial kernel on 4-degenerate graphs
unless NP ⊆ coNP/poly.

Proof. We use an or-cross-composition (see the full version for the definition) from 3-
Sat. We consider t instances of 3-Sat, where for every i ∈ [t], instance Ii has mi clauses
{Cij | j ∈ [mi]} and ni variables Xi = {xi` | ` ∈ [ni]}, each clause containing three variables.
We can safely assume that for every i ∈ [t], we have mi = m and ni = n.

Let us now construct a graph G = (V,E) as follows; see Figure 2 for an illustration.
We start by adding to V the set of vertices X =

⋃
`∈[n]{x`, x̄`} (and thus |X | = 2n) and

Ci = {ci` | ` ∈ [m]} for every i ∈ [t]. Let C =
⋃
i∈[t] C

i. For every i ∈ [t], ` ∈ [n], j ∈ [m], we
set {x`, cij} ∈ Ei (resp. {x̄`, cij} ∈ Ei) if and only if Cij contains xi` (resp. x̄i`). We add to
E the set

⋃
i∈[t] E

i. Then, we add to V the set A = {a` | ` ∈ [n]}, and create n triangles
by adding to E edges {x`, x̄`}, {a`, x`}, and {a`, x̄`} for every ` ∈ [n]. Finally, we add to V
the set Y = {yi | i ∈ [t]}, R = {ri | i ∈ [t]}, and a vertex α. Then, for every i ∈ [t], we add
to E edges {ri, ci`} for every ` ∈ [m], edges {ri, yi}, and edges {yi, α}. This concludes the
construction of G. To summarize, G has 3n+ t(m+ 2) + 1 vertices (vertices are partitioned
into V = (X ∪A) ∪ (C ∪ Y ∪R) ∪ {α}) and, in particular, for every i ∈ [t], G[{ri} ∪Ci ∪ yi]
is a star, and G[{α} ∪ Y ] is also a star.

The or-equivalence. Let us prove that there exists i ∈ [t] such that Ii is satisfiable if and only
if G has a dominating set of size at most k = n+ t. Suppose first, without loss of generality,
that I1 is satisfiable, and let SX ⊆ X be the set of n literals corresponding to this assignment
(thus for every ` ∈ [n] we have |SX ∩ {x`, x̄`}| = 1). Let S = SX ∪ y1 ∪ (R \ {r1}). We have
|S| = n+ t, and S is a dominating set of G as
X ∪A is dominated by SX ,
C1 is dominated by SX as it corresponds to an assignment satisfying I1, and for every
i ∈ [t], i ≥ 2, Ci is dominated by ri,
y1 ∈ S, and for every i ∈ [t], i ≥ 2, yi is dominated by ri,
r1 is dominated by y1, and for any i ∈ [t], r ≥ 2, ri ∈ S, and
α is dominated by y1.

For the other direction, let S = S1 ∪ S2, with S1 = S ∩ (X ∪A), be a dominating set of
G of size at most k = n+ t. Without loss of generality, we can always suppose that S1 ⊆ X ,
as if a` ∈ S we can always remove a` from S and add (arbitrarily) x` or x̄`.
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Let us first prove that |S1| = n. Observe first that |S1| ≥ n as dominating A requires at
least n vertices. Suppose now by contradiction that |S1| > n. Then, there would remain at
most t− 1 vertices to dominate R, which is not possible. Note that we even have that for
any ` ∈ [n], |S1 ∩ {x`, x̄`}| = 1, as every a` must be dominated and |S2| = t.

Let us now analyze S2 (recall that, by definition, S2 ⊆ (C ∪ Y ∪R) ∪ {α}). We cannot
have that for every i ∈ [t], |S2 ∩ (Ci ∪ ri)| ≥ 1, as otherwise there would be no remaining
vertex to dominate α. Thus, there exists i0 such that |S2 ∩ (Ci0 ∪ ri0)| = 0. This implies
that Ci0 is dominated by S1. As for every ` ∈ [n], |S1 ∩ {x`, x̄`}| = 1, S1 corresponds to a
valid truth assignment that satisfies all the Ci`’s, ` ∈ [m], and the instance Ii0 is satisfiable.

Size of the parameter. Let M = X ∪A∪ {α}. As G[V \M ] contains t disjoint stars, we have
that 2-tdmod (G) ≤ |M | ≤ poly(n), as required.

Degeneracy. Let us prove that G is 4-degenerate. Observe that any vertex in C has degree
at most 4 (three neighbors in X and one in R). Thus, any ordering of V (G) of the form
(C,R, Y, α,X , A) (with arbitrary order within each set) is a 4-elimination order of G. J

Note that for DS/c-tdmod with c ≥ 3, the bound in the degeneracy given by Proposition 13
is best possible, as DS can be easily solved in polynomial time on 1-degenerate graphs, i.e.,
forests. On the other hand, for c = 2, in view of Theorem 15 only the existence of polynomial
kernels for DS/2-tdmod on 2-degenerate and 3-degenerate graphs remains open.

5 Concluding remarks and further research

In this article we studied the existence of polynomial kernels for problems parameterized
by the size of a c-treedepth modulator, on graphs that are not sparse. On the positive side,
we proved that Vertex Cover (or equivalently, Independent Set) parameterized by the
size x of a c-treedepth modulator admits a polynomial kernel on general graphs with x2O(c2)

vertices, for every c ≥ 1. A natural direction is to improve the size of this kernel. Since
Vertex Cover parameterized by the distance to a disjoint collection of cliques of size at
most c does not admit a kernel with O(xc−ε) vertices unless NP ⊆ coNP/poly [16], and since
a clique of size c has treedepth c, the same lower bound applies to our parameterization; in
particular, this rules out the existence of a uniform kernel. However, there is still a large gap
between both bounds, hence there should be some room for improvement.

On the negative side, we proved that Dominating Set parameterized by the size of a
c-treedepth modulator does not admit a polynomial kernel on degenerate graphs for any c ≥ 2.
As Dominating Set with this parameterization admits a polynomial kernel on nowhere dense
graphs [11], it follows that sparse graphs constitute the border for the existence of polynomial
kernels. This leads us to the following natural question: are there smaller parameters for
which Dominating Set still admits polynomial kernels on sparse graphs? Since considering
as parameter the treedepth of the input graph does not allow for polynomial kernels (see
the full version), we may consider as parameter the size x of a vertex set whose removal
results in a graph of treedepth at most b(x), for a function b that is not necessarily constant.
We prove in the full version that Dominating Set does not admit polynomial kernels on
graphs of bounded expansion for b(x) = Ω(log x), unless NP ⊆ coNP/poly. On the other
hand, by combining the approach of Garnero et al. [12] to obtain explicit kernels via dynamic
programming with the techniques of Gajarskỳ et al. [11] on graphs of bounded expansion,
it can be shown – we omit the details here – that Dominating Set admits a polynomial
kernel for b(x) = O(log log log x) on graphs of bounded expansion whose expansion function
f is not too “large” (that is, the function F that bounds the grad with rank d of the graphs
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in the family, see [17]), namely f(d) = 2O(d). While this result is somehow anecdotal, we
think that it may be the starting point for a systematic study of this topic.
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