On repetition thresholds of caterpillars and trees of bounded degree - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Journal Articles The Electronic Journal of Combinatorics Year : 2018

On repetition thresholds of caterpillars and trees of bounded degree

Pascal Ochem

Abstract

The repetition threshold is the smallest real number $\alpha$ such that there exists an infinite word over a $k$-letter alphabet that avoids repetition of exponent strictly greater than $\alpha$. This notion can be generalized to graph classes. In this paper, we completely determine the repetition thresholds for caterpillars and caterpillars of maximum degree $3$. Additionally, we present bounds for the repetition thresholds of trees with bounded maximum degrees.
Fichier principal
Vignette du fichier
1702.01058v1.pdf (358.97 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

lirmm-01730276 , version 1 (20-12-2019)

Identifiers

Cite

Borut Lužar, Pascal Ochem, Alexandre Pinlou. On repetition thresholds of caterpillars and trees of bounded degree. The Electronic Journal of Combinatorics, 2018, 25 (1), pp.#P1.61. ⟨10.37236/6793⟩. ⟨lirmm-01730276⟩
121 View
72 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More