On repetition thresholds of caterpillars and trees of bounded degree

Borut Lužar 1 Pascal Ochem 2 Alexandre Pinlou 2
2 ALGCO - Algorithmes, Graphes et Combinatoire
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : The repetition threshold is the smallest real number $\alpha$ such that there exists an infinite word over a $k$-letter alphabet that avoids repetition of exponent strictly greater than $\alpha$. This notion can be generalized to graph classes. In this paper, we completely determine the repetition thresholds for caterpillars and caterpillars of maximum degree $3$. Additionally, we present bounds for the repetition thresholds of trees with bounded maximum degrees.
Type de document :
Article dans une revue
The Electronic Journal of Combinatorics, Open Journal Systems, 2018, 25 (1), paper 61
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01730276
Contributeur : Alexandre Pinlou <>
Soumis le : mardi 13 mars 2018 - 10:47:46
Dernière modification le : mercredi 17 octobre 2018 - 17:08:02

Lien texte intégral

Identifiants

Collections

Citation

Borut Lužar, Pascal Ochem, Alexandre Pinlou. On repetition thresholds of caterpillars and trees of bounded degree. The Electronic Journal of Combinatorics, Open Journal Systems, 2018, 25 (1), paper 61. 〈lirmm-01730276〉

Partager

Métriques

Consultations de la notice

85