G. Gpc_3utr, . Gpc_cds, . Cpc_cds, . G_cds, . G_dfr et al., B: TAD enrichment within groups of genes whose expression is accurately predicted by our model. The enrichment for each TAD (containing more than 10 genes) in each gene group accurately predicted by our model (i.e. groups with mean error < mean errors of the 1st quartile) was evaluated using an hypergeometric test. The fraction of groups with enriched TADs (pvalue < 0.05) is represented, Trends in genetics: TIG, issue.8, pp.31426-433, 2015.

D. Babu and M. Fullwood, 3D genome organization in health and disease: emerging opportunities in cancer translational medicine, Nucleus, vol.950, issue.20, pp.382-393, 2015.
DOI : 10.1016/j.cell.2013.12.001

URL : http://europepmc.org/articles/pmc4915485?pdf=render

V. Ea, M. Baudement, A. Lesne, and T. Forné, Contribution of Topological Domains and Loop Formation to 3D Chromatin Organization, Genes, vol.1, issue.3, pp.734-750, 2015.
DOI : 10.1073/pnas.0402724101

URL : https://hal.archives-ouvertes.fr/hal-01264317

A. Gonzalez-sandoval and S. Gasser, On TADs and LADs: Spatial Control Over Gene Expression, Trends in Genetics, vol.32, issue.8, p.27312344, 2016.
DOI : 10.1016/j.tig.2016.05.004

M. Merkenschlager and E. Nora, CTCF and Cohesin in Genome Folding and Transcriptional Gene Regulation, Annual Review of Genomics and Human Genetics, vol.17, issue.1, pp.17-43, 2016.
DOI : 10.1146/annurev-genom-083115-022339

J. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li et al., Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, vol.148, issue.7398, pp.376-380, 2012.
DOI : 10.1016/j.cell.2012.01.010

R. Andersson, C. Gebhard, I. Miguel-escalada, I. Hoof, J. Bornholdt et al., An atlas of active enhancers across human cell types and tissues, Nature, vol.45, issue.7493, pp.455-461, 2014.
DOI : 10.1093/bioinformatics/btq033

D. Johnson, A. Mortazavi, R. Myers, and B. Wold, Genome-Wide Mapping of in Vivo Protein-DNA Interactions, Science, vol.272, issue.3, pp.1497-1502, 2007.
DOI : 10.1074/jbc.272.3.1929

M. Slattery, T. Riley, P. Liu, N. Abe, P. Gomez-alcala et al., Cofactor Binding Evokes Latent Differences in DNA Binding Specificity between Hox Proteins, Cell, vol.147, issue.6, pp.1270-1282, 2011.
DOI : 10.1016/j.cell.2011.10.053

URL : https://doi.org/10.1016/j.cell.2011.10.053

D. Ray, H. Kazan, E. Chan, P. Castillo, L. Chaudhry et al., Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins, Nature Biotechnology, vol.18, issue.7, pp.667-670, 2009.
DOI : 10.1126/science.1136800

W. Wasserman and A. Sandelin, Applied bioinformatics for the identification of regulatory elements, Nature Reviews Genetics, vol.14, issue.4, pp.276-287, 2004.
DOI : 10.1093/bioinformatics/18.9.1272

T. Ravasi, H. Suzuki, C. Cannistraci, S. Katayama, V. Bajic et al., An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man, Cell, vol.140, issue.5, pp.744-752, 2010.
DOI : 10.1016/j.cell.2010.01.044

S. Gerstberger, M. Hafner, and T. Tuschl, A census of human RNA-binding proteins, Nature Reviews Genetics, vol.7, issue.12, pp.829-845, 2014.
DOI : 10.1038/nrm1964

I. Dunham, A. Kundaje, S. Aldred, P. Collins, C. Davis et al., An integrated encyclopedia of DNA elements in the human genome, Nature, vol.489, issue.7414, pp.57-74, 2012.

S. Lundberg, W. Tu, B. Raught, L. Penn, M. Hoffman et al., ChromNet: Learning the human chromatin network from all ENCODE ChIP-seq data, Genome Biology, vol.16, issue.Suppl 1, pp.82-27139377, 2016.
DOI : 10.1038/nrg2905

URL : http://doi.org/10.1186/s13059-016-0925-0

C. Cheng, R. Alexander, R. Min, J. Leng, K. Yip et al., Understanding transcriptional regulation by integrative analysis of transcription factor binding data, Genome Research, vol.22, issue.9, pp.1658-1667, 2012.
DOI : 10.1101/gr.136838.111

Y. Li, M. Liang, and Z. Zhang, Regression Analysis of Combined Gene Expression Regulation in Acute Myeloid Leukemia, PLoS Computational Biology, vol.30, issue.10, pp.1003908-25340776, 2014.
DOI : 10.1371/journal.pcbi.1003908.s008

P. Jiang, M. Freedman, J. Liu, and X. Liu, Inference of transcriptional regulation in cancers, Proceedings of the National Academy of Sciences, vol.2012, issue.7415, pp.7731-7736, 2015.
DOI : 10.1007/978-1-4614-7138-7

F. Schmidt, N. Gasparoni, G. Gasparoni, K. Gianmoena, C. Cadenas et al., Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction, Nucleic Acids Research, vol.217, issue.1, pp.54-66, 2017.
DOI : 10.1186/gb-2008-9-9-r137

URL : https://academic.oup.com/nar/article-pdf/45/1/54/9249383/gkw1061.pdf

T. Quante and A. Bird, Do short, frequent DNA sequence motifs mould the epigenome?, Nature Reviews Molecular Cell Biology, vol.480, issue.4, pp.257-262, 2016.
DOI : 10.1093/nar/gku1305

G. Mcvicker, B. Van-de-geijn, J. Degner, C. Cain, N. Banovich et al., Identification of Genetic Variants That Affect Histone Modifications in Human Cells, Science, vol.9, issue.4, pp.747-749, 2013.
DOI : 10.1371/journal.pgen.1003486

H. Kilpinen, S. Waszak, A. Gschwind, S. Raghav, R. Witwicki et al., Coordinated Effects of Sequence Variation on DNA Binding, Chromatin Structure, and Transcription, Science, vol.10, issue.21, pp.744-747, 2013.
DOI : 10.1101/gad.10.21.2657

M. Kasowski, S. Kyriazopoulou-panagiotopoulou, F. Grubert, J. Zaugg, A. Kundaje et al., Extensive Variation in Chromatin States Across Humans, Science, vol.3, issue.11, pp.750-752, 2013.
DOI : 10.1371/journal.pgen.0030161

URL : http://europepmc.org/articles/pmc4075767?pdf=render

J. Whitaker, Z. Chen, and W. Wang, Predicting the human epigenome from DNA motifs, Nature Methods, vol.33, issue.3, pp.265-272, 2015.
DOI : 10.2307/2282967

URL : http://europepmc.org/articles/pmc4344378?pdf=render

J. Zhou and O. Troyanskaya, Predicting effects of noncoding variants with deep learning???based sequence model, Nature Methods, vol.12, issue.10, pp.931-934, 2015.
DOI : 10.1371/journal.pcbi.1001025

G. Raghava and J. Han, Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein, BMC Bioinformatics, vol.6, issue.1, pp.59-15773999, 2005.
DOI : 10.1186/1471-2105-6-59

A. Quinlan and . Bedtools, The Swiss-Army Tool for Genome Feature Analysis, Curr Protoc Bioinformatics, vol.47, pp.1-34, 2014.

A. Mathelier, O. Fornes, D. Arenillas, C. Chen, G. Denay et al., JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles, Nucleic Acids Research, vol.44, issue.D1, pp.110-115, 2016.
DOI : 10.1093/bioinformatics/btq475

URL : https://hal.archives-ouvertes.fr/hal-01281181

T. Chiu, F. Comoglio, T. Zhou, L. Yang, R. Paro et al., DNAshapeR: an R/Bioconductor package for DNA shape prediction and feature encoding, Bioinformatics, vol.32, issue.8, pp.1211-1213, 2016.
DOI : 10.1073/pnas.1422023112

URL : https://academic.oup.com/bioinformatics/article-pdf/32/8/1211/16921293/btv735.pdf

X. Jiao, B. Sherman, . Huang-daw, R. Stephens, M. Baseler et al., DAVID-WS: a stateful web service to facilitate gene/protein list analysis, Bioinformatics, vol.8, issue.1, pp.1805-1806, 2012.
DOI : 10.1186/1471-2105-8-426

URL : https://academic.oup.com/bioinformatics/article-pdf/28/13/1805/641736/bts251.pdf

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society Series B (Methodological), pp.267-288, 1996.
DOI : 10.1111/j.1467-9868.2011.00771.x

R. Team, R: A Language and Environment for Statistical Computing Available from: http:// www.R-project.org

L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees, 1984.

L. Breiman, Random Forests, Machine Learning, vol.45, issue.1, pp.5-321010933404324, 2001.
DOI : 10.1023/A:1010933404324

N. Meinshausen and P. Bühlmann, Stability selection, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.7, issue.4, pp.417-473, 2010.
DOI : 10.1186/1471-2105-9-307

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2010.00740.x/pdf

M. Sill, T. Hielscher, N. Becker, and M. Zucknick, : Extended Inference with Lasso and Elastic-Net Regularized Cox and Generalized Linear Models, Journal of Statistical Software, vol.62, issue.5, 2015.
DOI : 10.18637/jss.v062.i05

URL : https://doi.org/10.18637/jss.v062.i05

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the royal statistical society Series B (Methodological), pp.289-300, 1995.

B. Lenhard, A. Sandelin, and P. Carninci, Metazoan promoters: emerging characteristics and insights into transcriptional regulation, Nature Reviews Genetics, vol.107, issue.4, pp.233-245, 2012.
DOI : 10.1073/pnas.1000967107

T. Nguyen, R. Jones, A. Snavely, A. Pfenning, R. Kirchner et al., High-throughput functional comparison of promoter and enhancer activities, Genome Research, vol.26, issue.8, 2016.
DOI : 10.1101/gr.204834.116

I. Dror, T. Golan, C. Levy, R. Rohs, and Y. Mandel-gutfreund, A widespread role of the motif environment in transcription factor binding across diverse protein families, Genome Research, vol.25, issue.9, pp.1268-1280, 2015.
DOI : 10.1101/gr.184671.114

K. Diamanti, H. Umer, M. Kruczyk, M. D?browski, M. Cavalli et al., Maps of context-dependent putative regulatory regions and genomic signal interactions, Nucleic Acids Research, vol.1823, p.27625394, 2016.
DOI : 10.1101/gr.092759.109

D. Ray, H. Kazan, K. Cook, M. Weirauch, H. Najafabadi et al., A compendium of RNA-binding motifs for decoding gene regulation, Nature, vol.35, issue.7457, pp.172-177, 2013.
DOI : 10.1093/nar/gkm272

X. Li, G. Quon, H. Lipshitz, and Q. Morris, Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure, RNA, vol.16, issue.6, pp.1096-1107, 2010.
DOI : 10.1261/rna.2017210

S. Auweter, F. Oberstrass, and F. Allain, Sequence-specific binding of single-stranded RNA: is there a code for recognition?, Nucleic Acids Research, vol.98, issue.17, pp.4943-4959, 2006.
DOI : 10.1073/pnas.181342398

C. Liu, B. Mallick, D. Long, W. Rennie, A. Wolenc et al., CLIP-based prediction of mammalian microRNA binding sites, Nucleic Acids Research, vol.19, issue.3, p.23703212, 2013.
DOI : 10.1038/nsmb.2230

G. Boel, R. Letso, H. Neely, W. Price, K. Wong et al., Codon influence on protein expression in E. coli correlates with mRNA levels, Nature, vol.177, issue.582, pp.358-363, 2016.
DOI : 10.1128/jb.177.14.4121-4130.1995

A. Bazzini, D. Viso, F. Moreno-mateos, M. Johnstone, T. Vejnar et al., Codon identity regulates mRNA stability and translation efficiency during the maternal???to???zygotic transition, The EMBO Journal, vol.35, issue.19, 2016.
DOI : 10.15252/embj.201694699

V. Presnyak, N. Alhusaini, Y. Chen, S. Martin, N. Morris et al., Codon Optimality Is a Major Determinant of mRNA Stability, Cell, vol.160, issue.6, pp.1111-1124, 2015.
DOI : 10.1016/j.cell.2015.02.029

M. Chorev and C. L. , The Function of Introns, Frontiers in Genetics, vol.3, pp.55-22518112, 2012.
DOI : 10.3389/fgene.2012.00055

A. Rose, Intron-Mediated Regulation of Gene Expression, Curr Top Microbiol Immunol, vol.326, pp.277-290, 2008.
DOI : 10.1007/978-3-540-76776-3_15

B. Schwalb, M. Michel, B. Zacher, K. Fruhauf, C. Demel et al., TT-seq maps the human transient transcriptome, Science, vol.51, issue.6290, pp.1225-1228, 2016.
DOI : 10.1073/pnas.95.4.1460

K. Bunting, T. Soong, R. Singh, Y. Jiang, W. Beguelin et al., Multi-tiered Reorganization of the Genome during B Cell Affinity Maturation Anchored by a Germinal Center-Specific Locus Control Region, Immunity, vol.45, issue.3, pp.497-512, 2016.
DOI : 10.1016/j.immuni.2016.08.012

K. Hayer, A. Pizarro, N. Lahens, J. Hogenesch, and G. Grant, Benchmark analysis of algorithms for determining and quantifying full-length mRNA splice forms from RNA-seq data, Bioinformatics, vol.31, issue.24, pp.3938-3945, 2015.

L. Breiman, Classification and Regression Trees, 1984.

M. Mele, P. Ferreira, F. Reverter, D. Deluca, J. Monlong et al., The human transcriptome across tissues and individuals, Science, vol.18, issue.1, pp.660-665, 2015.
DOI : 10.1128/MCB.18.1.566

URL : http://science.sciencemag.org/content/sci/348/6235/660.full.pdf

A. Forrest, H. Kawaji, M. Rehli, J. Baillie, M. De-hoon et al., A promoter-level mammalian expression atlas, Nature, vol.507, issue.7493, pp.462-470, 2014.

E. Nora, B. Lajoie, E. Schulz, L. Giorgetti, I. Okamoto et al., Spatial partitioning of the regulatory landscape of the X-inactivation centre, Nature, vol.135, issue.7398, pp.381-385, 2012.
DOI : 10.1016/j.cell.2008.08.031

S. Fanucchi, Y. Shibayama, S. Burd, M. Weinberg, and M. Mhlanga, Chromosomal Contact Permits Transcription between Coregulated Genes, Cell, vol.155, issue.3, pp.606-620, 2013.
DOI : 10.1016/j.cell.2013.09.051

URL : https://doi.org/10.1016/j.cell.2013.09.051

E. Lieberman-aiden, B. Nlv, L. Williams, M. Imakaev, T. Ragoczy et al., Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome, Science, vol.27, issue.2, pp.289-293, 2009.
DOI : 10.1038/nbt.1523

K. Jabbari and G. Bernardi, An Isochore Framework Underlies Chromatin Architecture):e0168023. https, PLoS ONE, vol.12, issue.1, p.28060840, 2017.
DOI : 10.1371/journal.pone.0168023

URL : http://doi.org/10.1371/journal.pone.0168023

S. Nikumbh and N. Pfeifer, Genetic sequence-based prediction of long-range chromatin interactions suggests a potential role of short tandem repeat sequences in genome organization, BMC Bioinformatics, vol.18, issue.1, pp.218-28420341, 2017.
DOI : 10.1093/nar/18.20.6097

S. Singh, Y. Yang, B. Poczos, and J. Ma, Predicting Enhancer-Promoter Interaction from Genomic Sequence with Deep Neural Networks, BioRxiv, 2016.
DOI : 10.1101/085241

A. Kornyshev and S. Leikin, Sequence Recognition in the Pairing of DNA Duplexes, Physical Review Letters, vol.89, issue.16, pp.3666-3669, 2001.
DOI : 10.1073/pnas.89.14.6492