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Abstract: We show that the thermodynamics of ideal gases may be derived solely from
the Democritean concept of corpuscles moving in vacuum plus a principle of simplicity,
namely that these laws are independent of the laws of motion, aside from the law of
energy conservation. Only a single corpuscle in contact with a heat bath submitted to a
z and t-invariant force is considered. Most of the end results are known but the method
appears to be novel. The mathematics being elementary, the present paper should facilitate
the understanding of the ideal gas law and of classical thermodynamics even though
not-usually-taught concepts are being introduced.

Keywords: ideal gas law; relativistic gases submitted to gravity; corpuscular concepts;
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1. Introduction

This paper is devoted to an alternative derivation of the ideal gas law, which agrees with the accepted
postulates of statistical mechanics, and may present pedagogical and scientific interest. We postulate the
law of thermal equilibrium. By ideal gas, we mean a collection of non-interacting corpuscles in some
enclosure. These corpuscles may be submitted to an external force, e.g., of electrical or gravitational
origin, and the non-relativistic approximation does not have to be made. We will call perfect gas an
ideal gas with no external force acting upon the corpuscles and with the non-relativistic approximation
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being made. There is full agreement between our general results and the first and second laws of
thermodynamics as they are spelled out in textbooks such as Callen [1]. There is also full agreement
with the usual perfect-gas laws that can be found in the Bernoulli work and elementary text-books, in
the limit considered.

The question has been often raised by historians of science as to why the industrial revolution that
occurred in the 17th century in Europe did not occur much earlier, for example at the time of Hero of
Alexandria (100 BC), who was a disciple of Democritus and invented the first known steam engine
called the aeolipile. Some of the possible reasons invoked are lack of interest on the part of the
rulers, the paucity of the wood needed to heat water, and the fact that materials, that can withstand
high vapor pressures, had not been discovered yet. We will not consider here these sociological
or technological problems, but instead concentrate on the conceptual issues. From a pedagogical
viewpoint many teachers point out the usefulness of presenting to students the major discoveries
in science as they actually occurred, and perhaps also as they could have occurred, from a logical
standpoint. On the scientific side, we observe that most text-books reproduce the Bernoulli argument
based on Galilei–Newton mechanics. But the ideal gas and the barometric laws are not so restricted.
In the present paper, we give a generalized and—at least in our opinion—simplified treatment that
accounts for the effect of a constant force acting on the corpuscle and special-relativity effects. Some
of the results in those cases are known (but not very well-known). They can be generalized to other
situations including various dispersion relations (or Hamiltonians), and z-dependent forces (see the last
section of our longer paper in [2,3]).

Let us first quote Feynman [4] “If, in some cataclysm, all of scientific knowledge were to be destroyed,
and only one sentence passed to the next generations of creatures, what statement would contain the most
information in the fewest words? I believe it is the hypothesis that all things are made of atoms. In that
one sentence there is an enormous amount of information about the world, if just a little imagination and
thinking are applied." In line with this quotation, it seems worthwhile exploring how much physics may
be derived from the corpuscular concept. Only some qualitative observations are needed. One is the fact
that it takes some time, denoted here τ(zm), for a corpuscle thrown upward on earth to reach an altitude
zm and come back to the ground level. We have of course τ(0) = 0. If the corpuscle bounces elastically
on the ground, τ(zm) represents the oscillation period. The time during which the corpuscle is located
above some altitude z ≤ zm during a period is: τ(zm − z). Under our assumptions the τ -function does
not depend on the initial altitude or initial time. A second observation is that two bodies left in contact
for a sufficient period of time tend to reach the same temperature, as one can judge by our senses.

The purpose of the present paper is thus to show that the thermodynamics of ideal gases and in
particular the ideal gas law may be obtained on the sole basis of the Democritean model according to
which nature consists of corpuscles moving in a vacuum, plus a principle of simplicity: namely that these
fundamental laws are independent of the law of corpuscle motion (non-relativistic, special relativistic, or
otherwise). According to general relativity, thermal energy has weight. But this so-called Tolman effect
that entails a temperature variation on the order of 10−12 on earth is entirely negligible. The temperature
θ enters solely for dimensional reasons. We later show from the general expressions of the gas internal
energy and of the force (or pressure) that the heat delivered by the gas is θ dS, an expression of the
entropy S being given. This result enables us to prove that the formally-introduced temperature θ is a



Entropy 2013, 15 962

thermodynamic temperature. Indeed, we recover for ideal gases the general Carnot result asserting that
the efficiency of reversible thermal engines is 1− θl/θh, where θl denotes the cold bath temperature and
θh the hot bath temperature. Since Kelvin time this expression defines the thermodynamics temperature
to within an arbitrary proportionality factor, which is fixed by specifying that θ ≈ 370× 10−23 joules at
the water triple point. An alternative derivation of the Carnot result, also solely based on the concept of
potential energy, is in [2,5].

In the title of this paper the word “classical” means “non-quantum” (~ → 0), but the non-relativistic
approximation is not made, except in examples. “Ideal Gases” refer to non-interacting identical
corpuscles. Accordingly, the corpuscles are independent, and we may consider a single corpuscle. As
a result of the slight thermal motion of the container wall, there is an exchange of energy between
the corpuscle and the heat bath (for a static wall, even a rough one, the corpuscle energy would be
a constant of motion). Thus we are working in the so-called “canonical ensemble". Concretely, the
corpuscle may be a cold neutron submitted to the earth gravity and reflected by a diamond at some
non-zero temperature [6]. The paper [7] “Microcanonical single-particle distributions for an ideal gas in
a gravitational field” is valuable because it establishes (within the non-relativistic approximation) the gas
law in the micro-canonical ensemble with the effect of gravity taken into account as in the present paper.
These authors find that the micro-canonical result approaches the canonical result for few corpuscles
only. However that paper is complicated both from mathematical and physical viewpoints. The reader
may wish to compare the micro-canonical many-corpuscle paper just cited with the present canonical
single-corpuscle paper in terms of pedagogical value. Of course the final results are the same.

The reader may feel that our statement that the above invariance principle implies the ideal gas laws,
without anything else, is surprising. Yet, we hope that we can convince him/her that this is indeed the
case. On the other hand, a quick reading of standard books on thermodynamics may lead other readers
to believe that this is a well-known fact. For example, Callen [1] states correctly that: “The essence of
the ideal-gas law is that molecules of the gas do not interact. This simple fact implies that P V ∝ N T ”.
However, in order to reach this conclusion, the author needs postulate the Newtonian law of motion,
quantum theory, and the Boltzmann factor. The claim that corpuscle independence entails the ideal
gas law (without anything else) therefore does not appear to have been justified before. For a broad
discussion of the laws of thermodynamics, see for example [8].

Let us emphasize that our goal is to derive the ideal gas laws from first principles, only conservation
of potential energy and thermal equilibrium being assumed (our model cannot describe directly the
so-called “adiabatic atmospheres” that are in mechanical but not thermal equilibrium). We do not use
the concept of kinetic energy, nor do we postulate any particular law of corpuscle motion. Accordingly,
a given potential φ(z) = w z for a weight w does not imply any specific law of motion z(t). We
call “weight” the downward force exerted on the corpuscle, even though this force does not have to be
of gravitational origin. Because the presence of a corpuscle affects negligibly the potential, one may
consider the latter to be an external potential. To our knowledge, the concepts presented in this paper
have not been considered before. However, the final expressions relating to the relativistic ideal gas law
in the presence of gravity are known, see for example [9].

Admittedly the present paper departs much from usually-taught concepts in thermodynamics [10].
We indeed ignore the concepts of kinetic energy, of micro-states, and the laws of Physics that would
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provide the motion z = z(t) (to within arbitrary t and z translations) of corpuscles of given energy. The
temperature θ (to within a constant factor) follows from dimensional considerations and not as usual
from the derivative of the average energy U(S, h) with respect to the entropy S at constant volume (here
denoted h). Quite to the contrary, an explicit expression of the (classical ideal gas) entropy function
S(θ, h) is derived from the average force 〈F 〉 (or pressure) and average energy U . This change of
perspective suggests that one should first emphasize, in teaching the subject to students, the Democritean
concept of corpuscles moving in vacuum and the concept of potential energy (e.g., from cords and
pulleys experiments). Next, consider the up and down motion of a corpuscle thrown upward from z = 0

in the earth gravitational field (supposed to be static and independent of the vertical z coordinate), the
particular function z(t) being left undefined. As a result of weak thermal contact with the bath (that
does not need to be specified further), the maximum altitude zm varies slowly in the course of time.
This variation is described statistically by some probability law ω(zm). It should be explained next that
a weight measured by a high-inertia balance does not depend on possible up and down motion of the
corpuscle. It is intuitive that the up and down motion of a corpuscle cannot modify the average force
that it exerts on the ground plate. The formal proof is as follows: The force is the product of twice
the momentum p at the collision time and the number of collisions per unit time, that is: 2p/τ . The
Hamilton equations of motion of a corpuscle are dz/dt = ∂H(z, p)/∂p and dp/dt = −∂H(z, p)/∂z

for a Hamiltonian H(z, p). If a uniform time-invariant force −w is applied to the corpuscle, we have
H(z, p) = H(p) + w z, where w z represents the potential energy and H(p) is an arbitrary function of
p. The main contribution of our paper is indeed to show that the barometric and ideal gas laws do not
depend on thatH(p) function. Application of the Hamilton equations just recalled: p = p0−w t = −w t,
with a time translation when w is not strictly equal to zero. If w = 0, p = p0 is of course a constant of
motion, but gets reversed in sign upon a collision. Consider now a full oscillation period beginning at
zm and ending up at zm, the collision with the ground (z = 0) occurring half-way. Accordingly we have
p = wτ/2 and 2p/τ = w as asserted. In the non-relativistic approximation, H(p) = p2/2m, where m
denotes the corpuscle mass. However, since the barometric and ideal gas laws do not depend on H(p),
they do not depend on m either. The quantum theory is mathematically feasible for non-relativistic or
ultra-relativistic corpuscles, but it becomes very involved for general H(p) functions. The semi-classical
(Bohr–Sommerfeld) approximation of the quantum theory coincides at the end with our treatment, but it
may not be as straightforward.

Accordingly, the impact is equal to w times the motion period. This observation enables us to express
the force F in terms of round-trip times when a rigid plate is present at z = h, see Figure 1. The condition
that the average force be independent of the τ(zm) function introduced above provides the ideal gas law
in full generality.

To conclude, the approach advocated in this paper enables us to recover classical results in
thermodynamics in a considerably generalized form (but only for independent classical corpuscles and
laws of physics that are independent of time and altitude translations). Admittedly, our presentation goes
against the order in which basic concepts are usually taught, but the greater simplicity and generality
will perhaps be appreciated.
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Figure 1. Space-time (z, t) trajectory for a corpuscle of weight w bouncing off the ground
(z = 0). The maximum altitude reached by the corpuscle is zm = E/w, where E denotes
the energy. The motion is periodic with period τ(zm), where τ(Z) denotes the corpuscle
round-trip time at a distance Z from the top of the trajectory. When the altitude is restricted
to h by a plate (dashed horizontal line) the motion remains periodic with a period evidently
equal to: τ(zm) − τ(zm − h). Note that this expression holds even if the motion is not
symmetric in time.

2. Average Force Exerted by a Corpuscle on a Piston

We consider a unit-area cylinder with vertical z-axis in uniform gravity resting on the ground (z = 0)
at some temperature. A tight piston is free to move in the vertical direction. The cylinder height is
denoted by h and contains a single corpuscle of weight w, or submitted to a force −w constant in
space and time. The motion may be relativistic or not. In our one-dimensional model, the pressure P
corresponds to the average force 〈F 〉, the volume V to the height h, and N = 1. Our result provides
the ideal-gas law in a generalized form, taking into account gravity. In that case, the pressure varies
as a function of altitude. More precisely, the force exerted by the corpuscle on the lower end of the
cylinder exceeds the force exerted on the upper end (or piston) by the corpuscle weight. But in the
absence of gravity, the forces exerted on both ends would be the same. We are introducing (static and
uniform) gravity mainly because this helps clarify the concept of corpuscle energy: the corpuscle energy
E is the maximum altitude zm that the corpuscle would reach in the absence of the piston times w.
The corpuscle bounces elastically off the ground and off the piston (if it reaches it), that is, without
any loss or gain of energy. (Clarification is perhaps needed here. Some quantities in thermodynamics
have a clear experimental significance and are unambiguous. Let us first recall that we are considering
a single corpuscle. However, an ideal gas, as we define it, is a collection of non-interacting corpuscles.
Accordingly, at a given temperature and at a given value of h, for N identical corpuscles the force and
the internal energy, and thus the free energy, are simply multiplied by N ).
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The force (or pressure) and internal energy have clear meanings. This is the case in particular for
the average force exerted by the gas on a piston. The word “average” here enters in two ways, as a
mechanical average and as a thermal average. This point is clarified below. Consider a purely mechanical
problem: the so-called “bouncer". A corpuscle of energy E is submitted to a constant force. The
mechanical average referred to above is the product of 2p, that is, twice the corpuscle momentum p

when it collides with the z = 0 plane, times the number of collisions per unit time, which is equal to
1/τ , where τ denotes the corpuscle round-trip time (or motion period), which is F = 2p/τ . Physically, it
is supposed that the z = 0 plane (e.g., the earth) has so much inertia that it does not respond to individual
collisions. The second averaging refers to thermal averaging. We postulate a distribution ω(E) of energy,
and the second averaging is taken with respect to this distribution. The point of our paper is that this
ω(E) distribution does not have to be postulated (or derived from considerations a la Boltzmann); it
follows from our simplicity principle.

Without piston (h → ∞) we obtain the so-called “barometric law", that is, the decay of the average
corpuscle density as a function of altitude z. The density decay is found from our simplicity principle
to be: ρ(z) ∝ exp(−w z/θ). This is of course a well-known result, but here the Boltzmann factor does
not have to be postulated. Similar considerations apply to the case where there is a piston at altitude
h. Both the piston and the ground z = 0 are assumed to have great inertia, so that they do not react
significantly to individual collisions, and again the mechanical average force for some corpuscle energy
E is 2p/τ . In the presence of a force w acting on the corpuscle, p is of course larger at z = 0 than
at z = h. If there is no force acting on the corpuscle, i.e., w = 0, p and thus F are the same on the
piston and on the ground. The corpuscle energy in the non-relativistic approximation is E = p2/2m,
and thus the mechanical-average force acting on the piston or on the ground are F = 2p/τ . Since
τ = 2h/v; p = mv, we obtain F = 2E/h. Performing now a thermal averaging, we finally obtain
Fh = 〈pv〉 = 〈2E〉 = 2U = θ if we define θ as the average corpuscle energy (which reduces here
to the kinetic energy, U = 〈mv2/2〉). The above discussion applicable to perfect gases, initially due
to Bernoulli, is given in elementary textbooks. The purpose of the present note is to clarify that the
well-known results applicable to perfect gases are special cases of our more general results, applicable
to ideal gases.

Consider first the case where h is infinite, that is, in the absence of a piston. The time period is denoted
as before by τ(Z) with Z = zm. The average force exerted on the ground, equal to the corpuscle weight
is the impulse i divided by the period. Thus i = w/τ(zm). In other words, the impulse transmitted to a
piston when the corpuscle impacts on it is equal to the motion period. If the piston is located at z = h,
the impulse it receives is ih = wτ(zm−h) if zm ≥ h, and zero otherwise. On the other hand, the motion
period is τ(zm) if zm ≤ h and τ(zm)− τ(zm − h) if zm > h.

Accordingly, the force F experienced by the piston when the corpuscle energy is wzm is the ratio of
the impulse and period:F (zm) = 0 zm ≤ h

F (zm) =
ih

τ(zm)−τ(zm−h) =
wτ(zm−h)

τ(zm)−τ(zm−h) zm > h
(1)
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Because the cylinder lower end is in contact with a bath, there is a slight thermal motion and the
corpuscle energy zm slowly varies in the course of time. Accordingly, the average force 〈F 〉 experienced
by the piston is, if ω(zm) denote the distribution:

〈F 〉 =
∫∞
0
dzm ω(zm)F (zm)∫∞
0

dzm ω(zm)
= w

∫∞
h
dzm ω(zm)

τ(zm−h)
τ(zm)−τ(zm−h)∫ h

0
dzm ω(zm) +

∫∞
h
dzm ω(zm)

(2)

Initially, we obtained the form of the force 〈F 〉 from the Bohr–Sommerfeld approximation of the
quantum theory. But this amounts to saying that the corpuscle action (area in the position-momentum z-p
phase-space, where here p = w t) is discrete, and evenly spaced in units of the Planck constant. However,
because the “bouncer” considered in our paper is not a harmonic oscillator, the discrete corpuscle
energies are not evenly spaced. This is why, when going to the continuous limit, converting the sum
into an integral, we must introduce the factor ω(zm) in the form given. However, after going through
all these semi-classical considerations, we discovered that it was sufficient to postulate the simplicity
principle given earlier. The latter concept (unlike the quantum theory) could have been understood at the
time of the ancient Greece. Going the opposite way, one may say that the simplicity principle suggests
the semi-classical quantum theory. This viewpoint is not discussed further here.

According to our simplicity principle, the average force 〈F 〉 must be independent of the corpuscle
equation of motion, and thus of the τ(.) function. This condition obtains from Equation (2) if one selects
the following distribution:ω(zm) = exp(−wzm/θ)τ(zm) zm ≤ h,

ω(zm) = exp(−wzm/θ)
(
τ(zm)− τ(zm − h)

)
zm > h,

(3)

where θ has the dimension of an energy. The average force becomes, using Equations (2) and (3):

〈F 〉 =
w
∫∞
h
dzm exp(−wzm/θ)τ(zm − h)∫ h

0
dzm exp(−wzm/θ)τ(zm) +

∫∞
h
dzm exp(−wzm/θ)

(
τ(zm)− τ(zm − h)

)
=

w

exp(w h/θ)− 1
(4)

In the above integrals going from h to ∞ we have replaced exp(−wzm/θ) by exp(−wh/θ) exp
(−w(zm − h)/θ) and introduced the variable z′m ≡ zm − h, so that all the integrals go from zero to
infinity and cancel out. Note that even though integral signs have been introduced, no integration has
been performed. We simply consider an integral as a sum of terms and employ the rule of addition
associativity. We have employed also the fact that f(x) = exp(x) is the only function such that
f(a+ b) = f(a)f(b).

For a collection of N independent corpuscles having weights wi, i = 1, ...N respectively, the force is
a sum of N terms of the form given in Equation (4). In the case of zero gravity (w=0 or more precisely:
wh� θ), the above expression gives 〈F 〉h = θ. Thus we have obtained the ideal gas law 〈F 〉h = N θ.

Average force for a three-dimensional space:
We suppose that the cylinder radius is very large compared with h, and we do not consider the force

exerted by the corpuscle on the cylinder wall. Motion of the corpuscle along directions perpendicular to
z (say, x and y) does affect the round-trip time function τ(Z). However, since the average force does not
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depend on this function, the ideal gas law is unaffected. This is so for any physical system involving a
single corpuscle provided the physical laws are invariant under a z-translation (besides being static).

The internal energy, to be discussed in the following section, though, is incremented. One can prove
that in the non-relativistic approximation and in the absence of gravity the internal energy is multiplied
by 3. It would be incremented further by corpuscle rotation or vibration, not considered here. Using
conventional methods, Landsberg [9] and Louis-Martinez [11] obtain exactly the same result as given
above (except for the factor 3 in the expression of the internal energy, relating to the number of space
dimensions considered).

3. Internal Energy

The gas internal energy U is the average value of E ≡ w zm, the gravitational energy being accounted
for. Note that only corpuscle motion along the z-axis is being considered. In the present section, a
non-unity (but constant) weight w is considered to clarify the dimensions of the quantities introduced.
The expression of U is, using the energy distribution given in Equation (3):

U =

∫ wh
0

dE E exp(−E/θ)τ(E/w) +
∫∞
wh
dE E exp(−E/θ)

(
τ(E/w)− τ(E/w − h)

)∫ wh
0

dE exp(−E/θ)τ(E/w) +
∫∞
wh
dE exp(−E/θ)

(
τ(E/w)− τ(E/w − h)

)
=

∫∞
0
dE E exp(−E/θ)τ(E/w)−

∫∞
wh
dE (E − wh+ wh) exp(−E/θ)τ(E/w − h)∫∞

0
dE exp(−E/θ)τ(E/w)−

∫∞
wh
dE exp(−E/θ)τ(E/w − h)

=
(1− exp(−wh/θ))

∫∞
0
dE E exp(−E/θ)τ(E/w)− wh

∫∞
wh
dE exp(−E/θ)τ(E/w − h)

(1− exp(−wh/θ))
∫∞
0
dE exp(−E/θ)τ(E/w)

=
(1− exp(−wh/θ))

∫∞
0
dE E exp(−E/θ)τ(E/w)− wh exp(−wh/θ)

∫∞
0
dE exp(−E/θ)τ(E/w)

(1− exp(−wh/θ))
∫∞
0
dE exp(−E/θ)τ(E/w)

=

∫∞
0
dE E exp(−E/θ)τ(E/w)∫∞

0
dE exp(−E/θ)τ(E/w)

− w h

exp(w h/θ)− 1
(5)

The first term in the final above expression, minus θ, corresponds to the kinetic energyK. The second
term, plus θ, corresponds to the potential energy P . In the non-relativistic limit, the first term gives the
well-known expression K = θ/2 ≡ kBT/2. Without gravity, P = 0. In the general case the splitting of
U into K + P looks somewhat artificial.

The internal energy divided by the temperature: U(θ, h)/θ, thus is the sum of a term function of θ but
not of h, and a term that tends to −1 when wh � θ. To evaluate the first term, we need to know the
round-trip time τ(Z) to within an arbitrary proportionality factor, and an integration must be performed
in that case.

In order to write the above expression in terms of dimensionless quantities, we introduce the corpuscle
rest-mass energy µ. Defining: x = E/θ, θ′ = θ/µ, h′ = wh/µ, we have:

U

θ
=

∫∞
0
dx x exp(−x)f(θ′x)∫∞

0
dx exp(−x)f(θ′x)

− h′/θ′

exp(h′/θ′)− 1
(6)

where the function f(y) depends on the round-trip time.
In the special case of non-relativistic motion y � 1, we have f(y) ∝ √y. The first term in

Equation (6) is then equal to 3/2 (note that 2
∫∞
0
dx x exp(−x)

√
x = 3

∫∞
0
dx exp(−x)

√
x), so that
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in the absence of gravity the internal energy U is equal to 3θ/2 − θ = θ/2, a well-known result. More
generally, we have f(y) ∝

√
y2 + 2y. A plot of U from low (θ � µ) to high temperatures can be seen

in [2]. A three-dimensional expression of U in terms of Bessel functions can be found, for example,
in [12], p. 234.

4. The Energy θ is a Thermodynamic Temperature

We prove in this section that θ, introduced in previous sections on dimensional grounds only, is
a thermodynamic temperature. We do this by showing that the efficiency of a reversible thermal
cycle employing ideal gases is 1 − θl/θh, where θl is the cold-bath temperature and θh the hot bath
temperature—this is the accepted Kelvin definition of absolute temperatures.

The expressions given earlier for the average force 〈F 〉 in Equation (4) and the internal energy U in
Equation (5) may be written, setting β ≡ 1/θ, as:

〈F 〉 = ∂ ln(Z)

β ∂h
U = −∂ ln(Z)

∂β

Z(β, h) =
(
1− exp(−β w h)

) ∫ ∞
0

dE exp(−β E)τ(E/w) (7)

Z is essentially the quantity called in statistical mechanics the partition function. It becomes
dimensionless if it is divided by the reduced Planck constant ~, which however plays here no
physical role.

If we introduce the Helmholtz free-energy (the letter A is from the German “Arbeit” or work):
A(θ, h) ≡ −θ ln(Z(θ, h)) the expressions in Equation (7) are conveniently written:

〈F 〉 = −∂A
∂h

U = A− θ∂A
∂θ

(8)

We have thus obtained from our simplicity principle both the force function F (θ, h) and the internal
energy function U(θ, h). We noticed that they follow from the partial derivations of a free-energy
function that we denote (as some, but not all, authors do): A(θ, h). This function has exactly the same
physical and mathematical content as the usual U(S, h) internal energy function, where S denotes the
entropy, since they are related by a Legendre transform. Here is the definition. One can forget for a
moment the h-variable. Given some point A, θ of the known A(θ) function, we define a straight line
in the U(S) plane as: U = A(θ) + θS, and obtain in that way (using θ as a parameter) a collection
of straight lines whose envelop is the U(S) function looked for. Callen [1], for example, shows how
the stability condition initially defined for the U(S, h) function may be transformed into two conditions
on the free-energy function A(θ, h). Discussing this point would, however, lead us too far astray. The
enthalpy follows from the same U(S, h) function through a Legendre transform with respect to h (rather
than S). For our problem, this latter transform does not seem to bring anything new.

From Equation (8) we obtain:

−δQ ≡ dU + 〈F 〉 dh = dA− ∂A

∂θ
dθ − ∂A

∂h
dh− θ d

(∂A
∂θ

)
= θ dS S ≡ −∂A

∂θ
(9)

where δQ represents the heat released by the gas, from the law of conservation of energy. For any
function f(θ, h) such as U, A, S: df ≡ ∂f

∂θ
dθ + ∂f

∂h
dh. Note that we employ only two independent
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variables, namely θ and h, so that partial derivatives are unambiguous. If the gas is in contact with a
thermal bath (θ=constant), δQ is the heat gained by the bath. The quantity S defined above is called
“entropy”. In particular, if heat cannot go through the gas container wall (adiabatic transformation) we
have δQ = 0, that is, according to the above result, dS = 0. Thus reversible adiabatic transformations
are isentropic. We have obtained an expression for the free-energy A(θ, h) for the special case of a
single corpuscle submitted to a constant force in the canonical ensemble. This free-energy function
has the same physical content as the often-used energy function U = U(S, h), or the entropy function
S = S(U, h), see [1]. The expressions following Equation (8) in this section therefore coincide with
the conventional ones, applicable to any working substance, and our entropy S is the same as the one
employed, e.g., in [1]. For many corpuscles, the postulate of equi-probability of the microstates may be
viewed as implicit.

The Carnot cycle: A Carnot cycle consists of two isothermal transformations at temperatures θl and θh,
and two intermediate reversible adiabatic transformations (dS = 0). After a complete cycle, the entropy
recovers its original value and therefore dSl + dSh = 0. According to Equation (9): −δQl = θl dSl,
−δQh = θh dSh and therefore δQl/θl+δQh/θh = 0. Energy conservation gives the work δW performed
over a cycle from: δW + δQl + δQh = 0. The cycle efficiency is defined as the ratio of δW and the
heating−δQh supplied by the hot bath. We have therefore η ≡ δW

−δQh
= δQh+δQl

δQh
= 1− θl

θh
, from which we

conclude that θ is the “thermodynamic temperature”. Since Kelvin time, thermodynamics temperatures
are strictly defined from Carnot (or other reversible) cycles efficiency. In practice, temperatures may be
measured by other means and employed in other circumstances.

We have implicitly assumed in the above discussion that the working medium (presently an ideal
gas) has reached the bath temperature before being contacted with it. Otherwise, there would be at
that time a jump in entropy, and the cycle would no longer be reversible. Given initial θ, h values, the
temperature change dθ for an increment dh in the isentropic regime (dS = 0) follows from the relation:
dθ = −

(∂S/∂h
∂S/∂θ

)
dh, where S(θ, h) may be expressed in terms of Z(θ, h), Equation (7), from the above

expressions. The details will be omitted. It suffices to know that θ may be varied by varying h, in a
calculable manner, in an isentropic transformation.

Practical units: The energy θ = 〈F 〉h has been defined so far only to within a multiplicative factor
from dimensional considerations. This factor is fixed by agreeing that θ = 273.16 kB exactly when
the cylinder is in thermal equilibrium with water at its triple point. Here kB = 1.38066... 10−23 joules
is considered as an energy unit (akin to the calorie = 4.182... joules). This manner of defining θ is
equivalent to the usual one, though expressed differently. The dimensionless quantity T ≡ θ/kB is the
usual unit of thermodynamic temperature, expressed in Kelvin.

Next, measurements have shown that the number of atoms in 0.012 kg of carbon 12 is:
NA ≈ 6.0221367 1023. For this quantity of matter (called a mole), the ideal gas law therefore reads:
〈F 〉h = NAθ, or: P V = RT , with the ideal gas constant: R ≡ NAkB ≈ 8.31451 joules per Kelvin
per mole.
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5. Conclusions

Let us briefly recall the concepts introduced in the present paper. One can imagine that after having
introduced the corpuscular concept, Democritus observed the elastic bounces of a unit weight on a
balance and defined the weight “impulse” from the motion period. Not knowing the nature of the motion,
he may have thought of introducing a distribution such that the average force 〈F 〉 does not depend on the
law of motion. This, as we have seen, may be done. This distribution involves for dimensional reasons
a quantity θ having the dimension of energy. Considering a thermal engine operating between two baths
at temperatures θl, θh one finds on the basis of the principles just stated that the maximum efficiency is
1− θl/θh. This allows us to call θ the thermodynamic temperature.

The present paper provides a first-principle proof of the ideal gas law, including a possible effect of
uniform gravity with no knowledge of the round-trip time function τ(Z) being required. Our thesis is
that this law may be obtained on the sole basis of the Democritus model of corpuscles and vacuum. It is
indeed unnecessary to specify the law z(t;E) of corpuscle motion, where E denotes the energy. Explicit
expressions of the internal energy are obtained provided the round-trip time is known. One can further
show that the ideal-gas internal energy depends only on temperature in the absence of gravity. The
theory presented is strictly classical. As such, it does not depend on the numerical value of the universal
constant ~. However, the introduction of this quantity is needed to make the results dimensionless.
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