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Abstract. This paper reports the organization and results for the 2018
community-based Signal Separation Evaluation Campaign (SiSEC 2018).
This year’s edition was focused on audio and pursued the effort towards
scaling up and making it easier to prototype audio separation software in
an era of machine-learning based systems. For this purpose, we prepared
a new music separation database: MUSDB18, featuring close to 10 h of
audio. Additionally, open-source software was released to automatically
load, process and report performance on MUSDB18. Furthermore, a new
official Python version for the BSS Eval toolbox was released, along with
reference implementations for three oracle separation methods: ideal bi-
nary mask, ideal ratio mask, and multichannel Wiener filter. We finally
report the results obtained by the participants.

1 Introduction

Source separation is a signal processing problem that consists in recovering in-
dividual superimposed sources from a mixture. Since 2008, the role of the Signal
Separation Evaluation Campaign (SiSEC) has been to compare performance of
separation systems on a volontary and community-based basis, by defining tasks,
datasets and metrics to evaluate methods [3429)30/TJI8ITIT4]. Although source
separation may find applications in several domains, the focus of SiSEC has
always mostly been on audio source separation.

This year, we decided to drop the legacy speech separation and denoising
tasks UND and BGN, because they are now the core focus of very large and suc-
cessful other campaigns such as CHIME [3I3112]. Instead, most of our efforts were
spent on music separation, where the SISEC MUS task is playing an important
role, both in terms of datasets and participation. However, we also maintained
the ASY task of asynchronous separation, due to its originality and adequation
with the objectives of SISEC.

While the primary objective of SISEC is to regularly report on the progress
made by the community through standardized evaluations, its secondary objec-
tive is also to provide useful resources for research in source separation, even
outside the scope of the campaign itself. This explains why the SISEC data has
always been made public, to be used for related publications.

Since 2015, the scope of the SISEC MUS data was significantly widened,
so that it could serve not only for evaluation, but also for the design of music
separation system. This important shift is motivated by the recent development



of systems based on deep learning, which now define the state-of-the-art and
require important amounts of learning data. This lead to the proposal of the
MSD [19] and the DSD100 [14] datasets in the previous editions.

This year’s SiSEC present several contributions. First, the computation of
oracle performance goes further than the usual Ideal Binary Mask (IBM) to
also include Ideal Ratio Mask (IRM) and Multichannel Wiener Filters (MWF).
Second, we released the MUSDBI1S8, that comprises almost 10 h of music with
separated stems. Third, we released a new version 4 for the BSS Eval toolbox,
that handles time-invariant distortion filters, significantly speeding up compu-
tationdl

2 Oracle performance for audio separation

We write I as he number of channels of the audio mixture: I = 2 for stereo. We
write = for the 3-dimensional complex array obtained by stacking the Short-Time
Frequency Transforms (STFT) of all channels. Its dimensions are F'xT x I, where
F,T stand for the number of frequency bands and time frames, respectively. Its
values at Time-Frequency (TF) bin (f,t) are written = (f,t) € C!, with entries
x; (f,t). The mixture is the sum of the sources images: = (f,t) = Zj y; (f, 1),
which are also multichannel.

A filtering method m usually computes estimates §;* for the source images
linearly from x:

P (F.t | Om) = M (f. | Om) 2 (/1) W
where 6y, are some parameters specific to m and M; (f,t | 0m) is a I x I complex
matrix called a TF mask, computed using 6, in a way specific to method m.
Once given the filtering strategy m, the objective of a source separation system
is to analyze the mixture to obtain parameters 6y, that yield good separation
performance.

For evaluation purposes, it is useful to know how good a filtering strategy
can be, i.e. to have some upper bound on its performance, which is what an
oracle is [33]:

05, = argmin > ||y, (f,1) = 35 (.t ] 6m)]| (2)
Om  fit
where || - || is any norm deemed appropriate. In this SiSEC, we covered the

three most commonly used filtering strategies, and assessed performance of their
respective oracles:

1. The Ideal Binary Mask (IBM, [35]) is arguably the simplest filtering
method. It processes all (f,t,i) of the mixture independently and simply
assigns each of them to one source only: MIPM (f,¢) € {0,1}. The IMBI1
method is defined as M;; = 1 iff source j has a magnitude |y;;(f,t)| that
is at least half the sum of all sources magnitudes. IBM2 is defined similarly
with the sources power spectrograms |y;;(f, t)|2.
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2. The Ideal Ratio Mask (IRM), also called the a-Wiener filter [12], relaxes
the binary nature of the IBM. It processes all (f,t,4) through multiplication
by MIFM € [0,1] defined as:

. t)
MZ.I.RM (f. t) - M7 (3)
! > vige (i)
where v (f,t) = |yi; (f,t)|" is the fractional power spectrogram of the

source image y;;. Particular cases include the JRM2 Wiener filter for o = 2
and the TRM1 magnitude ratio mask for o = 1.

3. The Multichannel Wiener Filter (MWF, [6]) exploits multichannel infor-
mation, while IBM and IRM do not. M]MWF (f,t) is a I x I complex matrix
given by:

MMYE (f,6) = C; (£.0) O3 (1), (4)

where C; (f,t) is the I x I covariance matrix for source j at TF bin (f,t)
and C, = 3, C;. In the classical local Gaussian model [6], the further pa-
rameterization C; (f,t) = v; (f,t) R; (f) is picked, with R; being the I x I
spatial covariance matriz, encoding the average correlations between chan-
nels at frequency bin f, and v; (f,t) > 0 encoding the power spectral density
at (f,t). The optimal values for these parameters are easily computed from
the true sources y; [13].

These five oracle systems IBM1, IBM2, IRM1, IRM2, MWF have been im-
plemented in Python and released in an open-source licenseﬂ

3 Data and metrics

3.1 The MUSDBI18 Dataset

For the organization of the present SiISEC, the MUSDBI8 corpus was released [21],
comprising tracks from MedleyDB [], DSD100 [19/14], and other material. Tt
contains 150 full-length tracks, totaling approximately 10 h of audio.

— All items are full-length tracks, enabling the handling of long-term musical
structures, and the evaluation of quality over silent regions for sources.

— All signals are stereo and mixed using professional digital audio workstations,
thus representative of real application scenarios.

— All signals are split into 4 predefined categories: bass, drums, vocals, and
other. This promotes automation of the algorithms.

— Many musical genres are represented: jazz, electro, metal, etc.

— It is split into a training (100 tracks, 6.5 h) and a test set (50 tracks, 3.5 h),
for the design of data-driven methods.

The dataset is freely available online, along with Python development toolsﬂ

2 lgithub. com/sigsep/sigsep-mus-oracle
3 https://sigsep.github.io/musdb
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3.2 BSS Eval version 4

The BSS Eval metrics, as implemented in the MATLAB toolboxes [7J32] are
widely used in the separation literature. They assess separation quality through
3 criteria: Source to Distortion, to Artefact, to Interference ratios (SDR, SAR,
SIR) and additionally with the Image to Spatial distortion (ISR) for the BSS Eval
v3 toolbox [32].

One particularity of BSS Eval is to compute the metrics after optimally
matching the estimates to the true sources through linear distortion filters. This
provides some robustness to linear mismatches. This matching is the reason for
most of the computation cost of BSS Eval, especially considering it is done for
each evaluation window.

In this SiSEC, we decided to drop the assumption that distortion filters could
be varying over time, but considered instead they are fixed for the whole length
of the track. First, this significantly reduces the computational cost because
matching is done only once for the whole signal. Second, this introduces more
dynamics in the evaluation, because time-varying matching filters over-estimate
performance, as we show later. Third, this makes matching more stable, because
sources are never silent throughout the whole recording, while they often were
for short windows.

This new 4" version for the BSS Eval toolbox was implemented in Pytho
and is fully compatible with earlier MATLAB-based versions up to a tolerance
of 10712 dB in case time-varying filters are selected.

4 Separation results

4.1 Oracle performance with BSS Eval v4

To the best of our knowledge, the results presented in Figure [2] are the first fair
comparison between the different and widely used oracle systems presented in
Section[2] On this figure, we can see boxplots of the BSS Eval scores obtained by
IBM1, IBM2, IRM1, IRM2 and MWF on the 4 sources considered in MUSDB18.
The scores were computed on 1 second windows, taken on the whole test-set.
The most striking fact we see on this Figure [2]is that IBM is not achieving
the best scores on any metric except ISR. Most particularly, we notice that IBM
systematically induces a small loss in performance of a few dBs on SDR and SIR,
compared to soft masks for most sources, and to a significant loss for SAR, that
can get as bad as around 5 dB for the accompaniment source. This is in line with
the presence of strong musical noise produced by IBM whenever the source to
separate is dense and cannot be assumed stronger in magnitude or energy than
all others whenever it is active. This also happens for the bass, which is usually
weaker than all other sources at high frequencies, yielding significant distortion
with IBM. Furthermore, we suspect the strong scores obtained by IBM in vocals
and bass ISR to mostly be due to the zeroing of large amounts of frequency bands

4 pip install museval



in those estimates. Indeed, zero estimates lead the projection filters of BSS eval
to totally cancel those frequencies in the reference also, artificially boosting ISR
performance.

Now, comparing soft masks, it appears that IRM2 and MWF produce the
best overall performance as compared to IRM1. However, this result is expected:
BSS Eval scores are in fine relative to squared-error criteria, which are precisely
optimised with those filters. Previous perceptual studies showed that IRM1 may
be preferred in some cases [I2]. This may be reflected in the slightly better
performance that IRM1 obtains for SAR. Finally, although TRM2 seems slightly
better than MWF for most metrics, we highlight that it also comes with twice
as many parameters: power spectral densities for left and right channels, instead
of just one for MWF, shared across channels.

v3
75 v4

Framewise SIR in dB (Vocals)

=50
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Framewise RMS (Vocals)
Fig. 1. Vocals SIR score vs vocals energy for BSS eval v3 and v4.

Concerning the discrepancies betweenBSS Eval v3 and v4 (time-invariant
distortion filters), we observe several differences. First, computations were 8 times
faster for v4 than for v3, which allowed using small 1 s frames and thus get an
estimate of the performance along time at a reasonable computing cost. Second,
computing distortion filters only once for the whole duration of the signal brings
an interesting side-effect, that can be visualized on Figure [1} The new v4 brings
a much higher dynamics for the scores: we clearly see that lower energy for the
true source brings lower performance. However, the marginal distributions for
the scores over the whole dataset were not statistically different between v3 and
v4, which validates the use of fewer distortion filters to optimize computing time
and get to similar conclusions.

4.2 Comparison of systems submitted to SISEC-MUS 2018

This year’s participation has been the strongest ever observed for SISEC, with
30 systems submitted in total. Due to space constraints, we cannot detail all the
methods here, but refer the interested reader to the corresponding papers. We
may distinguish three broad groups of methods, that are:



Model-based These methods exploit prior knowledge about the spectrograms
of the sources to separate and do not use the MUSDB18 training data for
their design. They are: MELO as described in [24], as well as all the method
implemented in NUSSL [I5]: 2DFT [25], RPCA [9], REP1 [22], REP2 [20],
HPSS [8].

No additional data These methods are data-driven and exploit only the train-
ing data for MUSDBI18 to learn the models. They are: RGT1-2 [23], STL,
HEL1 [10], MDL1 [I7], MDLT [16], JY1-3 [11], WK [36], UHL1 [27], UHL2
[28], TAK1 [26].

With additional data These methods are also data-driven, and exploit addi-
tional training data on top of the MUSDBI18 training set. They are: UHL3
[28], TAK2-3 [26], TAU [26125].

As may be seen, the vast majority of methods submitted this year to SISEC
MUS are based on deep learning, reflecting a shift in the community’s methodol-
ogy. The MIX method additionally serves as a negative anchor, that corresponds
to using the mixture as an estimate for all sources.

In the first set of results depicted on Figure [2] we display boxplots of the
BSSeval scores for the evaluation. For each track, the median value of the score
was taken and used for the boxplots. Inspecting these results, we immediately
see that data-driven methods clearly outperform model-based approaches by a
large margin. This fact is noticeable for most targets and metrics.

In the second set of results displayed on Figure [3] we computed the track-
wise median SDR score for all methods on the vocals (top) and accompaniment
(bottom) targets. The striking fact we notice there is that methods exploiting
additional training data (UHL3, TA*) do perform comparably to the oracles for
approximately half of the tracks. After inspection, it turns out that room for
improvement mostly lies in tracks featuring significant amounts of distortion in
either the vocals or the accompaniment. We may also notice on these plots that
tracks where accompaniment separation is easy often come with a challenging
estimation of vocals. After inspection, this is the case when vocals are rarely
active. Consequently, correctly detecting vocals presence seems a good asset for
separation methods.

Our third round of analysis concerns the pair-wise post-hoc Conover-Inman
test, displayed on Figure[4] to assess which methods perform significantly better
than others, for both vocals and accompaniment separation. In this plot, an
obvious fact is that DNN-based methods exploiting additional training data
perform best. Remarkably, they do not perform significantly differently than the
oracles for accompaniment, suggesting that the automatic karaoke problem can
now be considered solved to a large extent, given sufficient amounts of training
data. On the contrary, vocals separation shows room for improvement.

Concerning model-based methods, we notice they perform worse, but that
among them, MELO stands above for vocal separation, while it is comparable
to others for accompaniment. For DNN approaches not using additional training
data, we notice different behaviours for vocals and accompaniment separation.
We may summarize the results by mentioning that RGT1-2, STL and MDL1 do
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Fig. 2. Details of results for all metrics, targets and methods.
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Fig. 4. Pair-wise statistical significance of the differences between separation quality.
Left: vocals SDR. Right: accompaniment SDR.

not behave as well as MDLT, STL1, JY1-3, WK and UHL1-2, which all behave
comparably. It is noteworthy that TAK1 and UHL2 compare well with methods
exploiting additional data for vocals separation.

This evaluation highlights a methodological question that should be investi-
gated in future campaigns, which is the relative importance of the system archi-
tecture and the amount of training data. It indeed appears that very different
architectures do behave comparably and that the gap in performance now rather
comes from additional training data, as exemplified by the difference between
UHL2 and UHL3. This confirms the importance of using standard training and
test datasets such as MUSDBI18 for evaluation, and we believe that obtaining
good performance with reduced training data remains an interesting and chal-
lenging machine learning problem.

4.3 Comparison of systems submitted to SISEC-ASY 2018

As shown in Table[T] there was one submission to the task ” Asynchronous record-
ings of speech mixtures” by Corey et al. [5]. This method does not resample the
microphone signals in order to separate them. Rather, it uses a separate time-
varying two-channel Wiener filter for each synchronous pair of microphones. The
remaining asynchronous microphone pairs are used to compute a speech pres-
ence probability for each source in each time-frequency bin. The speech presence
information from the remote microphone pairs allows the reference recorder to
separate more than two speech signals using a two-channel filter.

5 Conclusion

We reported our work on the organization of SISEC 2018, that comprised the
development of a new Python version 4 for BSS Eval to assess performance,



Table 1. Result for the task ” Asynchronous recordings of speech mixtures”. Result by
Miyabe et al. in SISEC2015 is also shown as a reference.

systems |criteria 3src 4src

realmix sumrefs mix |realmix sumrefs mix
Corey [B]| SDR | —4.0 —4.0 —-4.1| 3.1 29 1.7
ISR -01 -0.1 -0.1| 7.0 6.7 5.8
SIR -22 —-1.7 -19]| 54 50 24
SAR | —13.2 —13.1 —124| 7.9 7.8 6.1
Miyabe | SDR 6.9 6.8 10.6 4.0 3.8 3.3
ISR 11.2 11.1  15.1 8.8 85 7.3
SIR 11.0 10.9 14.9 6.7 6.4 6.0
SAR | 11.7 11.6 155 7.8 76 74

that is fully compatible with earlier MATLAB versions and additionally allows
for time-invariant distortion filters, significantly reducing computational load.
Furthermore, we presented the new MUSDBI18 dataset, that gathers 150 music
tracks with isolated stems, totaling almost 10 h of music. Finally, we also provide
open-source implementations of 3 popular oracle methods to provide various
upper bounds for performance.

Then, we reported the impact of choosing time-invariant distortion filters for
BSS Eval over time-varying ones and quickly summarized the discrepancies in
the performance of the proposed oracles methods with BSS Eval v3 and v4.

Finally, we provided an overall presentation of the scores obtained by the
participants to this year’s edition. More detailed analysis and sound excerpts
can be accessed online on the SISEC webpage.
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