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Abstract. This paper introduces a new method for multichannel speech
enhancement based on a versatile modeling of the residual noise spec-
trogram. Such a model has already been presented before in the single
channel case where the noise component is assumed to follow an alpha-
stable distribution for each time-frequency bin, whereas the speech spec-
trogram, supposed to be more regular, is modeled as Gaussian. In this
paper, we describe a multichannel extension of this model, as well as
a Monte Carlo Expectation - Maximisation algorithm for parameter es-
timation. In particular, a multichannel extension of the Itakura-Saito
nonnegative matrix factorization is exploited to estimate the spectral
parameters for speech, and a Metropolis-Hastings algorithm is proposed
to estimate the noise contribution. We evaluate the proposed method in
a challenging multichannel denoising application and compare it to other
state-of-the-art algorithms.

1 Introduction

In many contexts, speech denoising is studied and applied in order to obtain,
among other things, a comfortable listening or broadcast of a talk [2], by exploit-
ing the observed noisy signal, obtained by several microphones. From an audio
source separation perspective, this denoising is achieved through a probabilis-
tic model, where the observed signal is divided into two latent sources: a noise
component and a target source.

Both speech and noise components are usually considered in the time fre-
quency (TF) domain where all TF-bins are supposed to be independent and
follow a Gaussian law [5,13]. A common approach to speech enhancement is the
spectral subtraction method [6]. Its principle is to estimate an a priori signal to
noise ratio (SNR) in order to infer a short-time spectral amplitude (STSA) esti-
mator of the noise which will be substracted from the STSA of the observations.
Another popular trend is to decompose the power spectral densities (PSD) of
sources into a product of two matrices. The non-negative matriz factorization
(NMF) model assumes that the PSDs admit low-rank structures and it performs
well in denoising .



To the best of our knowledge, NMF models for multichannel speech enhance-
ment have been proposed only in a Gaussian probabilistic context, whereas a
non-Gaussian approach could offer a more flexible model for noise and speech.
Moreover, a good initialization in a Gaussian NMF model is crucial to avoid
staying stuck in a local minimum [3]. Many studies in the single-channel case
have shown a better robustness to initialization when the signal is modeled in
the TF domain with as heavy tail distribution [22,19].

Among this type of distributions, a-stable distributions preserve interesting
properties satisfied by Gaussian laws, and they can model distributions ranging
from light tails as in the Gaussian case to heavy tails as in the Cauchy case.
Indeed, a-stable distributions are the only ones which admit a central limit
theorem and stability by summation [16]. Various studies have been carried out
on audio modeling using alpha-stable processes [19,12]. Especially in the TF
domain, a generalization of wide-sense stationary (WSS) processes [13] has been
established in the a—stable case [12] and applied to noise reduction [8]. More
precisely, in [20] it was considered that the target source is Gaussian and the
residual noise is a-stable, in order to get a greater flexibility on noise modeling.

This paper introduces a generalization of [20] to the multichannel case. The
goal is to develop a Gaussian NMF model for speech that assumes a low-rank
structure for speech covariances [5], while the noise part is taken as an a—stable
process. Parameters are estimated through a combination of the multichannel
extension of Itakura Saito NMF (IS-NMF) [17] for speech and a Markov Chain
Monte Carlo (MCMC) strategy for estimating the noise part. The proposed
method is evaluated for multichannel denoising, and compared to other state-
of-the-art algorithms.

2 Probabilistic and Filtering models

2.1 Mixture model

Let & € CFXT*K he the observed data in the short-time Fourier transform
(STFT) domain where F,T and K denote the number of frequency bands, time
frames and microphones, respectively. The observation x will be assumed to be
the sum of two latent audio sources represented by two tensors: the first one
is written y € CF*T*X and accounts for the speech signal. The second one is
written r € CF*TXK and called the residual component. We have:

Tp =Y+ T, (1)

where each term belongs to CX. The main goal in this paper is to estimate the
tensors y and r knowing @, by using a probabilistic model described below.

2.2 Source model

At short time scales, the speech signal may be assumed stationary and does not
feature strong impulsiveness. This motivates modeling it as a locally stationary
Gaussian process [13]. Furthermore, we also assume that the different channels



for y;, are correlated, accounting for the spatial characteristics of the signal.
Consequently, we assume that each y is an isotropic complex Gaussian vector!
of mean 0 and covariance matrix C¥%, £ Rjvyy, where the spatial covariance
matriv Ry € CKXE encodes the time-invariant correlations of speech in the
different channels and vy, is the PSD of the speech signal [5]. To exploit the
redundancy of speech, we further decompose v¢¢ through NMF and obtain:

L
Vit ype~ N (yft;(lRfvft £ Ry walhlt> - (2)

=1

where £ means “equals by definition”and W € Ri L H e RiXT are matrices
which respectively contain all non-negative scalars wy; and h;;. While W is
understood as L spectral bases, H stands for their activations over time. To
make notations simpler, let @ £ {W,H, R} be the parameters to be estimated
with R £ {Rf}f . Note that the decomposition of vy; is not unique: it is defined
up to multiplicative constant.

In contrast to the speech signal, the model of the residual component should
allow for outliers and impulsiveness. To do so, the residual part is modeled by an
heavy-tailed distribution in the time domain. Recent works proposed a station-
ary model called a—harmonizable process with a € (0,2] in the single-channel
case. It is shown in [16,12] that such a model is equivalent to assuming that
the signal at every time-frequency bin f,¢ follows a complex isotropic symmet-
ric a—stable distribution. With the aim of extending the previous model to a
multichannel one, we take all ry; as distributed with respect to an elliptically
contoured multivariate stable distribution (ECMS, denoted £a.S) and indepen-
dent of one another. These distributions, which are a particular case of a—stable
distributions, have the particularity of requiring only two parameters [16, 11]:

1. A characteristic exponent o € (0,2]: the smaller «, the heavier the tails of
the distribution.

2. A positive definite Hermitian scatter matriz in CK*¥

In this article, the scatter matrices for all r ¢, are taken equal to oyl i , where I'y €
REXK s the identity matrix and o ¢ > 0is a positive scalar that does not depend
on time. We have:

Vit 1~ EaSE (0Ik). (3)

2.3 Filtering model

As mentioned in subsection 2.1, we aim to reconstruct the sources y and r from
the observed data x. From a signal processing point of view, when parameters
o, W, H, R are known, one would like to compute the Minimum Mean Squared

! The probability density function (PDF) of an isotropic complex Gaussian vector
is Ne(z|u, C) = mizg exp (— (. —p)" C™' (. — p)).



Error (MMSE) estimates of both sources. In our probabilistic context, these can
be expressed as the posteriori expectations E (ys¢|x s, ©, 0).

To compute such estimates, a property specific to ECMS distributions can
be exploited to represent T as a complex normal distribution N, of dimension K,
whose variance is randomly multiplied by a positive random impulse variable ¢ ¢

distributed as P55 (2 cos (%)2/(1), where P$S is the positive o/2-stable dis-

tribution (see [19] for more details):

Vit rrldpe ~Ne(rp;0,¢p05 k), (4)

If we assume for now that & = {¢,} 7. are known in (4), we get the distribution
of the mixture as:

vf,t 33ft|¢ft ~ Ne (wft; O,C?Jf) ) ()

where C;y ES Ry Zlel wyrhye + ¢peopI . This in turns allows to build a mul-
tichannel Wiener filter as [2]:

-1
]E(yft|mff,a¢7@;a-) = Cz;t (Cff‘,d)) mft? (6)

with .~! standing for matrix inversion.
Now, the strategy we adopt here is to marginalize this expression over @ | x,
to get:
Yp = Eopx [Eypilxse, @,0,0]| = Gy,
where
Gy = C’;tEft (7)

-1
is the marginal Wiener filter, and =z, = Eg). {(Cr;t‘ﬁ) } is the average in-
verse mixture covariance matrix. We will explain how to compute = later in
section 3.3.

3 Parameter Estimation

3.1 Expectation-Maximization (EM) algorithm

Assuming that the observations & and the impulse variable ¢ are known, we first
aim to estimate the parameters @ . We choose a maximum likelihood estimator
in order to get the most likely source NMF parameters W, H:

(W* H* R") = arg Wm}z__iIleog]P’(:c,dS |©,0), (8)

where @ is a latent variable and log P (x, @ | ©, o) is the log-likelihood. As in [20],
we propose an EM algorithm. This method aims to minimize an upper-bound
of £L,(W,H,R) = —1logP(x,®|O,0). This approach is summarized in the
following two steps:



E-Step: Q,(W,H R) = _E¢‘m,w(n—1)7H(n—1) £, (W,H,R)], 9)
g . (n) g g —
M-Step: (W S HY" R ) arg max 9, (W,H,R). (10)

E-Step: We first introduce a positive function that upper-bounds the negative
log-likelihood £,, (W, H, R), which is equal to [17]:

- —1
L,(W.HR) =Y [tr <X it (cjft“’)) ) + log det c‘;1¢] (11)
fit

where X f; £ o #t@}, and .* stands for the Hermitian transposition. A positive

N . tr(j(ftU,_ft (Cf]lf)flulf&
auxiliary function £ (W, H,R,U,V) =3 ., (>, T +
r(X U7 et C%)? —de t . .
% +logdet Vg + W} which satisfies:
LH(W,H,RU,V)> L, (W,H,R) (12)
is introduced in [17]. Using (12) and the definition of Q,, in (9), we obtain:
Egzln () < Egaly ()= Q5 () (13)

with:

. —1
Eg|x (tr |:XftUlft (Cff‘f) Ulft:|>

wyhi

QI(W7H,R,U,V):Z{Z

Fot 1
+Eapo (tr[X iU |) 07165 + Eape (logdet Ve + det (V5 CTf7) —1) } (14)

The form in (14) admits partial derivatives that will be useful as part of a
multiplicative update [7] in the M-Step.

M-Step: Solving the M-Step in (10) is equivalent to zeroing the partial deriva-

+ +
gf; and g%—l’: and to set U, V such that the equality in (13) is verified. A

multiplicative update approach yields:

tives

> hutr (Ry Pyy)
> bt (RpE )

-1
where the quantity Zy; = Eg| [(Cﬂw) ] has been used above in (7) and

Zf wytr (RfPft)

s hiy < h
e dpwptr (RpEyt)

Wrp < Wyl (15)

-1 . -1
Py = Ege [(Cﬂ‘“) X (Cﬂw) ] We will explain how to compute these

expectations in subsection 3.3.



3.2 Estimation of spatial covariance matrices and noise gains o

We update the spatial covariance matrix R in the M-step as in [5], further using
the trick proposed in [14] to use a weighted update, resulting in:

Rj (Zuﬁ> 3 (C’;ty*‘m) , (16)

where: C?f*‘m 2 Gy X G+ C¥%,— G CY, is the total posterior variance for
the speech source.

Concerning the estimation of the noise gain o in (3), we exploit a result
in [4] that if z ~ EaS (o), then E [Hz||p]% x o, for p < «, with o standing for
proportionality. The strategy we adopt is to apply this estimation only once at
the beginning of the algorithm to the mixture itself, by taking a robust estimation
like the median M instead of the average, to account for the fact that not all TF
bins pertain to the noise, but that a small portion also pertain to speech. We
thus pick p = /2 and take:

of <M (II Y (1) II“/2> : (17)

3.3 Expectation estimation using Metropolis-Hastings algorithm

We still have to calculate the expectations =y, and Py, Unfortunately, they
cannot be calculated analytically. To address this issue, we set up a Markov
Chain Monte Carlo (MCMC) algorithm in order to approximate the expectations
for each iteration. We are focusing on the Metropolis-Hastings algorithm through
an empirical estimation of =4 and Py, as follows:

I

— 1 AL o= 1l N N\l
E~ 03 () ;pﬁglz((cm X0 (c5) ) (18)
i=1 3

-1
with (C;ftl%) =X, (Ruwysihi) + (pft,iO'fIk]_l and ¢y, ; are sampled as
follows:

First Step (Sampling process): Generate a sampling via the prior distribu-
. ra)2/
tion ¢, ~ PSS (2 cos (Z2) a).

Second Step (Acceptance):

— Draw u ~ U ([0, 1]) where U denotes the uniform distribution.
— Compute the following acceptance probability:

N, (Clift; 0, @lfthIK + C?t)
NC (CL’ft;O, (pftO'fIK + C!;t>

acc(ppe — ¢’ f1) =min | 1,



— Test the acceptance:
o if u <acc(pp i1 — ¢ ft), then @g ;s = ¢’ 54 (acceptance)
o otherwise, vt i = @ i—1 (rejection)

4 Single-Channel Speech Signal Reconstruction

Let g be the multichannel signal obtained after Wiener filtering (7). In the
context of speech enhancement, the desired speech is rather a single-channel
signal, that we write 3 € CF*7T. In this study, we take 5 as a linear combination
of § with a time-invariant beamformer By € CK [21]:

gft £ B}@fta
Where .*denotes the Hermitian transposition. There are many ways to devise the
beamformer B. In this study, we choose to maximize the energy of B’}y t | a:

ZE (’nyft |wft> = BJE (y;y5/z) B

By (er)e

This is solved by taking B s as the eigenvector associated to the largest eigenvalue
of the Hermitian matrix + >, (C’J{f*‘m) [5].

5 Evaluation

We investigate both the quality of speech enhancement and the audio source sep-
aration performance. Our proposed approach will be compared to two baseline
methods:

ARC The proposed Alpha Residual component. We take N = 10 iterations
for the EM and pick a = 1.9.
MWF The classic multi-channel Wiener filter [5] which assumes Gaussianity

for both noise and speech.
GEVD  The generalized eigenvalue decomposition [18] is based on a low-rank
approximation of the autocorrelation matrix of the speech signal.

5.1 Experimental setup

The corpus for evaluation is made up of mono speech excerpts from Librispeech [15]
and three different environmental noises taken from Aurora [10]: babble noise,
restaurant and train. A groundtruth voice activity detection (VAD) is used on
all three methods.

Mixtures were obtained for two 15 cm separated microphones, with the
Roomsimove simulator with room dimensions of 5 x4 x 3 meters and RT60=0 ms
and 500 ms. The sources are taken 1 m from the microphones, with different SNR,
values of —5, 0, 5, 10dB and an angular distance of 30°or 90°. This results in 48
experiments.



5.2 Performance measures

For the evaluation, two scores will be measured: the first one is a speech intelli-
gibility weighted spectral distortion (SIW-SD) measure and the second one is a
speech intelligibility-weighted SNR, (SIW-SNR) [9].

The SIW-SD measure is defined as:

SIW — SD = > " I;SD; (19)

where I; is the band importance function [1] and SD; the average SD (in dB) in
the ¢-th one third octave band,

1 21/6ff

SDyj=
(2175 =278 ¢ Jy 1o

[101og,o GY(f)|df (20)

with center frequencies ff and GY(f) is given by:

Gy(f) — Py(f)
Py(f)
where P, (f) and Py(f) are the power, for the frequency f, of the speech com-
ponent of the input signal y and the speech component output signal ¥, respec-
tively.
The SIW-SNR [9] is used here to compute the SITW-SNR improvement which
is defined as

(21)

ASNRintellig = Z I;(SNRj,out — SNRy in) (22)

where SNR; out and SNR; j, represent the output SNR of the noise reduction
filter and the SNR of the signal in the first microphone in the i** band, respec-
tively.

5.3 Results

Results are displayed on Figure 1 and present the SIW-SNR and STW-SD scores
averaged over noise types and spatial scenarios, against the input SNR.

We first investigate the impact of reverberation. While we see that ARC is
outperformed by other methods in the anechoic case, we see it is much less sensi-

tive to reverberation and becomes competitive compared to the other algorithms
in terms of SIW-SD at low input SNR.

6 Conclusion

We proposed a new method ARC for denoising that is more robust to reverber-
ation than competing approaches, although less effective in the anechoic case.
It is based on modeling the speech signal as a Gaussian process and noise as
an a-stable sub-Gaussian process. Interestingly, that approach can be combined
with existing methods, which could be an interesting avenue for future work.
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Fig. 1. SIW (left, higher is better) and SNR & SIW-SD (right, lower is better) for:
(top) an anechoic scenario and (bottom) a reverberent room.
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