C. Johnston, A. Crossley, and R. Sharp, The possibilities for high temperature electronics in combustion monitoring, IEE Seminar on Advanced Sensors and Instrumentation Systems for Combustion Processes, pp.27-36, 2000.
DOI : 10.1049/ic:20000401

P. L. Dreike, D. M. Fleetwood, D. B. King, D. C. Sprauer, T. E. Zipperian et al., An overview of high-temperature electronic device technologies and potential applications, Proceedings of the 18th European Microelectronics Packaging Conference, pp.594-609, 1994.
DOI : 10.1109/95.335047

X. Yu, High-Temperature Bulk CMOS Integrated Circuits for Data Acquisition, 2006.

M. Willander, High Temperature Electronics, 1997.
DOI : 10.1007/978-1-4613-1197-3

V. D. Smedt, G. Gielen, and W. Dehaene, A 40 nm-CMOS, 18 µW, temperature and supply voltage independent sensor interface for RFID tags, Proceedings of the 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC), pp.11-13, 2013.

G. Gläser, D. Kirsten, A. Richter, M. Reinhard, G. Kropp et al., High-Precision Mixed-Signal Sensor Interface for a Wide Temperature Range [0???300??C], Journal of Microelectronics and Electronic Packaging, vol.15, issue.1, pp.1-8, 2018.
DOI : 10.4071/imaps.523847

Y. Wang and V. P. Chodavarapu, Design of CMOS capacitance to frequency converter for high-temperature MEMS sensors, 2013 IEEE SENSORS, pp.3-6, 2013.
DOI : 10.1109/ICSENS.2013.6688275

R. Aragones, J. Oliver, and C. Ferrer, A 16 ppm/ ? C ROIC for capacitive-sensor signal-acquisition applications, Proceedings of the 2012 IEEE Sensors, pp.28-31, 2012.

A. K. George, J. Lee, Z. H. Kong, and M. Je, A 0.8 V Supply- and Temperature-Insensitive Capacitance-to-Digital Converter in 0.18-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math> </inline-formula> CMOS, IEEE Sensors Journal, vol.16, issue.13, pp.5354-5364, 2016.
DOI : 10.1109/JSEN.2016.2559164

URL : https://hal.archives-ouvertes.fr/in2p3-00149778

V. Sharma, N. Jain, and B. Mishra, Fully-digital time based ADC/TDC in 0.18 µm CMOS, Proceedings of the 2016 International Conference on VLSI Systems, Architectures, Technology and Applications (VLSI-SATA), pp.10-12, 2016.

A. D. Marcellis, M. D. Cubells-beltran, C. Reig, J. Madrenas, B. Zadov et al., Quasi-digital front-ends for current measurement in integrated circuits with giant magnetoresistance technology. IET Circuits Devices Syst, pp.291-300, 2014.

D. Toraskar, M. Mattada, and H. Guhilot, Comparison between Voltage Domain and Time Domain ADCs?A Review, Int. J. Adv. Res. Comput. Commun. Eng, p.5, 2016.

P. Prabha, S. J. Kim, K. Reddy, S. Rao, N. Griesert et al., A Highly Digital VCO-Based ADC Architecture for Current Sensing Applications, IEEE Journal of Solid-State Circuits, vol.50, issue.8, pp.1785-1795, 2015.
DOI : 10.1109/JSSC.2015.2414428

J. Nebhen, S. Meillere, and M. Masmoudi, A High Linear and Temperature Compensation Ring Voltage-Controlled Oscillator for Random Number Generator, ASP J. Low Power Electron, vol.13, pp.588-594, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01693986

R. Adler, A Study of Locking Phenomena in Oscillators, Proc. IRE 1946, pp.351-357

R. D. Huntoon and A. Weiss, Synchronization of Oscillators, Proc. IRE 1947, pp.1415-1423

F. Badets and D. Belot, A 100 MHz DDS with synchronous oscillator-based phase interpolator, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC., pp.410-503, 2003.
DOI : 10.1109/ISSCC.2003.1234361

F. Badets, M. Benyahia, and D. Belot, Synchronous Oscillator Locked Loop: A New Delay Locked Loop Using Injection Locked Oscillators as Delay Elements, Proceedings of the 19th International Conference on Design of Circuits and Integrated Systems, pp.24-26, 2004.

E. Chabchoub, F. Badets, M. Masmoudi, P. Nouet, and F. Mailly, Highly linear voltage-to-time converter based on injection locked relaxation oscillators, 2017 14th International Multi-Conference on Systems, Signals & Devices (SSD), pp.28-31, 2017.
DOI : 10.1109/SSD.2017.8167011

URL : https://hal.archives-ouvertes.fr/lirmm-01712478

G. W. Roberts and M. Ali-bakhshian, A Brief Introduction to Time-to-Digital and Digital-to-Time Converters, IEEE Transactions on Circuits and Systems II: Express Briefs, vol.57, issue.3, pp.153-157, 2010.
DOI : 10.1109/TCSII.2010.2043382

M. B. Elamien and S. A. Mahmoud, A linear CMOS balanced output transconductor using double differential pair with source degeneration and adaptive biasing, 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), pp.16-19, 2016.
DOI : 10.1109/MWSCAS.2016.7870002

R. L. Nagarig and D. Yagain, Design and Implementation of a Linear Transconductance Amplifier with a Digitally Controlled Current Source, Proceedings of the 2011 Fourth International Conference on Emerging Trends in Engineering Technology, pp.18-20, 2011.

S. Majerus, W. Merrill, and S. L. Garverick, Design and long-term operation of high-temperature, bulk-CMOS integrated circuits for instrumentation and control, 2013 IEEE Energytech, pp.21-23, 2013.
DOI : 10.1109/EnergyTech.2013.6645305

D. Smedt, V. Gielen, G. Dehaene, and W. , A Novel, Highly Linear, Voltage and Temperature Independent Sensor Interface using Pulse Width Modulation, Procedia Engineering, vol.47, pp.1215-1218
DOI : 10.1016/j.proeng.2012.09.371

L. Portmann, H. Ballan, and M. Declercq, A SOI CMOS Hall effect sensor architecture for high temperature applications (up to 300 ? C), Proceedings of the IEEE Sensors, pp.12-14, 2002.

R. Grezaud, L. Sibeud, F. Lepin, J. Willemin, J. C. Riou et al., A robust and versatile, ?40 ? C to 180 ? C, 8S ps to 1 kSps, multi power source wireless sensor system for aeronautic applications, Proceedings of the 2017 Symposium on VLSI Circuits, pp.11-13, 2017.