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This paper deals with a nonlinear controller based on saturation functions with variable parameters for
set-point regulation and trajectory tracking control of an Autonomous Underwater Vehicle (AUV). In
many cases, saturation functions with constant parameters are used to limit the input signals generated
by a classical PD (Proportional-Derivative) controller to avoid damaging the actuators; however this
abrupt bounded harms the performance of the controller. We, therefore, propose to replace the con-

ventional saturation function, with constant parameters, by a saturation function with variable param-

Keywords:

eters to limit the signals of a PD controller, which is the base of the nonlinear PD with gravitational/

AUV buoyancy compensation and the nonlinear PD b controllers that we propose in this paper. Consequently,

Nonlinear PD and PDp controllers
Real-time experiments

the mathematical model is obtained, considering the featuring operation of the underwater vehicle
LIRMIA 2, to do the stability analysis of the closed-loop system with the proposed nonlinear controllers

using the Lyapunov arguments. The experimental results show the performance of an AUV (LIRMIA 2) for

the depth control problems in the case of set-point regulation and trajectory tracking control.

© 2018 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ ).

1. Introduction

Nowadays the increased interest in AUV is fueled by a wide
variety of military and civil applications, among which we can
highlight underwater inspection, surveillance, oil rigs monitoring,
archaeological studies, to name a few. Outstanding technological
progress in the performance, control and autonomous behavior
makes the AUV's a powerful tool (for example ( Stewart and Glegg,

2010; Quidu and Jaulin, 2012; Kleeman; Zhao and Liu, 2016)).

However, the main challenge for this kind of vehicle lies in the
implementation of the control strategy for doing different tasks
given the nonlinear dynamics and the dif  culty to identify its hy-
drodynamic parameters accurately. These topics still remain of in-
terest within different research communities (see ( Newman, 1977 ;
Lamb, 1932; Fossen, 2011 Jung and Paik, 2017)).

Current literature contains various control strategies such as
sliding mode control ( Wallace and Bessa, 2008), adaptive control

* Corresponding author.
E-mail address: ecampos@conacyt.mx (E. Campos).
Peer review under responsibility of Society of Naval Architects of Korea.

https://doi.org/10.1016/j.ijnaoe.2018.04.002

(Maalouf and Tamanaja, 2013 ), neuronal network control ( Kawano
and Ura, 2002) and nonlinear control ( Sanahuja et al., 2009; Shang
and Cong, 2009), that has been successfully applied to set-point
regulation; as well as trajectory tracking control of Autonomous
Underwater Vehicles. However, one of the most typical control
strategies used in real applications is the PD controller with
different approaches, although this controller does not have a good
performance when the system parameters change. In previous
work, we obtained successfully results using the control strategy
based on saturation functions with constant parameters ( Campos
and Torres, 2012). Consequently, we propose to modify the clas-
sical PD controller with the implementation of a saturation func-
tion with variable parameters, thus achieving robustness in the
closed-loop system.

The main contributions of this paper are summarized as follows:

We present nonlinear controllers with variable gains for set-
point regulation and trajectory tracking control of an Autono-
mous Underwater Vehicle.

We have done the stability analysis of the closed-loop system
using the Lyapunov technique.

2092-6782/ © 2018 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http:/

creativecommons.org/licenses/by-nc-nd/4.0/ ).
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We present the real-time experimental results of the closed-
loop system.

Experiments have been done for trajectory tracking control in a
nominal case and when the weight of the vehicle is changed, to
show the robustness of the nonlinear PD controller.

This paper is organized as follows: In section I, we brie y
describe the dynamic model of the mini-submarine  LIRMIA2. The
control strategy is presented in section Ill. The experiments using a
linear and nonlinear PD controllers for trajectory tracking control
are presented and discussed in section |V. Finally, some concluding
remarks and future works are given in section V.

2. Dynamic modeling of the vehicle

We have designed and built the LIRMIA2 AUV, which is depicted
in Fig. 1and its main features are described in Table 1. The center O,
of its body- xed frame corresponds to the center of gravity of the
vehicle; and its axes are aligned with the main axes of symmetry of
the vehicle. The motion in the horizontal plane is referred as  surge
(along the x;, axis) and sway (along the y,, axis), while heave repre-
sents the vertical motion (along the z, axis). Roll, pitch, and yaw,
denoted by & ;;j b are the Euler angles describing the orientation of
the vehicle's body- xed frame with respect to the earth-  xed frame
a0;;x;y):z B while &;y; zbdenote the coordinates of the center of the
body- xed frame in the earth- xed frame. The propulsion system
consists of eight thrusters, as illustrated in  Fig. 2. Some thrusters are
connected to the same driver, thus we can assume that f; Yaf,,f3 Y4
fa, f5 Yafg and f; Yfg, thatis why the roll motion is unactuated. The
rotational motion of this vehicle, yaw movement is performed
through differential speed control of thrusters 3, 4, 5 and 6. Pitch
motion is obtained similarly using thrusters 1, 2, 7, and 8. The
translational motion throughthe  z axis is regulated by decreasing or
increasing the combined speed of thrusters 1, 2, 7, and 8. Similarly,
the translational motions along the x, and y,, axes are obtained by
using thrusters 3, 4, 5, 6 and by controlling the yaw angle.

The dynamics of the vehicle, expressed in the body- xed frame,
can be written in compact matrix form as ( Fossen, 1999:

Mnp Canp DaEnp gahb vt b we @
h . Bhm ©)
where M2 © 6 is the inertia matrix, C2 © & de nes the
Coriolis-centripetal  matrix, D2 6 6  represents  the

u(surge)

r(yaw)
2
w(heave)

Fig. 1. The LIRMIA 2 vehicle, with a body- xed frame &0;xy,;Yy;2,R and an earth- xed
frame 80;;x;y1;zR

Table 1
The main features of the LIRMIA2 vehicle.
Mass 18.9kg
Floatability 5N
Dimensions 40cm (I) x 36 cm (w) x 25cm (h)
Maximal depth 50m
Thrusters 8 CD motor with propeller

cont. bollard thrust ¥0.8 kgf each
with Fahrregler Rookie 20 WP drivers

Power 12V - 500 W
Attitude sensor UMB6-LT Orientation Sensor
Camera Webcam Logitech 9000 pro  30e fps

Pressure Sensor Breakout
MS5803-05BA

0.00236s

FIT-PC2-Intel Atom Z550 2 GHz,
1 GB RAM, WiFi

Windows XP Professional-32 bits
Microsoft Visual C pp 2010

Depth sensor

Sampling period
Embedded computer

Fig. 2. CAD view of the robot with forces f;, i ¥ 1::8 generated by the eight thrusters of
the vehicle. The position of the center of gravity is CG.

hydrodynamic damping matrix, géht2 © 1 describes the vector of
gravitational/buoyancy forces and moments,
t vadqt,8 %ddyty tRdk ty;tnPB2 6 1 de nes the vector
of control inputs (forces and moments); we2 © 1 de nes the
vector of disturbances; n¥ &P Vi 88;v,wh&;q;rpb2 6 1
denotes the linear and angular velocity vector in the body- xed
frame; hvad,;h,0 v 88 y;z0&;q;j PB2 6 1 is the position
and attitude vector decomposed in the earth- xed frame, and
Jhe2 6 6 s the transformation matrix mapping from body frame

to earth- xed frame, for more details, consult ( Fossen, 1999
Goldstein et al., 1983 ; Marsden, 1974).

2.1. Inertia and Coriolis-centripetal matrices

The inertia matrix M is the sum of the rigid-body inertia Mggand
the inertia of the added mass M, as follows:

M YaMggb Mp 3

In our case, we assume that the vehicle is moving at slow
speeds; hence, the M matrix can be approximated by:
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M Yadiagfmp Xg;mbp Yymp Z,; 4
bocb Ko ly b Mg Lz b Ny S

where m is the mass of the vehicle, Ix; lyy; |2z are the moments of
inertia of the rigid-body which are estimated by using the CAD
design of the LIRMIA2 vehicle. Then, the obtained values are:

MRgg ¥ diagf 21;21;21;0:23;0:42;0:399g (5)

and Xy; Yy; Zy; Ky Mg; N represent  hydrodynamic added mass
estimated by using MCC (Marine Craft Characteristics; this free-
ware was created by ENSTA Bretagne and the link to download is
cited in the following work ( Yang et al., 2015)). The matrix of the
added mass can be expressed as:

M, Yadiagf 17:52;23:18;40:4;0:25;0:44;0:419g (6)

Now, knowing the matrices Mgg, Ma and assuming that the
center of gravity of the vehicle is in the origin of the body- xed
frame we can obtain the matrix Cab as is shown in (Fossen,
2002). Therefor, the Coriolis-centripetal matrix is described by
the following equation:

CaP YiCrpiNb p Cuanb Q)
with
2
0 mr  mq 0 0 0
mr 0 mp 0 0 0
1 mgq mp 0 0 0 0
RAPYE 07 0 0 0 Lsr lyg @)
0 0 0 (P22 0 Ixxp
0 0 0 lyyq IxxP 0
and
2
0 0 0 0 ZyW YW 8
0 0 0 ZyW 0 XU
0 0 0 Yy o Xuu 0
CadP i ZyW YW 0 Ner Mgg ©)
Z,w 0 Xu o Nr 0 Kb

Yy XU 0 Mgd  Kgp 0

Notice that the calculation errors of our added mass results can
be considered as uncertainties in the parameter of the mathemat-
ical model.

2.2. Damping matrix

Concerning the hydrodynamic damping, we consider the
damping model for low-speed underwater vehicles. Thus we have:

Danb Yadiag Xu; Yvi Zw; Kp; Mq: N (10)

The damping parameters of the vehicle that are included in the
damping matrix have are experimental obtained by applying the
following procedure. First, the buoyancy of the AUV is adjusted to
exactly compensate for the weight, so that the buoyancy is neutral.
Then, a known force is applied to the AUV along the zaxis. This force
is produced by the thrusters and it is known due to a previous cali-
bration. As the vehicle submerses, the value of zis recorded (by the
depth sensor). Then, the speed along z is computed. After few sec-
onds, the AUV reaches a steady state limit speed. The value of Z,, the
damping parameteralong z, is approximated by: ZyXx =W, , where
f, is the force exerted by the thrusters along z, and  w;,, is the linear
speed of the AUV along z. The estimated value of Z is 75.4 N:ism 1.

To compute the parameter YV,, the cross sectional area of the
vehicle and the shape of the body are quite the same in the 2z di-
rection and in the vy direction. Consequently, we consider that Y, is
roughly equal to Z,. The value of X, is computed by measuring the
time needed by the AUV to run a known horizontal distance in a
pool, with a known horizontal thrust. Then, the speed is computed
and the damping parameter is estimated. The estimated value of X,
is 21.3 N:sm 1. Regarding the rotational damping parameter, we
applied a known torque along z axis with the thrusters and we
recorded the rate of turn measured by the gyrometer (along  z axis)
of the embedded IMU. Once the rate of turn reaches its steady state
value rj,, , the rotational damping parameter N, is approximated by:
NrX  0,7Tim» Where @, is the applied torque.

The estimated value of N, is 1.6 N:m:sirad 1. The symmetry of
the LIRMIA2 vehicle allows us to consider that Mg is roughly equal
to N;. The value of K, (along x axis) has not been experimentally
estimated as this would require making the center of gravity
coincide with the center of buoyancy. This is long and useless, since
in our case the roll is naturally stable and is not controlled. Ac-
cording to the previous values and the geometry of the vehicle, we
have considered that K, x 0.95 N:m:srad 1. Please note that we
have assumed that the speed of the vehicle is suf ciently low to
consider only the skin friction effects. Thus, we only estimate the
linear damping. If the speed increase, then quadratic damping
would be taken into account and quadratic damping parameters
should be computed using the same method by replacing each
speed by its squared value. Given that the vehicle is moving slow,
non diagonal terms of the damping matrix are neglected and only
linear damping parameters were estimated for this prototype:

Danb Ydiagf 21:3;70; 75:4;0:95; 1:8; 1:69 (1)

i N: i N:
in == ( rstthree)andin =2

g (last three).

2.3. Gravity/Buoyancy forces and torques

According to Archimedes' principle, the buoyancy force fg
exerted at the center of the buoyancy and acts in the opposite di-
rection of vehicle weight fy. This leads to:

2 3 2 3
0 0
fga 4 0 5fy 4 05 (12)
rgv mg

where I represents the uid density, g the gravitational accelera-

tion, V the displaced uid volume and m the mass of the vehicle.

Now, if we consider that W Yamg and B¥%rgV and using the
zyx-convention for navigation and control application ( Fossen,
2002), then the transformation matrix Jé&h,b 1/4Rz;j R,;qRX;f is
applied in order to obtain the weight and buoyancy forces with

respect to the body- xed frame:
R ¥a jdh,P MRy Yaddh,b My (13)
consequently,
Bsindgp Wsindgp
Fs ¥s4 Bcosysing PORy ¥4 Weossing bS (14)
Bcosygrcosy b WcosgrrosX b

Thus, the restoring forces acting on the vehicle are fg %Rz p Ry,
which leads to

B Whksinagp
fg 44 OV  Brosksing bO (15)
WV  Blrosyfrosy¥ b
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The restoring moments can be described by the following
equation:
mg¥%rw Fwbr, Fs (16)
where ry Ya Yy Yw; Zw T and Iy Y2 %0 Y Zp T represent the posi-
tions of the Center of Gravity (CG) and the Center of Buoyancy (CB)
respectively. Based on the design of the vehicle and to reduce
further analysis, the origin of the body-  xed frame is chosen in the
center of gravity, which impliesthat ry ¥4%;0;0 T: while the center
of buoyancy is r, ¥ 8;0; z, T. For practical purposes, the buoy-
ancy force is greater than the weight,i.e., W B % f,. Then, from
Egs.(15) and (16) , one can deduce:

fpsindgp
fycosyrsind b
fg v, fycosgrcosy b
Mg zp,Becosysind
Zstinqu
0

géhb v, 17)

2.4. Forces and torques generated by the thrusters

Fig. 2illustrates the forces generated by the thrusters acting on
the vehicle. They are described relative to the body-  xed frame, as:

2 3 2 3 2.3 2.3
0 0 fa f,
Rv4058%4058%4058 %405
f, f, 0 0
2 3 2 3 2 3 2 3
s e 0 0
Rv405R%405R%405R%405
0 0 f, fg

Summarizing and using the notations of (  The Society of Naval
Arch, 1950), it follows that:

2 3 2 3
tx fapfap fsp fs
t, a4ty 514 0 5

tz fipfap f7bfs

(18)

choose anthe body- xed torques generated by the above forces, are
de ned as:

X
tyva I, P (19)
a1

where |; ¥ 8iy; liy; iz Pis the position vector of the force E’c i Yal;:;

8, with respect to the body- xed reference frame. The torques
generated by the thrusters are described as:
26 it hb iyt Iy

to YadtyD s 1,y p fp 15,8, p fgb S (20)
tn laydfz  fsP plsyds feb

Given that we have connected two thrusters to the same driver,
to reduce the cost of the underwater vehicle, then f; % f,, f3 Yafy,
fs ¥afg and f; Y fg, as consequence:

2 3
2f3 p 2fs
0
t va 2h % 2f7 (21)
2lixfy 2l
&z fsPlzy b lay
Remark 1. From equation (21) we can observe that the vector of

control input has 2 zeros, then the system has a lower number of input
controls than degrees of freedom. Consequently, we have an under-
actuated system

2.5. Design considerations

To build of the LIRMIA2, we have considered the mathematical
model to take advantage of the moments produced by the location
of the gravity and buoyancy centers. Then, from Eq. (1) we can
observe that if the gravity center is located in the origin ~ d; 0; Obof
the body- xed frame and the buoyancy center is located in  d0; 0;
zbbk we obtain the following conditions:

Ixb Koy Rb Dip%2z,BGS / fz 0 (22)

lyp My ab Dyq%Z,BS, / 0z O (23)

Notice that the moments are independent of the forces gener-
ated by the thrusters. In other words, we can assume that the
angular position q¥f %0 during all the experiments without a
control input. The other advantage is less energy consumption.

3. Proposed control strategy

In the above section, we described the vectors and the matrices
that we estimated and measured to know the parameters of the
mathematical model. However, uncertainty exists in estimating the
parameters. Consequently, we propose a robustness control strat-
egy for the set-point regulation and the trajectory tracking control
take the uncertainty into account in the parameters of the system.

Let udbbe a PD controller whose expression is given by:

dea b
dt

udpb Yk, edb pks (24)
where edb Yadb ydbis the tracking error, rabrepresents the
reference, y&bis the measured output, k; and k, are the propor-
tional and derivative feedback gains. From (24) we can observe

that: if eab/ then ua&p . This could lead to oscillations in the

system or damage the actuators. A common practice is to propose

some saturation function, as given below, would address these

problems.

3.1. A nonlinear PD controller based on saturation functions

Let s;-&;h;Pbe a saturation function for i ¥a1;2, with b; and k;
constant and positive de nite, de ned by the following equation:

8 _ _
5 bi if kihi > bi

SpiniP Vi ki it kb by (25)
©ob it kihi< by

where k; is a gain, the parameter b; is the value choose in order to
limit the values of any function represented by  h;, in this case h; and
h, represent de error and its derivative respectively.

To improve the performance of the closed-loop system and to
avoid damage to the actuators, the controller given by Eq. (24)
could be modi ed by using the above saturation functions in
each term, leading to the following:
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Uath Yis; ey e3P pS;- kzd&—e‘im (26)

Now, equation (26) can be rewritten in a compact form as:

X
Udb % 27)
ival

where u; ¥aSp-&ihpfor i ¥41;2; represents the saturation of the
proportional and derivative control action respectively. By applying
equation (25) we can rewritten u; as:

 signah; if ki >b;
Ui ¥ N (28)

kho  if  kh b

To introduce a modi cation of saturations (28), let us consider
the point of h; where u; ¥ab;, thisis:

Uy Ya kihi 1/Abii 0 hi 1/Abii ki (29)
then, we de ne
di :1/4b_i ki (30)

as consequence, we have that:

u; Yasigndhitp, ¢ jhij>d; (31)

According to Egs. (30) and (31) , we can express (28) as follows:

signth,Bp, if  jhij> d|

u; ¥ =
P byd Ty if gy dy

(32)

where the tuning parameters of the controller are  b; and dj,c i ¥
1;2. To express Eq.(32) in terms of h;, when jh;j> d;, we consider
that:

signéh; Hp; ¥ h;signdh; Fo h, 1 (33)
then
signdh;Hp; ¥ h; bih, * (34)
and considering that h; h, 1y, hyj 1hi, then Eq. (32) can be
rewritten as:

b hij *hy it jhij>d,

Ui Ya (35)

bid, thy if jhij

Finally, the law control de  ned by Eq. (26) can be represent as:

UapP Y, b up Yakpdehedb p kydebed b (36)
with
(b_eab'l if jedbjd
kpdep s Lo T ISERP G (37)
bid,t if jedbj d

b, eabj ! if
byd,t if

jedbj> d;
jedtbj d;

kqdeb Ya (38)

The advantage of this controller is that maximum forces and
torque are chosen by the parameters b, and b,. Thus, we can ensure
that actuators will not be damaged. However, in other cases it will
be necessary for forces and torque to be slightly larger to correct the
system error. It is for this reason that we propose that the constant

saturation value b;, from Eq. (35), to change as follows:
— by hij™ if  jhij> d
1 i i i i
P b g it gh d (39)
ci¥%l;2and m2 0;1
Then, introducing Eq. (39) into Eq. (35) we obtain:

(o m o
b hii™ hij thi if jhij>d;

by cijd, thy if jhyj (40)
ci¥al;2and m2 0;1

Ui Ya

Consequently, from Eq. (40) we obtain a nonlinear PD controller
as follows:

UaP Yau; b u, Yakpderedb pkydeted b (41)
with
(
b, eapf™® P if jedpj>d
Kodeb ¥o - f N JedPP G (42)
byd™ it jedpj d
( ip
b, edp if jedbpd
kyaepvs 02 F@lp JedtPP> d, 43)
bodT® it jedtbj d,
cm;m2 ®;1:

Notice that the controller obtained in Eq. (41) is a PD controller
with variable gains. To show the behavior of the variable gains
given by Egs. (42) and (43), we have plotted an example for
different values of the parameter m, with d; ¥45 and b; %100 in
Fig. 3.

Remark 2. The proposed nonlinear PD controller can be degenerated
into the classical PD controller if m, %2y % 1, as is depicted inFig. 3.
On the other hand, if m, ¥amy %20, we obtain the case of a constant
value for a saturation function. As a result, the input control is
completely bounded whenjh;j > d;. On the other hand, the classical PD
and the saturation PD with Eq. (25) is a particular case of the proposed
controller.

Remark 3. The values of the gains kdeband kydebare constant when
jedbj d; andjedbj d,, asis depicted inFig.3. This region is called
the linear region of the input control .

3.2. Set-point regulation

In this section, we present a Nonlinear Proportional Derivative
control with Gravitational/buoyancy compensation (NPDG) for the
case of set-point regulation. Based on the controller (41) and the

dynamic model (1), we propose this control law:

t P K,dereh Kydete p gehp (44)
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Fig. 3. Plot of a variable gain obtained by implementing a saturation function,
described by Eg. (25), but changing the constant value of the parameter b; for the
function given by Eq. (39).

where the matrix Kpdeband Kydebhave the following structure:

2 3
kpl & P 0 0
0 kp28e, P 0 é
Kp 63D1/4§ « « 1 « >0 (45)
0 0 kpn@n =}
2 3
kdl (S 0 cen 0
Kyteb v 0 Kgo € e 0 >0 (46)
« « 1 «
0 w. Kgn en

with kp; &8 Pand kydepde ned by (42) and (43) respectively.
In Fig. 4 we show the diagram block of the closed-loop system
with the NPDG controller.

3.2.1. Stability analysis of the closed-loop system

Since the controller will be a regulator and the erroris e Y hy
h,then e % h, as a consequence the control law given by Eq. (44)
can be rewritten as:

t v hPKydele KydeHh p gahp 47)

Now assuming that we %0, and introducing Eq. (47)into (1) , the
closed-loop system is:

Mnp CIEp DY P Kydere  K,deth (48)

and according to Eqg. (2), we obtain

! ‘;@?

Undewater Vehicle

Reference

Fig. 4. In this diagram we show the closed-loop system with the proposed control
strategy for the case of set-point regulation which is described by Eq.  (44). Notice that
the blocks Kpdepand Kydebrepresent the variable gains which are computed by Egs.
(42) and (43) respectively. Observe that for the nonlinear PD controller with gravity/
buoyancy compensation we need to know only the gravity/buoyancy vector and the
transformation matrix ~ J'éhbgiven by equation (2).

Mnp CHEp DY P Kydere  KydeRhm (49)
Let us de ne Kyyéh; eb ¥ JTehiK &eRphE then the previous
equation can be rewritten as
Mnp Catnp DaMn s JdiKpdere  Kygdh; etn (50)
The closed-loop system given by Eq. (50) could be represent as:
d e y, h Jhen i
dt n M JIhKEre Kdhietn Cam DM
(51)

Notice that the origin of the state space model is a unique
equilibrium point. To do the stability analysis, we use the following
Lyapunov function candidate:

Ze
Ve nb 1/4%nT Mnp X' KpaXkex (52)
0

and assume that class K functions ;8¢ Pexist, such that:

Gkpi & 3 § (53)
with
8
ba gj™e
57 if g >da
ap g
a g (54)
badate
.E T2 it g da
ab da

where by > by, a>0 and d; <da. Then, according to Lemma 2 from
(Kelly and Carelli, 1996 )
ze

X' KpXidx > Oc es 02 R (55)
0

and

ze
X KoXedX  asjjejj/ (56)
0

where

zZe pac Zen
X KpKBIX Vo Xqkp 3 RiXy b ... b
0 0 0

X Kpn &, FX,:

Therefore V&; nbis a globally positive de nite and radially un-
bounded function. The time derivative of the Lyapunov function
candidate is:

e nb n'TMn eTKpdershm (57)

By substituting the closed-loop Eq. (50) into (57) we obtain:

Ve b v hKpdeke  NTKyqdh; e

58
n'canmn  n'DaM  e'KydeRmhm (58)

since Kpdeb VA(gaeband cap vs cad, Eq. (58) becomes:
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e b ¥ N y,eh; eb b Danbn (59)

Remember that K4 Y2 KI>0, therefore Kyy ¥ KJ,>0, and
assuming that DaP> 0, then we obtain \.&; nPwhich is a globally
negative semide nite function. Therefore, we conclude stability of
the equilibrium point. In order to prove asymptotic stability, we
apply the Krasovskii-LaSalle's theorem:

i

U v ﬁ S\ YO Ya ﬁ% 2 2 (60)

e
0
Introducing N%0 and Nn%0 into Eq. (50) we have e % O.

Therefore, we conclude that equilibrium point is globally asymp-
totically stable.

3.3. Trajectory tracking control

Based on Eqg. (2) we obtain the following kinematic trans-
formations (more details see ( Fossen, 2002)

h i
hva3hmp Bheo nvsJ tehbh  Bhe tehth
applying the previous transformations to model (1), we have:
Mhehb i) Tehimd tehp
Ginhp 73 Tshpcane MJ tahrhe J 1ahp
Dhdn; hb v TshDanR) tahp

ghéhb v4J Tehigahp
thehb v Tehd

Consequently, the mathematical model given by (1) with
respect to the inertial frame is:

Mpéhth b Gy hthp Dpanhth p ghdhb Y4 Tehi (61)

Then, for the case of trajectory tracking control, we propose the
follows Nonlinear PD p controller (NPD p):

t vaJ &b Mpdhthy b Chan hihb Dnan hE- ©2)
|

p gndhb pKpdere p Kydere

In Fig. 5, we show the diagram block of the closed-loop system
with the NPD p controller.

3.3.1. Stability analysis of the closed-loop system
Introducing the above controller into Eq. (61), the closed-loop
system is:

Mpthke ¥4 CGhénhke. Dpén hike Kpdele Kydeke (63)
Eq. (63) can also be written as:

d e
—_ 1,
da e

Mhehp ' v hp p Dh%’l; hb bKydebep Kydeke
(64)
The stability analysis is similar that previous section, but in this
case the Lyapunov function candidate is:
Ze
Vée eb 1/4%e_T Mhahkep X" K,&miX (65)
0

According to arguments used in proof of the previous section,
we conclude that Vae; ebis a globally positive de nite and radially

d 14

dt

Kp(e)

e(t)

e(r)
Nd S

Reference

‘de(r) K@)

dt

&(f)

&(n)

dt
M, (n) }
C:/(“ I])

Dy (v,n)

Undewater Vehicle

JT ()

Fig. 5. In this diagram we show the closed-loop system with the proposed control strategy for the case of trajectory tracking control which is described by Eq.
this case we need to know the mathematical model of the underwater vehicle given by Eq.

(62). Notice that in
(61) in order to compute the signal of the nonlinear PD  p controller; however the

variable gains are computing by the same equations that we have used for the NPDG controller.
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unbounded function. The time derivative of this Lyapunov function
candidate is:

ez eb vl Mnchie b Je Mydhieb eKpdere (66)

Now, introducing Eq. (63) into (66) and assuming that My %0,
and Gy, hpis skew symmetric, then:

Ve eb i e Dhanhb pKydebe (67)

assuming that Dpénhp>0 and remember that Kydeb>0 and
symmetric matrix, then we obtain \de;ebis a globally negative
semide nite function, and therefore we conclude stability of the
equilibrium point. In order to prove asymptotic stability we apply
the Krasovskii-LaSalle's theorem, then:

Uv € :veeebvo v € v €2 2 (68)
e e

Introducing e%0 and e%O0 into Eq. (63) we have e ¥ 0,
therefore the unique invariant is the origin. As a consequence we

conclude that equilibrium point is globally asymptotically stable.

4. Real-time experiments

Fig. 6 shows the prototype that we have used in order to test our
control strategies in real-time. The embedded system of LIRMIA2
consists in an embedded computer with an Intel Atom 2550 2 GHz
CPU and a 1 GB DDR2-533 RAM memory. This embedded system
also includes an inertial measurement unit (UM6 Orientation
Sensor, CH Robotics), a Logitech webcam Pro 9000, and a pressure
sensor Breakout-MS5803-05BA. The computer's operating system
is Windows XP embedded. Using Visual C pp , the computer pro-
cesses the data from the sensors and sends the control inputs to the
actuators. The weight and the buoyancy force of the vehicle are
approximately 186 :3N and 191:2N, respectively.

The main goal of the experiments is to test the advantage of the
proposed controllers in real applications; then, in order to show the
behavior of the closed-loop system with the proposed controllers
we have implemented these only for the depth control problem in
two cases:

Fig. 6. LIRMIA2 prototype.

CASE 1. Set-point regulation
CASE 2. Trajectory tracking control

During this experiments we assume that f % (%0 given the
design conditions of the underwater vehicle LIRMIA2, and the qwill
be close to zero since the lateral thrusters are turn off and the
position about the axes X, and y, are also close to zero during all the
experiments.

The control algorithm for all the proposed experiments was
embedded in Cpp programming and the pseudocode is presented
in Table 2. Notice that the delay of the step 5 is in order to do all the
experiments with the same initial conditions. The time to nish the
experiments was chosen considering the performance of the
closed-loop system.

4.1. Experimental results for set-point regulation

Taking into account the controller given by Eq. (44), then for the
case of set-point regulation we have two scenarios. In the rst one
we consider m ¥4 m, ¥4 1, consequently we have a PD controller
with gravitational/buoyancy compensation and the second sce-
nario is when m_and m, are different to one, as consequence we
obtain a nonlinear PD controller with gravitational/buoyancy
compensation. Notice that in remarkl we have said: "If M Yam, %
1, then we have the case of a classical PD controller ”. These sce-
narios are chosen in order to show the advantage of implementing
a saturation function with variable parameters, as we have
described in the previous section. Then the scenarios are:

CASE 1A: Considering that m % m, ¥ 1, then the controller
given by Eq. (44) is a PD controller with Gravitational and
buoyancy compensation (PDG).

CASE 1B: Considering that m and m, are different to one, then
the controller given by Eq. (44) is a Nonlinear PD controller with
Gravitational and buoyancy compensation (NPDG).

Notice that both cases are describe by Eq. (44), but with different
gains values. The tuning of the both cases was done based on the
experiments results taking into account the system performance,

Table 2
Embedded algorithm.

Embedded algorithm for the depth control of the  LIRMIA2

1.- Initiation : choose the control problem
CASE 1: Set-point regulation, this is:
t vaJhpigpderep Kydeke b géhp
CASE 1A:Denem Yam, %1
CASE 1B: Dene m and my different to one
CASE 2: Trajectory traking control, this is:
t vaJTehpbandhthy b Chanhthgb DhamhHhgh ghdhb p Kodetep Kydeke
CASE 2A:Denem Yam, Y41
CASE 2B: Dene m and my, different to one
2.- De ne the gains parameters by, b,, d; and d,
3.- Calibration of the depth sensor
4.- Reset of the time %0
5.- Wait 10 s
6.- Get the data from sensors (Depth and Attitude sensors)
7.- Compute the variable gains Kpdepand Kydebwith:

( o pf™ i jedtpj>
s v, DreaP i jedPP i ke v bz eam . et d;
P * bid®™ P it iedpi d b,d, if jedbj dy
16, ojeabl G cm;m2 ;1

8.- Compute the control input t

9.- Send control signals to the thrusters

10.- Acquire and save data responses in a text le
11.- If ime < 300 s then return to step 6

12.- END
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Table 3
Gains values of the PDG controller.

b; Y2165 dy %1 m %1
b, 2225 d, a1 m %1
Table 4
Gains values of the NPDG controller.
b; Y2104 d; ¥0:003 m ¥0:9
b, %200 d, ¥ 0:007 m, ¥4 0:95

the time response without overshoot and considering the value of
the Mean Square Error (MSE). After several experiments we obtain
for the CASE 1A, the gains values which are shown in Table 3, while
the gains values of the CASE 1B are shown in Table 4.

After doing the tuning task we have done two experiments for
each case, the rst we called the nominal case, it means that the
vehicle has the same conditions that we have used for the tuning
task. The second experiment was done after change the vehicle
buoyancy in order to show the robustness of the NPDG controller
when there is uncertainty in the parameters of the system. Observe
that all the experiments start after 10 s in order to avoid the wave
perturbations that we produce when we put the vehicle inside of
the water and also notices that the maximum force t, produce by
the thrusters is approximately 22 N, then the experiments are listed
as follow:

Experiment 1 ( Exp,): In this experiment the reference is zy Y41
meter and the buoyancy force of the vehicle is approximately
191:2N.

Experiment 2 ( Exp,): In this experiment the referenceis z4 ¥4l
meter and the buoyancy force of the vehicle is approximately
193N.

The experimental results of the CASE 1A for the experiment 1
are shown in Fig. 7. In this Figure we can observe that the vehicle
takes about 17 s to arrive to the reference depth, the gains  kpdeband
kgq@ebare constants and the computed MSE is 0.2077 m.

The experimental results of the CASE 1B for the experiment 1

Fig. 7. Experimental results considering that m %, Y41, then the controller given by Eq.
meter and the buoyancy force of the vehicle is approximately 191  :2N.

are shown in Fig. 8. In this Figure we can observe that the vehicle
takes about 18.5 s to arrive to the reference depth, the gains kpdeb
and kydebare not constants and the computed MSE is 0.1995 m.

The experimental results of the CASE 1A for the experiment 2
are shown in Fig. 9. In this Figure we can observe that the vehicle
never arrive to the reference depth, the gains kpdeband kydebare
constants and the computed MSE is 0.3102 m.

The experimental results of the CASE 1B for the experiment 2
are shown in Fig. 10. In this Figure we can observe that the vehicle
takes about 19.5 s to arrive the reference depth, the gains kpdeband
kq@ebare not constants and the computed MSE is 0.2526 m.

Now, in Table 5 we show the computed mean square error for
each experiment. Consequently we can conclude that the nonlinear
PD controller with gravitational/buoyancy compensation (CASE 1B)
has a better performance, from the practical point of view, in both
experiments. On other words we can say that the proposed
controller is robustness in the uncertainty of the parameters sys-
tem. In addition, observe that the pitch angle ( () is close to zero
during all the experiments without input control due the design of
the vehicle.

4.2. Experimental results for trajectory tracking control

Taking into account the controller given by Eq. (62), then we
have also two scenarios for the trajectory tracking control. In the
rst one we consider m % M, ¥ 1, consequently we have a
PD p controller and the second scenario is when m and m, are
different to one, as consequence we obtain a nonlinear
PDp controller. Then these scenarios are:

CASE 2A: Considering that m % m, % 1, then the controller
given by Eq. (62) is a PDp controller (PD p).

CASE 2B: Considering thatmy and m, are different to one, then
the controller given by Eq. (62) is a Nonlinear PD p controller
(NPDD).

For the experiments of trajectory tracking control the reference
value z,4 is a smooth trajectory function produce by a second order
Iter, then the tuning of the gains values was based on the exper-
iments results taking into account the system performance, the

(44) is a PD controller with Gravitational and buoyancy compensation (PDG), with  z4 Y41
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Fig. 8. Experimental results considering that m and m, are different to one, then the controller given by Eq.  (44) is a Nonlinear PD controller with gravitational and buoyancy
compensation (NPDG), with z4 ¥ 1 meter and the buoyancy force of the vehicle is approximately 191  :2N.

Fig. 9. Experimental results considering that m %M, %1, then the controller given by Eq. (44) is a PD controller with Gravitational and buoyancy compensation (PDG), with ~ z4 %1
meter and the buoyancy force of the vehicle is approximately 193 N.

Fig. 10. Experimental results considering that m and M, are different to one, then the controller given by Eq.  (44) is a Nonlinear PD controller with Gravitational and buoyancy
compensation (NPDG), with z4 %1 meter and the buoyancy force of the vehicle is approximately 193  N.
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Table 5
Mean square error for set-point regulation.
Exp Exp
Case 1A 0.2077 0.3102
Case 1B 0.1995 0.2526
Table 6
Gains of the PD p controller.
b; Y2165 dy %1 m %1
b, Y4225 d, ¥al m Y1
Table 7
Gains of the NPD p controller.
b; ¥165 d; ¥ 0:025 m % 0:75
b, Y4225 d, ¥ 0:05 m, ¥40:85

time response and the value of the MSE. After several experiments
we obtain for the CASE 2A the gains values which are shown in
Table 6, while the gains values of the CASE 2B are shown in Table 7.

After doing the tuning task we have done four experiments for
each case with the following features:

Experiment 1 ( Expy): In this experiment the vehicle has the
same conditions that we have used for the tuning task, it is
weight ¥2186.3 N and buoyancy %2191.2 N.

Experiment 2 ( Expy): In this experiment we only change the
vehicle weight, its weight %2188 N and the buoyancy %:191.2 N.
Experiment 3 ( Exps): In this experiment we only change the
vehicle buoyancy, its weight %:186.3 N and the
buoyancy %2193 N.

Experiment 4 ( Exp): In this experiment the vehicle has the
same conditions of the experiment 1, but we have changed the
trajectory reference.

The experimental results of the CASE 2A for the experiment 1
are shown in Fig. 11 In this Figure we can observe that the vehicle

takes about 15 s to be close to the reference depth, the gains kpdeP
and kydebare constants and the computed MSE is 0.0534 m.

The experimental results of the CASE 2B for the experiment 1
are shown in Fig. 12. In this Figure we can observe that the vehicle
takes about 15 s to be close to the reference depth, the gains kpdeb
and kydebare not constants and the computed MSE is 0.0508 m.

The experimental results of the CASE 2A for the experiment 2
are shown in Fig. 13. In this Figure we can observe that the vehicle
takes about 16 s to be close to the reference depth, the gains kpdeb
and kydebare constants and the computed MSE is 0.0966 m.

The experimental results of the CASE 2B for the experiment 2
are shown in Fig. 14. In this Figure we can observe that the vehicle
takes about 14 s to be close to the reference depth, the gains kpdeP
and kydebare not constants and the computed MSE is 0.0539 m.

The experimental results of the CASE 2A for the experiment 3
are shown in Fig. 15. In this Figure we can observe that the vehicle
takes about 23 s to be close to the reference depth, the gains kpdeb
and ky&ebare constants and the computed MSE is 0.0694 m.

The experimental results of the CASE 2B for the experiment 3
are shown in Fig. 16. In this Figure we can observe that the vehicle
takes about 14 s to be close to the reference depth, the gains kpdeb
and kydebare not constants and the computed MSE is 0.0535 m.

The experimental results of the CASE 2A for the experiment 4
are shown in Fig. 17. In this Figure we can observe that the vehicle
takes about 16 s to be close to the reference depth, the gains kpdeP
and kydebare constants and the computed MSE is 0.0960 m.

The experimental results of the CASE 2B for the experiment 4
are shown in Fig. 18. In this Figure we can observe that the vehicle
takes about 16 s to be close to the reference depth, the gains kpdeb
and kydebare not constants and the computed MSE is 0.0755 m.

From Table 8 we can say that the system performance is not
affected signi cantly using the nonlinear PD p controller than us-
ing the PD b controller. Now, we can observe the advantage of the
proposed controller in real applications and Finally it can be
concluded that the proposed control strategy is robust to changes
of parameters in the system. In addition observe that the pitch
angle (Q) is close to zero during all the experiments even for the
trajectory tracking control.

Fig. 11. Experimental results considering that m % M, % 1, then the controller given by equation (62) is a PDp controller (PD p). In this experiments the vehicle has the same

conditions that we have used for the tuning task, its weight

%2 186.3 N and buoyancy ¥2191.2 N.
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Fig. 12. Experimental results considering that m and m, are different to one, then the controller given by equation  (62) is a Nonlinear PD p controller (NPD p). In this experiments
the vehicle has the same conditions that we have used for the tuning task, its weight ¥ 186.3 N and buoyancy ¥2191.2 N.

Fig. 13. Experimental results considering that m % m, % 1, then the controller given by equation (62) is a PDp controller (PD p). In this experiment we only changed the vehicle
weight, its weight %4188 N and buoyancy ¥2191.2 N.

Fig. 14. Experimental results considering that m and m, are different to one, then the controller given by equation  (62) is a Nonlinear PD p controller (NPD p). In this experiment we
only changed the vehicle weight, its weight ¥, 188 N and buoyancy ¥:191.2 N.
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13

Fig. 15. Experimental results considering that m %M %1, then the controller given by equation (62) is a PDp controller (PD p). In this experiments we only changed the vehicle

buoyancy, its weight %2 186.3 N and buoyancy %2 193 N.

Fig. 16. Experimental results considering that m and m, are different to one, then the controller given by equation  (62) is a Nonlinear PD p controller (NPD p). In this experiments

we only changed the vehicle buoyancy, its weight %42 186.3 N and buoyancy %193 N.

Fig. 17. Experimental results considering that m % m, % 1, then the controller given by equation (62) is a PDp controller (PD p). In this experiment the vehicle has the same

conditions than experiment 1, but we have changed the trajectory reference.
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Fig. 18. Experimental results considering that m and ny are different to one, then the controller given by equation

(62) is a Nonlinear PD p controller (NPD p ). In this experiment the

vehicle has the same conditions than experiment 1, but we have changed the trajectory reference.

Table 8
Mean Square Error for trajectory tracking control.
Expy Exp Exps Expy
Case 2A 0.0534 0.0966 0.0694 0.0960
Case 2B 0.0508 0.0539 0.0535 0.0755

5. Conclusion and future work

The proposed NPDG and NPDp controllers for set-point regu-
lation and trajectory tracking control, respectively, are robustness
in the uncertainty of the parameters systems. We have proved that
the equilibrium point of the closed-loop system with the proposed
controllers is asymptotically stable using the Lyapunov arguments.
The viability of the proposed NPDG and NPD p controllers were
tested in real-time experiments, where we can notice that the
advantage of implementing the saturation functions with variable
parameters in a NPDG and NPD p controllers. In a next future, we
will implement the integral part in order to improve the perfor-
mance of the system. Experiments in presence of external distur-
bances will be soon conducted in natural environment.
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