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This paper deals with a nonlinear controller based on saturation functions with variable parameters for
set-point regulation and trajectory tracking control of an Autonomous Underwater Vehicle (AUV). In
many cases, saturation functions with constant parameters are used to limit the input signals generated
by a classical PD (Proportional-Derivative) controller to avoid damaging the actuators; however this
abrupt bounded harms the performance of the controller. We, therefore, propose to replace the con-
ventional saturation function, with constant parameters, by a saturation function with variable param-
eters to limit the signals of a PD controller, which is the base of the nonlinear PD with gravitational/
buoyancy compensation and the nonlinear PD þ controllers that we propose in this paper. Consequently,
the mathematical model is obtained, considering the featuring operation of the underwater vehicle
LIRMIA 2, to do the stability analysis of the closed-loop system with the proposed nonlinear controllers
using the Lyapunov arguments. The experimental results show the performance of an AUV (LIRMIA 2) for
the depth control problems in the case of set-point regulation and trajectory tracking control.
© 2018 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays the increased interest in AUV is fueled by a wide
variety of military and civil applications, among which we can
highlight underwater inspection, surveillance, oil rigs monitoring,
archaeological studies, to name a few. Outstanding technological
progress in the performance, control and autonomous behavior
makes the AUV's a powerful tool (for example (Stewart and Glegg,
2010; Quidu and Jaulin, 2012; Kleeman; Zhao and Liu, 2016)).
However, the main challenge for this kind of vehicle lies in the
implementation of the control strategy for doing different tasks
given the nonlinear dynamics and the difficulty to identify its hy-
drodynamic parameters accurately. These topics still remain of in-
terest within different research communities (see (Newman, 1977;
Lamb, 1932; Fossen, 2011; Jung and Paik, 2017)).

Current literature contains various control strategies such as
sliding mode control (Wallace and Bessa, 2008), adaptive control
).
val Architects of Korea.
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(Maalouf and Tamanaja, 2013), neuronal network control (Kawano
and Ura, 2002) and nonlinear control (Sanahuja et al., 2009; Shang
and Cong, 2009), that has been successfully applied to set-point
regulation; as well as trajectory tracking control of Autonomous
Underwater Vehicles. However, one of the most typical control
strategies used in real applications is the PD controller with
different approaches, although this controller does not have a good
performance when the system parameters change. In previous
work, we obtained successfully results using the control strategy
based on saturation functions with constant parameters (Campos
and Torres, 2012). Consequently, we propose to modify the clas-
sical PD controller with the implementation of a saturation func-
tion with variable parameters, thus achieving robustness in the
closed-loop system.

Themain contributions of this paper are summarized as follows:

� We present nonlinear controllers with variable gains for set-
point regulation and trajectory tracking control of an Autono-
mous Underwater Vehicle.

� We have done the stability analysis of the closed-loop system
using the Lyapunov technique.
sevier B.V. This is an open access article under the CC BY-NC-ND license (http://
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Table 1
The main features of the LIRMIA2 vehicle.

Mass 18.9 kg
Floatability 5N
Dimensions 40 cm (l) x 36 cm (w) x 25 cm (h)
Maximal depth 50m
Thrusters 8 CD motor with propeller

cont. bollard thrust¼ 0.8 kgf each
with Fahrregler Rookie 20 WP drivers

Power 12 V - 500W
Attitude sensor UM6-LT Orientation Sensor
Camera Webcam Logitech 9000 pro �30efps
Depth sensor Pressure Sensor Breakout

MS5803-05BA
Sampling period 0.00236s
Embedded computer FIT-PC2-Intel Atom Z550 2 GHz,

1 GB RAM, WiFi
Windows XP Professional-32 bits
Microsoft Visual Cþþ 2010

Fig. 2. CAD view of the robot with forces fi , i ¼ 1::8 generated by the eight thrusters of
the vehicle. The position of the center of gravity is CG.
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� We present the real-time experimental results of the closed-
loop system.

Experiments have been done for trajectory tracking control in a
nominal case and when the weight of the vehicle is changed, to
show the robustness of the nonlinear PD controller.

This paper is organized as follows: In section II, we briefly
describe the dynamic model of the mini-submarine LIRMIA2. The
control strategy is presented in section III. The experiments using a
linear and nonlinear PD controllers for trajectory tracking control
are presented and discussed in section IV. Finally, some concluding
remarks and future works are given in section V.

2. Dynamic modeling of the vehicle

We have designed and built the LIRMIA2 AUV, which is depicted
in Fig. 1 and its main features are described in Table 1. The center Ob
of its body-fixed frame corresponds to the center of gravity of the
vehicle; and its axes are aligned with the main axes of symmetry of
the vehicle. The motion in the horizontal plane is referred as surge
(along the xb axis) and sway (along the yb axis), while heave repre-
sents the vertical motion (along the zb axis). Roll, pitch, and yaw,
denoted by ðf;q;jÞ, are the Euler angles describing the orientation of
the vehicle's body-fixed framewith respect to the earth-fixed frame
ðOI ;xI ;yI ;zIÞ, while ðx; y; zÞ denote the coordinates of the center of the
body-fixed frame in the earth-fixed frame. The propulsion system
consists of eight thrusters, as illustrated in Fig. 2. Some thrusters are
connected to the same driver, thus we can assume that f1 ¼ f2, f3 ¼
f4, f5 ¼ f6 and f7 ¼ f8, that is why the roll motion is unactuated. The
rotational motion of this vehicle, yaw movement is performed
through differential speed control of thrusters 3, 4, 5 and 6. Pitch
motion is obtained similarly using thrusters 1, 2, 7, and 8. The
translationalmotion through the z axis is regulated by decreasing or
increasing the combined speed of thrusters 1, 2, 7, and 8. Similarly,
the translational motions along the xb and yb axes are obtained by
using thrusters 3, 4, 5, 6 and by controlling the yaw angle.

The dynamics of the vehicle, expressed in the body-fixed frame,
can be written in compact matrix form as (Fossen, 1999):

M _nþ CðnÞnþ DðnÞnþ gðhÞ ¼ tþwe (1)

_h ¼ JðhÞn (2)

where M2ℝ6�6 is the inertia matrix, CðnÞ2ℝ6�6 defines the
Coriolis-centripetal matrix, DðnÞ2ℝ6�6 represents the
Fig. 1. The LIRMIA 2 vehicle, with a body-fixed frame ðOb ;xb ;yb ;zbÞ, and an earth-fixed
frame ðOI ; xI ; yI ; zIÞ.
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hydrodynamic damping matrix, gðhÞ2ℝ6�1 describes the vector of
gravitational/buoyancy forces and moments,
t ¼ ðt1; t2ÞT ¼ ððtX ; tY ; tZÞ; ðtK ; tM ; tNÞÞT2ℝ6�1 defines the vector
of control inputs (forces and moments); we2ℝ6�1 defines the
vector of disturbances; n ¼ ðn1; n2ÞT ¼ ððu; v;wÞ; ðp; q; rÞÞT2ℝ6�1

denotes the linear and angular velocity vector in the body-fixed
frame; h ¼ ðh1; h2ÞT ¼ ððx; y; zÞ; ðf; q;jÞÞT2ℝ6�1 is the position
and attitude vector decomposed in the earth-fixed frame, and
JðhÞ2ℝ6�6 is the transformation matrix mapping from body frame
to earth-fixed frame, for more details, consult (Fossen, 1999;
Goldstein et al., 1983; Marsden, 1974).
2.1. Inertia and Coriolis-centripetal matrices

The inertiamatrixM is the sum of the rigid-body inertiaMRB and
the inertia of the added mass MA, as follows:

M ¼ MRB þMA (3)

In our case, we assume that the vehicle is moving at slow
speeds; hence, the M matrix can be approximated by:
based on saturation functions with variable parameters to stabilize an
(2018), https://doi.org/10.1016/j.ijnaoe.2018.04.002
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M ¼ diagfmþ X _u;mþ Y _v;mþ Z _w;

Ixx þ K _p; Iyy þM _q; Izz þ N _r

o (4)

where m is the mass of the vehicle, Ixx; Iyy; Izz are the moments of
inertia of the rigid-body which are estimated by using the CAD
design of the LIRMIA2 vehicle. Then, the obtained values are:

MRB ¼ diagf21;21;21;0:23;0:42;0:39g (5)

and X _u;Y _v; Z _w;K _p;M _q;N _r represent hydrodynamic added mass
estimated by using MCC (Marine Craft Characteristics; this free-
ware was created by ENSTA Bretagne and the link to download is
cited in the following work (Yang et al., 2015)). The matrix of the
added mass can be expressed as:

MA ¼ diagf17:52;23:18;40:4;0:25;0:44;0:41g (6)

Now, knowing the matrices MRB, MA and assuming that the
center of gravity of the vehicle is in the origin of the body-fixed
frame we can obtain the matrix CðnÞ as is shown in (Fossen,
2002). Therefor, the Coriolis-centripetal matrix is described by
the following equation:

CðnÞ ¼ CRBðnÞ þ CAðnÞ (7)

with

CRBðnÞ ¼

26666664
0 �mr mq 0 0 0
mr 0 �mp 0 0 0
�mq mp 0 0 0 0
0 0 0 0 Izzr �Iyyq
0 0 0 �Izzr 0 Ixxp
0 0 0 Iyyq �Ixxp 0

37777775 (8)

and

CAðnÞ ¼

26666664
0 0 0 0 �Z _ww Y _vv
0 0 0 Z _ww 0 �X _uu
0 0 0 �Y _vv X _uu 0
0 �Z _ww Y _vv 0 �N _rr M _qq

Z _ww 0 �X _uu N _rr 0 �K _pp
�Y _vv X _uu 0 �M _qq K _pp 0

37777775 (9)

Notice that the calculation errors of our added mass results can
be considered as uncertainties in the parameter of the mathemat-
ical model.
2.2. Damping matrix

Concerning the hydrodynamic damping, we consider the
damping model for low-speed underwater vehicles. Thus we have:

DðnÞ ¼ diag
�
Xu; Yv; Zw;Kp;Mq;Nr

�
(10)

The damping parameters of the vehicle that are included in the
damping matrix have are experimental obtained by applying the
following procedure. First, the buoyancy of the AUV is adjusted to
exactly compensate for the weight, so that the buoyancy is neutral.
Then, a known force is applied to the AUV along the z axis. This force
is produced by the thrusters and it is known due to a previous cali-
bration. As the vehicle submerses, the value of z is recorded (by the
depth sensor). Then, the speed along z is computed. After few sec-
onds, the AUV reaches a steady state limit speed. The value of Zw, the
damping parameter along z, is approximated by: Zwxfz=wlim, where
fz is the force exerted by the thrusters along z, andwlim is the linear
speed of the AUV along z. The estimated value of Zw is 75.4 N:s:m�1.
Please cite this article in press as: Campos, E., et al., A nonlinear controller
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To compute the parameter Yv, the cross sectional area of the
vehicle and the shape of the body are quite the same in the z di-
rection and in the y direction. Consequently, we consider that Yv is
roughly equal to Zw. The value of Xu is computed by measuring the
time needed by the AUV to run a known horizontal distance in a
pool, with a known horizontal thrust. Then, the speed is computed
and the damping parameter is estimated. The estimated value of Xu

is 21.3 N:s:m�1. Regarding the rotational damping parameter, we
applied a known torque along z axis with the thrusters and we
recorded the rate of turn measured by the gyrometer (along z axis)
of the embedded IMU. Once the rate of turn reaches its steady state
value rlim, the rotational damping parameterNr is approximated by:
Nrx gz=rlim, where gz is the applied torque.

The estimated value of Nr is 1.6 N:m:s:rad�1. The symmetry of
the LIRMIA2 vehicle allows us to consider that Mq is roughly equal
to Nr . The value of Kp (along x axis) has not been experimentally
estimated as this would require making the center of gravity
coincide with the center of buoyancy. This is long and useless, since
in our case the roll is naturally stable and is not controlled. Ac-
cording to the previous values and the geometry of the vehicle, we
have considered that Kp x 0.95 N:m:s:rad�1. Please note that we
have assumed that the speed of the vehicle is sufficiently low to
consider only the skin friction effects. Thus, we only estimate the
linear damping. If the speed increase, then quadratic damping
would be taken into account and quadratic damping parameters
should be computed using the same method by replacing each
speed by its squared value. Given that the vehicle is moving slow,
non diagonal terms of the damping matrix are neglected and only
linear damping parameters were estimated for this prototype:

DðnÞ ¼ diagf21:3;70;75:4;0:95;1:8;1:6g (11)

in
�
N:s
m

�
(first three) and in

�
N:s
rad

�
(last three).

2.3. Gravity/Buoyancy forces and torques

According to Archimedes' principle, the buoyancy force fB
exerted at the center of the buoyancy and acts in the opposite di-
rection of vehicle weight fW . This leads to:

fB ¼ �
24 0

0
rgV

35fW ¼
24 0

0
mg

35 (12)

where r represents the fluid density, g the gravitational accelera-
tion, V the displaced fluid volume and m the mass of the vehicle.
Now, if we consider that W ¼ mg and B ¼ rgV and using the
zyx-convention for navigation and control application (Fossen,
2002), then the transformation matrix J1ðh2Þ ¼ Rz;jRy;qRx;f is
applied in order to obtain the weight and buoyancy forces with
respect to the body-fixed frame:

FB ¼ J1ðh2Þ�1fBFW ¼ J1ðh2Þ�1fW (13)

consequently,

FB ¼
24 BsinðqÞ
�BcosðqÞsinðfÞ
�BcosðqÞcosðfÞ

35FW ¼
24 �WsinðqÞ
WcosðqÞsinðfÞ
WcosðqÞcosðfÞ

35 (14)

Thus, the restoring forces acting on the vehicle are fg ¼ FB þ FW ,
which leads to

fg ¼
24 ðB�WÞsinðqÞ
ðW � BÞcosðqÞsinðfÞ
ðW � BÞcosðqÞcosðfÞ

35 (15)
based on saturation functions with variable parameters to stabilize an
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The restoring moments can be described by the following
equation:

mg ¼ rw � FW þ rb � FB (16)

where rw ¼ ½xw; yw; zw�T and rb ¼ ½xb; yb; zb�T represent the posi-
tions of the Center of Gravity (CG) and the Center of Buoyancy (CB)
respectively. Based on the design of the vehicle and to reduce
further analysis, the origin of the body-fixed frame is chosen in the
center of gravity, which implies that rw ¼ ½0;0;0�T ; while the center
of buoyancy is rb ¼ ½0;0;�zb�T . For practical purposes, the buoy-
ancy force is greater than the weight, i.e.,W � B ¼ � fb. Then, from
Eqs. (15) and (16), one can deduce:

gðhÞ ¼
�
fg
mg

�
¼

26666664
fbsinðqÞ

�fbcosðqÞsinðfÞ
�fbcosðqÞcosðfÞ
�zbBcosðqÞsinðfÞ

�zbBsinðqÞ
0

37777775 (17)

2.4. Forces and torques generated by the thrusters

Fig. 2 illustrates the forces generated by the thrusters acting on
the vehicle. They are described relative to the body-fixed frame, as:

bf1 ¼
24 0
0
f1

35; bf2 ¼
24 0
0
f2

35; bf3 ¼
24 f3
0
0

35; bf4 ¼
24 f4
0
0

35

bf5 ¼
24 f5
0
0

35; bf6 ¼
24 f6
0
0

35; bf7 ¼
24 0
0
f7

35; bf8 ¼
24 0
0
f8

35
Summarizing and using the notations of (The Society of Naval

Arch, 1950), it follows that:

t1 ¼
24 tX
tY
tZ

35 ¼
24 f3 þ f4 þ f5 þ f6

0
f1 þ f2 þ f7 þ f8

35 (18)

choose an the body-fixed torques generated by the above forces, are
defined as:

t2 ¼
X6
i¼1

li � bfi (19)

where li ¼ ðlix; liy; lizÞ is the position vector of the force bfi c i ¼ 1; ::;
8, with respect to the body-fixed reference frame. The torques
generated by the thrusters are described as:

t2 ¼
24 tK
tM
tN

35 ¼
24 l1yf1 � l1yf2 þ l7yf7 � l7yf8

l1xðf1 þ f2Þ � l7xðf7 þ f8Þ
l3yðf3 � f5Þ þ l4yðf4 � f6Þ

35 (20)

Given that we have connected two thrusters to the same driver,
to reduce the cost of the underwater vehicle, then f1 ¼ f2, f3 ¼ f4,
f5 ¼ f6 and f7 ¼ f8, as consequence:

t ¼

26666664
2f3 þ 2f5

0
2f1 þ 2f7

0
2l1xf1 � 2l7xf7

ðf3 � f5Þ
�
l3y þ l4y

	

37777775 (21)

Remark 1. From equation (21) we can observe that the vector of
Please cite this article in press as: Campos, E., et al., A nonlinear controller
AUV, International Journal of Naval Architecture and Ocean Engineering
control input has 2 zeros, then the system has a lower number of input
controls than degrees of freedom. Consequently, we have an under-
actuated system.
2.5. Design considerations

To build of the LIRMIA2, we have considered the mathematical
model to take advantage of the moments produced by the location
of the gravity and buoyancy centers. Then, from Eq. (1) we can
observe that if the gravity center is located in the origin ð0;0;0Þ of
the body-fixed frame and the buoyancy center is located in ð0;0; �
zbÞ; we obtain the following conditions:

Ix þ K _p

�
_pþ Dfp ¼ zbBCqSf /fz0 (22)



Iy þM _q

�
_qþ Dqq ¼ ZbBSq /qz0 (23)

Notice that the moments are independent of the forces gener-
ated by the thrusters. In other words, we can assume that the
angular position q¼ f¼ 0 during all the experiments without a
control input. The other advantage is less energy consumption.
3. Proposed control strategy

In the above section, we described the vectors and the matrices
that we estimated and measured to know the parameters of the
mathematical model. However, uncertainty exists in estimating the
parameters. Consequently, we propose a robustness control strat-
egy for the set-point regulation and the trajectory tracking control
take the uncertainty into account in the parameters of the system.

Let uðtÞ be a PD controller whose expression is given by:

uðtÞ ¼ k1eðtÞ þ k2
deðtÞ
dt

(24)

where eðtÞ ¼ rðtÞ � yðtÞ is the tracking error, rðtÞ represents the
reference, yðtÞ is the measured output, k1 and k2 are the propor-
tional and derivative feedback gains. From (24) we can observe
that: if eðtÞ/∞ then uðtÞ/∞. This could lead to oscillations in the
system or damage the actuators. A common practice is to propose
some saturation function, as given below, would address these
problems.
3.1. A nonlinear PD controller based on saturation functions

Let sbi ðkihiÞ be a saturation function for i ¼ 1;2, with bi and ki
constant and positive definite, defined by the following equation:

sbi
ðkihiÞ ¼

8>><>>:
bi if kihi >bi

kihi if
����kihi���� � bi

�bi if kihi < � bi

(25)

where ki is a gain, the parameter bi is the value choose in order to
limit the values of any function represented by hi, in this case h1 and
h2 represent de error and its derivative respectively.

To improve the performance of the closed-loop system and to
avoid damage to the actuators, the controller given by Eq. (24)
could be modified by using the above saturation functions in
each term, leading to the following:
based on saturation functions with variable parameters to stabilize an
(2018), https://doi.org/10.1016/j.ijnaoe.2018.04.002
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UðtÞ ¼ sb1
½k1eðtÞ� þ sb2

�
k2
deðtÞ
dt

�
(26)

Now, equation (26) can be rewritten in a compact form as:

UðtÞ ¼
X2
i¼1

ui (27)

where ui ¼ sbi
ðkihiÞ for i ¼ 1;2; represents the saturation of the

proportional and derivative control action respectively. By applying
equation (25) we can rewritten ui as:

ui ¼
( signðhiÞbi if

����kihi����> bi

kihi if
����kihi���� � bi

(28)

To introduce a modification of saturations (28), let us consider
the point of hi where

����ui���� ¼ bi, this is:����ui���� ¼ ����kihi���� ¼ bi 0

����hi���� ¼ bi



ki (29)

then, we define

di :¼ bi



ki (30)

as consequence, we have that:

ui ¼ signðhiÞbi c jhij>di (31)

According to Eqs. (30) and (31), we can express (28) as follows:

ui ¼
(
signðhiÞbi if jhij>di
bid

�1
i hi if jhij � di

(32)

where the tuning parameters of the controller are bi and di, c i ¼
1;2. To express Eq. (32) in terms of hi, when jhij> di, we consider
that:

signðhiÞbi ¼ hisignðhiÞbih�1
i (33)

then

signðhiÞbi ¼
����hi����bih�1

i (34)

and considering that
���hi���h�1

i ¼
���hij�1hi, then Eq. (32) can be

rewritten as:

ui ¼
(
bi

����hij�1hi if jhij> di

bid
�1
i hi if jhij � di

(35)

Finally, the law control defined by Eq. (26) can be represent as:

UðtÞ ¼ u1 þ u2 ¼ kpðeÞeðtÞ þ kdð _eÞ _eðtÞ (36)

with

kpðeÞ ¼
(
b1

����eðtÞj�1 if jeðtÞj> d1

b1d
�1
1 if jeðtÞj � d1

(37)
Please cite this article in press as: Campos, E., et al., A nonlinear controller
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kdð _eÞ ¼
(
b2

���� _eðtÞj�1 if j _eðtÞj>d2

b2d
�1
2 if j _eðtÞj � d2

(38)

The advantage of this controller is that maximum forces and
torque are chosen by the parameters b1 and b2. Thus, we can ensure
that actuators will not be damaged. However, in other cases it will
be necessary for forces and torque to be slightly larger to correct the
system error. It is for this reason that we propose that the constant
saturation value bi, from Eq. (35), to change as follows:

bi ¼
�
bi
��hijmi if jhij>di

bi
��dijmi if jhij � di

ci ¼ 1;2 and mi2½0;1�
(39)

Then, introducing Eq. (39) into Eq. (35) we obtain:

ui ¼
(
bi
���hijmi

���hij�1hi if jhij> di

bi
���dijmi d�1

i hi if jhij � di
ci ¼ 1;2 and mi2½0;1�

(40)

Consequently, from Eq. (40) we obtain a nonlinear PD controller
as follows:

UðtÞ ¼ u1 þ u2 ¼ kpðeÞeðtÞ þ kdð _eÞ _eðtÞ (41)

with

kpðeÞ ¼
(
b1

���eðtÞjðm1�1Þ if jeðtÞj> d1

b1d
ðm1�1Þ
1 if jeðtÞj � d1

(42)

kdð _eÞ ¼
(
b2

��� _eðtÞjðm2�1Þ if j _eðtÞj> d2

b2d
ðm2�1Þ
2 if j _eðtÞj � d2

(43)

cm1;m22½0;1�:
Notice that the controller obtained in Eq. (41) is a PD controller

with variable gains. To show the behavior of the variable gains
given by Eqs. (42) and (43), we have plotted an example for
different values of the parameter mi, with di ¼ 5 and bi ¼ 100 in
Fig. 3.

Remark 2. The proposed nonlinear PD controller can be degenerated
into the classical PD controller if mp ¼ md ¼ 1, as is depicted in Fig. 3.
On the other hand, if mp ¼ md ¼ 0, we obtain the case of a constant
value for a saturation function. As a result, the input control is
completely bounded when jhij>di. On the other hand, the classical PD
and the saturation PD with Eq. (25) is a particular case of the proposed
controller.

Remark 3. The values of the gains kpðeÞ and kdð _eÞ are constant when
jeðtÞj � d1 and j _eðtÞj � d2, as is depicted in Fig. 3. This region is called
the linear region of the input control.
3.2. Set-point regulation

In this section, we present a Nonlinear Proportional Derivative
control with Gravitational/buoyancy compensation (NPDG) for the
case of set-point regulation. Based on the controller (41) and the
dynamic model (1), we propose this control law:

t ¼ JT ðhÞ�KpðeÞeþ Kdð _eÞ _e
�þ gðhÞ (44)
based on saturation functions with variable parameters to stabilize an
(2018), https://doi.org/10.1016/j.ijnaoe.2018.04.002



Fig. 3. Plot of a variable gain obtained by implementing a saturation function,
described by Eq. (25), but changing the constant value of the parameter bi for the
function given by Eq. (39).
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where the matrix KpðeÞ and Kdð _eÞ have the following structure:

KpðeÞ ¼

2664
kp1ðe1Þ 0 … 0

0 kp2ðe2Þ … 0
« « 1 «
0 0 … kpnðenÞ

3775>0 (45)

Kdð _eÞ ¼

2666666664

kd1

�
e1

_

�
0 … 0

0 kd2

�
e2

_

�
… 0

« « 1 «

0 0 … kdn

�
en_

�

3777777775
>0 (46)

with kpjðejÞ and kdjðej_Þ defined by (42) and (43) respectively.
In Fig. 4 we show the diagram block of the closed-loop system

with the NPDG controller.
3.2.1. Stability analysis of the closed-loop system
Since the controller will be a regulator and the error is e ¼ hd �

h, then _e ¼ � _h, as a consequence the control law given by Eq. (44)
can be rewritten as:

t ¼ JT ðhÞ�KpðeÞe� Kdð _eÞ _h
�þ gðhÞ (47)

Now assuming thatwe ¼ 0, and introducing Eq. (47) into (1), the
closed-loop system is:

M _nþ CðnÞnþ DðnÞn ¼ JTðhÞ�KpðeÞe� Kdð _eÞ _h
�

(48)

and according to Eq. (2), we obtain
Fig. 4. In this diagram we show the closed-loop system with the proposed control
strategy for the case of set-point regulation which is described by Eq. (44). Notice that
the blocks KpðeÞ and Kdð _eÞ represent the variable gains which are computed by Eqs.
(42) and (43) respectively. Observe that for the nonlinear PD controller with gravity/
buoyancy compensation we need to know only the gravity/buoyancy vector and the
transformation matrix JT ðhÞ given by equation (2).
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M _nþ CðnÞnþ DðnÞn ¼ JT ðhÞ�KpðeÞe� Kdð _eÞJðhÞn
�

(49)

Let us define Kddðh; _eÞ ¼ JT ðhÞKdð _eÞJðhÞ, then the previous
equation can be rewritten as

M _nþ CðnÞnþ DðnÞn ¼ JT ðhÞKpðeÞe� Kddðh; _eÞn (50)

The closed-loop system given by Eq. (50) could be represent as:

d
dt

�
e
n

�
¼

� �JðhÞn
M�1

h
JTðhÞKpðeÞe� Kddðh; _eÞn� CðnÞn� DðnÞn

i �
(51)

Notice that the origin of the state space model is a unique
equilibrium point. To do the stability analysis, we use the following
Lyapunov function candidate:

Vðe; nÞ ¼ 1
2
nTMnþ

Ze
0

xTKpðxÞdx (52)

and assume that class K functions ajð
��ej��Þ exist, such that:

ejkpj
�
ej
	 � aj

���ej��	 (53)

with

aj
���ej��	 ¼

8>>>>><>>>>>:

ba
��ejjm1ej

aþ ��ej�� if
��ej��> da

bad
m1
a ej

aþ da
if

��ej�� � da

(54)

where b1 > ba, a>0 and d1 <da. Then, according to Lemma 2 from
(Kelly and Carelli, 1996)

Ze
0

xTKpðxÞdx>0ces02Rn (55)

and

Ze
0

xTKpðxÞdx/∞asjjejj/∞ (56)

where

Ze
0

xTKpðxÞdx ¼
Ze1
0

x1kp1ðx1Þdx1 þ…þ
Zen
0

xnkpnðxnÞdxn:

Therefore Vðe; nÞ is a globally positive definite and radially un-
bounded function. The time derivative of the Lyapunov function
candidate is:

_Vðe; nÞ ¼ nTM _n� eTKpðeÞJðhÞn (57)

By substituting the closed-loop Eq. (50) into (57) we obtain:

_Vðe; nÞ ¼ nT JT ðhÞKpðeÞe� nTKddðh; _eÞn�
nTCðnÞn� nTDðnÞn� eTKpðeÞJðhÞn

(58)

since KpðeÞ ¼ KT
p ðeÞ and CðnÞ ¼ � CðnÞT , Eq. (58) becomes:
based on saturation functions with variable parameters to stabilize an
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_Vðe; nÞ ¼ �nT ½Kddðh; _eÞ þ DðnÞ�n (59)

Remember that Kd ¼ KT
d >0, therefore Kdd ¼ KT

dd >0, and
assuming that DðnÞ>0, then we obtain _Vðe; nÞ which is a globally
negative semidefinite function. Therefore, we conclude stability of
the equilibrium point. In order to prove asymptotic stability, we
apply the Krasovskii-LaSalle's theorem:

U ¼
��

e
n

�
: _Vðe; nÞ ¼ 0

i
¼

��
e
n

�
¼

�
e
0

�
2ℝ2n

�
(60)

Introducing n ¼ 0 and _n ¼ 0 into Eq. (50) we have e ¼ 0.
Therefore, we conclude that equilibrium point is globally asymp-
totically stable.
3.3. Trajectory tracking control

Based on Eq. (2) we obtain the following kinematic trans-
formations (more details see (Fossen, 2002))

h€¼ JðhÞ _nþ JðhÞ_n0_n ¼ J�1ðhÞ
h
h€� JðhÞ_J�1ðhÞ _h

i
applying the previous transformations to model (1), we have:

MhðhÞ ¼ J�TðhÞMJ�1ðhÞ
Chðn;hÞ ¼ J�TðhÞ

h
CðnÞ �MJ�1ðhÞJðhÞ_

i
J�1ðhÞ

Dhðn; hÞ ¼ J�T ðhÞDðnÞJ�1ðhÞ
ghðhÞ ¼ J�TðhÞgðhÞ
thðhÞ ¼ J�T ðhÞt

Consequently, the mathematical model given by (1) with
respect to the inertial frame is:
Fig. 5. In this diagram we show the closed-loop system with the proposed control strategy
this case we need to know the mathematical model of the underwater vehicle given by E
variable gains are computing by the same equations that we have used for the NPDG cont
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MhðhÞh€þ Chðn; hÞ _hþ Dhðn; hÞ _hþ ghðhÞ ¼ J�TðhÞt (61)

Then, for the case of trajectory tracking control, we propose the
follows Nonlinear PD þ controller (NPDþ):

t ¼ JTðhÞ
�
MhðhÞhd€þ Chðn; hÞhd_þ Dhðn; hÞhd_

þghðhÞ þ KpðeÞeþ Kdð _eÞ _e
i (62)

In Fig. 5, we show the diagram block of the closed-loop system
with the NPD þ controller.
3.3.1. Stability analysis of the closed-loop system
Introducing the above controller into Eq. (61), the closed-loop

system is:

MhðhÞe€¼ �Chðn;hÞ _e� Dhðn; hÞ _e� KpðeÞe� Kdð _eÞ _e (63)

Eq. (63) can also be written as:

d
dt

�
e
_e

�
¼

�
_e

�MhðhÞ�1��Chðn; hÞ þ Dhðn; hÞ þ Kdð _eÞ
�
_eþ KpðeÞe

� �
(64)

The stability analysis is similar that previous section, but in this
case the Lyapunov function candidate is:

Vðe; _eÞ ¼ 1
2
_eTMhðhÞ _eþ

Ze
0

xTKpðxÞdx (65)

According to arguments used in proof of the previous section,
we conclude that Vðe; _eÞ is a globally positive definite and radially
for the case of trajectory tracking control which is described by Eq. (62). Notice that in
q. (61) in order to compute the signal of the nonlinear PD þ controller; however the
roller.

based on saturation functions with variable parameters to stabilize an
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unbounded function. The time derivative of this Lyapunov function
candidate is:

_Vðe; _eÞ ¼ _eTMhðhÞe€þ 1
2
_eT _MhðhÞ _eþ eTKpðeÞ _e (66)

Now, introducing Eq. (63) into (66) and assuming that _Mh ¼ 0,
and Chðn; hÞ is skew symmetric, then:

_Vðe; _eÞ ¼ � _eT
�
Dhðn; hÞ þ Kdð _eÞ

�
_e (67)

assuming that Dhðn; hÞ>0 and remember that Kdð _eÞ>0 and
symmetric matrix, then we obtain _Vðe; _eÞ is a globally negative
semidefinite function, and therefore we conclude stability of the
equilibrium point. In order to prove asymptotic stability we apply
the Krasovskii-LaSalle's theorem, then:

U ¼
��

e
_e

�
: _Vðe; _eÞ ¼ 0

�
¼

��
e
_e

�
¼

�
e
0

�
2ℝ2n

�
(68)

Introducing _e ¼ 0 and e€¼ 0 into Eq. (63) we have e ¼ 0,
therefore the unique invariant is the origin. As a consequence we
conclude that equilibrium point is globally asymptotically stable.
Table 2
4. Real-time experiments

Fig. 6 shows the prototype that we have used in order to test our
control strategies in real-time. The embedded system of LIRMIA2
consists in an embedded computer with an Intel Atom Z550 2 GHz
CPU and a 1 GB DDR2-533 RAM memory. This embedded system
also includes an inertial measurement unit (UM6 Orientation
Sensor, CH Robotics), a Logitech webcam Pro 9000, and a pressure
sensor Breakout-MS5803-05BA. The computer's operating system
is Windows XP embedded. Using Visual Cþþ, the computer pro-
cesses the data from the sensors and sends the control inputs to the
actuators. The weight and the buoyancy force of the vehicle are
approximately 186:3N and 191:2N, respectively.

The main goal of the experiments is to test the advantage of the
proposed controllers in real applications; then, in order to show the
behavior of the closed-loop system with the proposed controllers
we have implemented these only for the depth control problem in
two cases:
Fig. 6. LIRMIA2 prototype.
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� CASE 1. Set-point regulation
� CASE 2. Trajectory tracking control

During this experiments we assume that f ¼ q ¼ 0 given the
design conditions of the underwater vehicle LIRMIA2, and the qwill
be close to zero since the lateral thrusters are turn off and the
position about the axes xI and yI are also close to zero during all the
experiments.

The control algorithm for all the proposed experiments was
embedded in Cþþ programming and the pseudocode is presented
in Table 2. Notice that the delay of the step 5 is in order to do all the
experiments with the same initial conditions. The time to finish the
experiments was chosen considering the performance of the
closed-loop system.
4.1. Experimental results for set-point regulation

Taking into account the controller given by Eq. (44), then for the
case of set-point regulation we have two scenarios. In the first one
we consider m1 ¼ m2 ¼ 1, consequently we have a PD controller
with gravitational/buoyancy compensation and the second sce-
nario is when m1 and m2 are different to one, as consequence we
obtain a nonlinear PD controller with gravitational/buoyancy
compensation. Notice that in remark1 we have said: ”If m1 ¼ m2 ¼
1, then we have the case of a classical PD controller”. These sce-
narios are chosen in order to show the advantage of implementing
a saturation function with variable parameters, as we have
described in the previous section. Then the scenarios are:

� CASE 1A: Considering that m1 ¼ m2 ¼ 1, then the controller
given by Eq. (44) is a PD controller with Gravitational and
buoyancy compensation (PDG).

� CASE 1B: Considering that m1 and m2 are different to one, then
the controller given by Eq. (44) is a Nonlinear PD controller with
Gravitational and buoyancy compensation (NPDG).

Notice that both cases are describe by Eq. (44), but with different
gains values. The tuning of the both cases was done based on the
experiments results taking into account the system performance,
Embedded algorithm.

Embedded algorithm for the depth control of the LIRMIA2

1.- Initiation: choose the control problem
CASE 1: Set-point regulation, this is:

t ¼ JT ðhÞ½KpðeÞeþ Kdð _eÞ _e� þ gðhÞ
CASE 1A: Define m1 ¼ m2 ¼ 1
CASE 1B: Define m1 and m2 different to one

CASE 2: Trajectory traking control, this is:
t ¼ JT ðhÞ½MhðhÞhd€þ Chðn;hÞhd_þ Dhðn;hÞhd_þ ghðhÞþ KpðeÞeþ Kdð _eÞ _e�

CASE 2A: Define m1 ¼ m2 ¼ 1
CASE 2B: Define m1 and m2 different to one

2.- Define the gains parameters b1, b2, d1 and d2
3.- Calibration of the depth sensor
4.- Reset of the time¼ 0
5.- Wait 10 s
6.- Get the data from sensors (Depth and Attitude sensors)
7.- Compute the variable gains KpðeÞ and Kdð _eÞ with:

kpðeÞ ¼
(
b1

���eðtÞjðm1�1Þ if jeðtÞj> d1

b1d
ðm1�1Þ
1 if jeðtÞj � d1

kdð _eÞ ¼
(
b2

��� _eðtÞjðm2�1Þ if j _eðtÞj> d2

b2d
ðm2�1Þ
2 if j _eðtÞj � d2

cm1;m22½0;1�
8.- Compute the control input t
9.- Send control signals to the thrusters
10.- Acquire and save data responses in a text file
11.- If time < 300 s then return to step 6
12.- END

based on saturation functions with variable parameters to stabilize an
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Table 3
Gains values of the PDG controller.

b1 ¼ 165 d1 ¼ 1 m1 ¼ 1
b2 ¼ 225 d2 ¼ 1 m2 ¼ 1

Table 4
Gains values of the NPDG controller.

b1 ¼ 104 d1 ¼ 0:003 m1 ¼ 0:9
b2 ¼ 200 d2 ¼ 0:007 m2 ¼ 0:95
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the time response without overshoot and considering the value of
the Mean Square Error (MSE). After several experiments we obtain
for the CASE 1A, the gains values which are shown in Table 3, while
the gains values of the CASE 1B are shown in Table 4.

After doing the tuning task we have done two experiments for
each case, the first we called the nominal case, it means that the
vehicle has the same conditions that we have used for the tuning
task. The second experiment was done after change the vehicle
buoyancy in order to show the robustness of the NPDG controller
when there is uncertainty in the parameters of the system. Observe
that all the experiments start after 10 s in order to avoid the wave
perturbations that we produce when we put the vehicle inside of
the water and also notices that the maximum force tz produce by
the thrusters is approximately 22 N, then the experiments are listed
as follow:

� Experiment 1 (Exp1): In this experiment the reference is zd ¼ 1
meter and the buoyancy force of the vehicle is approximately
191:2N.

� Experiment 2 (Exp2): In this experiment the reference is zd ¼ 1
meter and the buoyancy force of the vehicle is approximately
193N.

The experimental results of the CASE 1A for the experiment 1
are shown in Fig. 7. In this Figure we can observe that the vehicle
takes about 17 s to arrive to the reference depth, the gains kpðeÞ and
kdð _eÞ are constants and the computed MSE is 0.2077 m.

The experimental results of the CASE 1B for the experiment 1
Fig. 7. Experimental results considering that m1 ¼ m2 ¼ 1, then the controller given by Eq. (4
meter and the buoyancy force of the vehicle is approximately 191:2N.
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are shown in Fig. 8. In this Figure we can observe that the vehicle
takes about 18.5 s to arrive to the reference depth, the gains kpðeÞ
and kdð _eÞ are not constants and the computed MSE is 0.1995 m.

The experimental results of the CASE 1A for the experiment 2
are shown in Fig. 9. In this Figure we can observe that the vehicle
never arrive to the reference depth, the gains kpðeÞ and kdð _eÞ are
constants and the computed MSE is 0.3102m.

The experimental results of the CASE 1B for the experiment 2
are shown in Fig. 10. In this Figure we can observe that the vehicle
takes about 19.5 s to arrive the reference depth, the gains kpðeÞ and
kdð _eÞ are not constants and the computed MSE is 0.2526m.

Now, in Table 5 we show the computed mean square error for
each experiment. Consequently we can conclude that the nonlinear
PD controller with gravitational/buoyancy compensation (CASE 1B)
has a better performance, from the practical point of view, in both
experiments. On other words we can say that the proposed
controller is robustness in the uncertainty of the parameters sys-
tem. In addition, observe that the pitch angle (q) is close to zero
during all the experiments without input control due the design of
the vehicle.
4.2. Experimental results for trajectory tracking control

Taking into account the controller given by Eq. (62), then we
have also two scenarios for the trajectory tracking control. In the
first one we consider m1 ¼ m2 ¼ 1, consequently we have a
PD þ controller and the second scenario is when m1 and m2 are
different to one, as consequence we obtain a nonlinear
PD þ controller. Then these scenarios are:

� CASE 2A: Considering that m1 ¼ m2 ¼ 1, then the controller
given by Eq. (62) is a PD þ controller (PDþ).

� CASE 2B: Considering that m1 and m2 are different to one, then
the controller given by Eq. (62) is a Nonlinear PD þ controller
(NPDþ).

For the experiments of trajectory tracking control the reference
value zd is a smooth trajectory function produce by a second order
filter, then the tuning of the gains values was based on the exper-
iments results taking into account the system performance, the
4) is a PD controller with Gravitational and buoyancy compensation (PDG), with zd ¼ 1

based on saturation functions with variable parameters to stabilize an
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Fig. 8. Experimental results considering that m1 and m2 are different to one, then the controller given by Eq. (44) is a Nonlinear PD controller with gravitational and buoyancy
compensation (NPDG), with zd ¼ 1 meter and the buoyancy force of the vehicle is approximately 191:2N.

Fig. 9. Experimental results considering that m1 ¼ m2 ¼ 1, then the controller given by Eq. (44) is a PD controller with Gravitational and buoyancy compensation (PDG), with zd ¼ 1
meter and the buoyancy force of the vehicle is approximately 193N.

Fig. 10. Experimental results considering that m1 and m2 are different to one, then the controller given by Eq. (44) is a Nonlinear PD controller with Gravitational and buoyancy
compensation (NPDG), with zd ¼ 1 meter and the buoyancy force of the vehicle is approximately 193N.
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Table 5
Mean square error for set-point regulation.

Exp1 Exp2

Case 1A 0.2077 0.3102
Case 1B 0.1995 0.2526

Table 6
Gains of the PD þ controller.

b1 ¼ 165 d1 ¼ 1 m1 ¼ 1
b2 ¼ 225 d2 ¼ 1 m2 ¼ 1

Table 7
Gains of the NPD þ controller.

b1 ¼ 165 d1 ¼ 0:025 m1 ¼ 0:75
b2 ¼ 225 d2 ¼ 0:05 m2 ¼ 0:85
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time response and the value of the MSE. After several experiments
we obtain for the CASE 2A the gains values which are shown in
Table 6, while the gains values of the CASE 2B are shown in Table 7.

After doing the tuning task we have done four experiments for
each case with the following features:

� Experiment 1 (Exp1): In this experiment the vehicle has the
same conditions that we have used for the tuning task, it is
weight¼ 186.3 N and buoyancy¼ 191.2 N.

� Experiment 2 (Exp2): In this experiment we only change the
vehicle weight, its weight¼ 188 N and the buoyancy¼ 191.2 N.

� Experiment 3 (Exp3): In this experiment we only change the
vehicle buoyancy, its weight¼ 186.3 N and the
buoyancy¼ 193 N.

� Experiment 4 (Exp4): In this experiment the vehicle has the
same conditions of the experiment 1, but we have changed the
trajectory reference.

The experimental results of the CASE 2A for the experiment 1
are shown in Fig. 11. In this Figure we can observe that the vehicle
Fig. 11. Experimental results considering that m1 ¼ m2 ¼ 1, then the controller given by eq
conditions that we have used for the tuning task, its weight ¼ 186.3 N and buoyancy ¼ 19
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takes about 15 s to be close to the reference depth, the gains kpðeÞ
and kdð _eÞ are constants and the computed MSE is 0.0534m.

The experimental results of the CASE 2B for the experiment 1
are shown in Fig. 12. In this Figure we can observe that the vehicle
takes about 15 s to be close to the reference depth, the gains kpðeÞ
and kdð _eÞ are not constants and the computed MSE is 0.0508m.

The experimental results of the CASE 2A for the experiment 2
are shown in Fig. 13. In this Figure we can observe that the vehicle
takes about 16 s to be close to the reference depth, the gains kpðeÞ
and kdð _eÞ are constants and the computed MSE is 0.0966m.

The experimental results of the CASE 2B for the experiment 2
are shown in Fig. 14. In this Figure we can observe that the vehicle
takes about 14 s to be close to the reference depth, the gains kpðeÞ
and kdð _eÞ are not constants and the computed MSE is 0.0539m.

The experimental results of the CASE 2A for the experiment 3
are shown in Fig. 15. In this Figure we can observe that the vehicle
takes about 23 s to be close to the reference depth, the gains kpðeÞ
and kdð _eÞ are constants and the computed MSE is 0.0694m.

The experimental results of the CASE 2B for the experiment 3
are shown in Fig. 16. In this Figure we can observe that the vehicle
takes about 14 s to be close to the reference depth, the gains kpðeÞ
and kdð _eÞ are not constants and the computed MSE is 0.0535m.

The experimental results of the CASE 2A for the experiment 4
are shown in Fig. 17. In this Figure we can observe that the vehicle
takes about 16 s to be close to the reference depth, the gains kpðeÞ
and kdð _eÞ are constants and the computed MSE is 0.0960m.

The experimental results of the CASE 2B for the experiment 4
are shown in Fig. 18. In this Figure we can observe that the vehicle
takes about 16 s to be close to the reference depth, the gains kpðeÞ
and kdð _eÞ are not constants and the computed MSE is 0.0755m.

From Table 8 we can say that the system performance is not
affected significantly using the nonlinear PD þ controller than us-
ing the PD þ controller. Now, we can observe the advantage of the
proposed controller in real applications and Finally it can be
concluded that the proposed control strategy is robust to changes
of parameters in the system. In addition observe that the pitch
angle (q) is close to zero during all the experiments even for the
trajectory tracking control.
uation (62) is a PD þ controller (PDþ). In this experiments the vehicle has the same
1.2 N.
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Fig. 13. Experimental results considering that m1 ¼ m2 ¼ 1, then the controller given by equation (62) is a PD þ controller (PDþ). In this experiment we only changed the vehicle
weight, its weight ¼ 188 N and buoyancy ¼ 191.2 N.

Fig. 14. Experimental results considering that m1 and m2 are different to one, then the controller given by equation (62) is a Nonlinear PD þ controller (NPDþ). In this experiment we
only changed the vehicle weight, its weight ¼ 188 N and buoyancy ¼ 191.2 N.

Fig. 12. Experimental results considering that m1 and m2 are different to one, then the controller given by equation (62) is a Nonlinear PD þ controller (NPDþ). In this experiments
the vehicle has the same conditions that we have used for the tuning task, its weight ¼ 186.3 N and buoyancy ¼ 191.2 N.
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Fig. 16. Experimental results considering that m1 and m2 are different to one, then the controller given by equation (62) is a Nonlinear PD þ controller (NPDþ). In this experiments
we only changed the vehicle buoyancy, its weight ¼ 186.3 N and buoyancy ¼ 193 N.

Fig. 17. Experimental results considering that m1 ¼ m2 ¼ 1, then the controller given by equation (62) is a PD þ controller (PDþ). In this experiment the vehicle has the same
conditions than experiment 1, but we have changed the trajectory reference.

Fig. 15. Experimental results considering that m1 ¼ m2 ¼ 1, then the controller given by equation (62) is a PD þ controller (PDþ). In this experiments we only changed the vehicle
buoyancy, its weight ¼ 186.3 N and buoyancy ¼ 193 N.
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Fig. 18. Experimental results considering that m1 and m2 are different to one, then the controller given by equation (62) is a Nonlinear PD þ controller (NPDþ). In this experiment the
vehicle has the same conditions than experiment 1, but we have changed the trajectory reference.

Table 8
Mean Square Error for trajectory tracking control.

Exp1 Exp2 Exp3 Exp4

Case 2A 0.0534 0.0966 0.0694 0.0960
Case 2B 0.0508 0.0539 0.0535 0.0755
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5. Conclusion and future work

The proposed NPDG and NPD þ controllers for set-point regu-
lation and trajectory tracking control, respectively, are robustness
in the uncertainty of the parameters systems. We have proved that
the equilibrium point of the closed-loop systemwith the proposed
controllers is asymptotically stable using the Lyapunov arguments.
The viability of the proposed NPDG and NPD þ controllers were
tested in real-time experiments, where we can notice that the
advantage of implementing the saturation functions with variable
parameters in a NPDG and NPD þ controllers. In a next future, we
will implement the integral part in order to improve the perfor-
mance of the system. Experiments in presence of external distur-
bances will be soon conducted in natural environment.
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