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Abstract
We suggest necessary conditions of soficness of multidimensional shifts formulated in terms of
resource-bounded Kolmogorov complexity. Using this technique we provide examples of effective and
non-sofic shifts on Z2 with very low block complexity: the number of globally admissible patterns of
size n× n grows only as a polynomial in n.
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1 Introduction

Symbolic dynamics originally appeared in mathematics as a branch of the theory of dynamical
systems that studies smooth or topological dynamical systems by discretizing the underlying
space. Since the late 1930s, symbolic dynamics became an independent field of research,
see [9, 10]. A classical dynamical system is a space (of states) S with a function F acting
on this space; this function represents the “evolution rule,” i.e., the time dependence of
a configuration in the space. The central notion of the theory of dynamical systems is a
trajectory – a sequence of configurations obtained by iterating the evolution rules,

x, F (x), F (F (x)), . . . , F (n)(x), . . .

In symbolic dynamics the space of states reduces to a finite set (an alphabet). The
trajectories are represented by infinite (or bi-infinite) sequences of letters over this alphabet,
and the “evolution rule” is the shift operator acting on these sequences. Symbolic dynamics
focuses on the shift spaces – the sets of bi-infinite sequences of letters (over a finite alphabet)
that are defined by a shift-invariant constraint on the factors of finite length. More precisely,
a shift over an alphabet Σ is a subset of bi-infinite sequences over Σ that is translation
invariant and closed in the natural topology of the Cantor space. Every shift can be defined in
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terms of forbidden finite patterns: we fix a set of (finite) words F and say that a configuration
(a bi-infinite sequence) belongs to the corresponding shift SF if and only if it does not contain
any factor from F .

Obviously, the properties of shifts heavily depend on the corresponding set of forbidden
patterns. The following three large classes of shifts play an important role in symbolic
dynamics and computability theory:

shifts of finite type (SFT), which are defined by a finite set of forbidden finite patterns;
sofic shifts (introduced in [16]), where the set of forbidden finite patterns is a regular
language;
effective (or effectively closed) shifts, which are defined by a computable set of forbidden
finite patterns.

These three classes are different: [the SFTs] $ [the sofic shifts] $ [the effective shifts].
The sofic shifts can be equivalently defined as the coordinate-wise projections of configur-

ations from an SFT:

I Definition 1. A shift S over an alphabet Σ is sofic if there is an SFT S ′ over an alphabet
Σ′ and a mapping π : Σ′ → Σ, such that S consists of the coordinate-wise projections

(. . . π(y−1)π(y0)π(y1)π(y2) . . .)

of all configurations (. . . y−1y0y1y2 . . .) from S ′.

There is a simple characterization of soficness. Let us say that two words w1, w2 are equivalent
in a shift S, if exactly the same half-infinite configurations occur in S immediately to the
right of w1 and to the right of w2. A shift is sofic if and only if the finite patterns in this shift
are subdivided in a finite number of equivalence classes (see [8, Theorem 3.2.10]). Loosely
speaking, when we read a configuration from the left to the right and verify that it belongs
to a sofic shift, we need to keep in mind only a finite information.

The SFTs and even the sofic shifts are rather restrictive classes of shifts with several
very special properties. Not surprisingly, many important examples of effective shifts are not
sofic. Non-soficness of a shift is usually proved with some version of the pumping lemma
from automata theory.

Multidimensional shifts

The formalism of shifts can be naturally extended to the grids Zd for d > 1. A shift on Zd
(over a finite alphabet Σ) is defined as a set of d-dimensional configurations f : Zd → Σ that
are (i) translation-invariant (under translations in all directions) and (ii) closed in Cantor’s
topology. Similar to the one-dimensional case, the shifts can be defined in terms of forbidden
finite patterns.

The definitions of the effective shifts (the set of forbidden patterns is computable) and of
the SFTs (the set of forbidden patterns is finite) apply to the multidimensional shift spaces
directly, without any revision. The sofic shifts on Zd are defined as in Definition 1 above (as
the coordinate-wise projections of SFTs).

For multidimensional shifts spaces, the classes of the effective shifts, the sofic shifts, and
the SFTs remain distinct, though the difference between these classes is more elusive than in
the one-dimensional case. In this paper we discuss the tools that help to reveal the reasons
why one or another effective multidimensional shift is not sofic.

The class of sofic shifts in dimension d ≥ 2 is surprisingly wide. Besides many simple and
natural examples, there are shifts whose soficness follow from rather subtle considerations. For
instance, S. Mozes showed that the shift generated by (a natural class of) non deterministic
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multidimensional substitutions systems are sofic [11]. L. B. Westrick proved that the two-
dimensional shift on the alphabet {0, 1} whose configurations consist of squares of 1s of
pairwise different sizes on a background of 0s, is sofic; moreover, any effectively closed subshift
of this shift is also sofic [17].

On the other hand, there are several examples of effective multidimensional shifts that
are known to be non-sofic. In what follows we briefly discuss two of them.

I Example 2 (the mirror shift). One of the standard examples of a non-sofic shift is the shift of
mirror-symmetric configurations on Z2. Let Σ be the alphabet with three letters (e.g., black,
white, and red), and the configurations of the shift are all black-and-white configurations
(without any red cell) and the configurations with an infinite horizontal line of red cells and
symmetric black-and-white half-planes above and below this line, see Fig. 1.

It is easy to see that this shift is effective (the forbidden patterns are those where the red
cells are not aligned, and those where the areas above and below the horizontal red line are
not symmetric). At the same time, this shift is not sofic. The intuitive explanation of this
fact is as follows. Let us focus on a pair of symmetric patterns of size n× n in black and
white, above and below the horizontal red line (see the blue squares in Fig. 1). To make sure
that the configuration belongs to the shift, we must “compare” these two patterns with each
other. To this end, we need to transmit the information about a pattern of size n2 through
its border line (of length O(n)). However, in a sofic shift, the “information flow” across a
contour of length O(n) is bounded by O(n) bits, and this contradiction implies non-soficness.
For a more formal argument see, e.g. [1] and [4], or a similar example [5, Example 2.4].

I Example 3 (the high complexity shift). Let S be the set of all binary configurations on
Z2 where for each n× n pattern P its Kolmogorov complexity is quadratic, C(P ) = Ω(n2).
Technically, this means that no globally admissible pattern can be produced by a program of
size below cn2, for some factor c > 0 (see the formal definition of Kolmogorov complexity
below).

This shift is obviously effective: we can algorithmically enumerate the patterns whose
Kolmogorov complexity is below the specified threshold. However, this shift is not sofic. This
follows from two facts (proven in [2]):
(i) For some c < 1, the shift defined above is not empty.
(ii) In every non-empty sofic shift on Z2, there is a configuration where the Kolmogorov

complexity of each n× n pattern is bounded by O(n).

Figure 1 A configuration with mirror symmetry with respect to the horizontal red line. The blue
squares select two symmetric black-and-white patterns.

STACS 2019



23:4 An Obstacle to Soficness

Note that the non-sofic shifts in the two examples above have positive entropy (the
number of globally admissible patterns of size n× n grows as 2Ω(n2)). This is not surprising:
the proofs of non-soficness of these shifts use the intuition about the information flows
(super-linear amount of information cannot flow through a linear contour). This type of
argument can be adapted for several shifts where the number of globally admissible patterns
of size n×n grows slower than 2Ω(n2) but still faster than 2O(n) (see, e.g. [15, Proposition 15]).
As it was noticed in [17], “all examples known to the author of effectively closed shifts which
are not sofic were obtained by in some sense allowing elements to pack too much important
information into a small area.”

This type of argument was formalized as rather general sufficient conditions of non-
soficness in [13] and [5]. The theorems by Kass and Madden ([8, Theorem 3.2.10]) and Pavlov
([13, Theorem 1.1]) apply only to the two-dimensional shifts where the number of globally
admissible n× n patterns is greater than 2O(n). However, there is no reason to think that
this condition is necessary for non-soficness (see, e.g. the discussion in [4, Section 1.2.2]). It
is instructive to observe that non-effective non-sofic shifts can have very low block complexity
[5, 12].

In this paper we extend the usual approach to the proof of non-soficness. We show that a
shift cannot be sofic if the essential information contained in an n × n pattern cannot be
compressed to the size O(n) in bounded time.

The intuition behind our argument is similar to those used in [2] and [5] but with the
idea of compression with bounded computational resources. This approach applies to several
shifts with very low block complexity: we cannot “communicate” the essential information
across a contour not because this information is too large, but since we do not have enough
time and space to compress it. In particular, we provide examples of non-sofic effective shifts
with only polynomial block complexity (and thus zero entropy).

I Remark 4. A standard and straightforward approach to the measure of the “information
flow through the border line of a pattern” uses the notion of extender. Let S be a shift and
P be a globally admissible pattern for this shift. The extender of P in S is the set of all
configurations Q completing P to a valid configuration of S (in particular, the support of Q
should be the complement of the support of P ).

Let S be a shift on Z2; denote by Nk the number of different extenders for the patterns
with a support of size k × k. (Several patterns can share one and the same extender, so the
number of extenders might be much less than the number of globally admissible patterns of
this size). It seems natural to interpret logNk as “the information flowing going through the
border line” of a k × k pattern.

However, this interpretation is deceptive. In a sofic shift the value of logNk can grow
much faster the length of the border line of the pattern ([5] attributes this observation to
unpublished works of C. Hoffman, A. Quas, and R. Pavlov). In fact, for a sofic shift on
Z2, the value of logNk can grow even as Ω(k2). Therefore, we cannot use the asymptotic
of logNk to prove non-soficness of a multi-dimensional shift. This why we need a subtler
implementation of the intuition of “information flows” in the sofic shifts.

The rest of the paper is organized as follows. After recalling the main definitions of the
theory of Kolmogorov in the second section, we prove in the third one our main result. In
the last section we elaborate our technique to a more general setting; in particular, we show
that an argument from [5] (a proof of non-soficness with the method of union-increasing
sequences of extenders) can be explained in the language of Kolmogorov complexity.
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2 Preliminaries

Kolmogorov complexity

In this section we recall the main definitions of the theory of Kolmogorov complexity. Let
U be a (partial) computable function. The complexity of x with respect to the description
method U is defined as CU (x) := min{ |p| : U(p) = x }.

If there is no p such that U(p) = x, we assume that CU (x) =∞. Here U is understood
as a programming language; p is a program that prints x; the complexity of x is the length
of (one of) the shortest programs p that generate x (on the empty input).

The obvious problem with this definition is its dependence on U . The theory of Kolmogorov
complexity becomes possible due to the invariance theorem:

I Theorem 5 (Kolmogorov [6]). There exists a computable function U such that for any
other computable function V there is a constant c such that CU (x) ≤ CV (x) + c for all x.

This U is called an optimal description method. We fix an optimal U and in what follows
omit the subscript in CU (x). The value C(x) is called the (plain) Kolmogorov complexity
of x.

In a similar way, we define Kolmogorov complexity in terms of programs with bounded
resources (the time of computation). Let U be a Turing machine; we define the Kolmogorov
complexity Ct

U (x) as the length of the shortest p such that U(p) produces x in at most t
steps. There exists an optimal description method U in the following sense: for every Turing
machine V we have Cpoly(t)

U (x) ≤ CtV (x) +O(1).
For multi-tape Turing machines a slightly stronger statement can be proven:

I Theorem 6 (see [7]; the proof uses the simulation technique from [3]). There exists an
optimal description method (multi-tape Turing machine) U in the following sense: for every
multi-tape Turing machine V there exists a constant c such that Cct log t

U (x) ≤ CtV (x) + c for
all strings x.

We fix such a machine U , and in the sequel use for the resource-bounded version of Kolmogorov
complexity the notation Ct(x) instead of CtU (x). Without loss of generality we may assume
that C(x) ≤ Ct(x) for all x and for all t.

We fix a computable enumeration of finite patterns (over a finite alphabet) that assigns a
binary string (a code) to each pattern in dimension two. In the sequel we take the liberty
of talking about Kolmogorov complexity of finite patterns in dimension two (assuming the
Kolmogorov complexity of the codes of these patterns).

Shift spaces

In this paper we focus on two-dimensional shifts, though all arguments can be extended to
the shifts on Zd for all d ≥ 2. A (finite) pattern on Z2 over a finite alphabet Σ is a mapping
from a (finite) subset of Z2 to Σ; the domain of this mapping is the support of the pattern.
Sometimes a pattern P with a support A is called a coloring of A (the “colors” are letter
from Σ).

For a shift S, we say that a pattern P is globally admissible, if P is a restriction of a
configuration from S to some finite support. For a shift of finite type determined by a set of
forbidden patterns F , we say that a pattern is locally admissible if it contains no forbidden
patterns from F .

The block complexity of a shift is a function that gives for each integer n > 0 the number
of globally admissible patterns of size n× n (patterns with support {1, . . . , n}2) in this shift.

STACS 2019
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If a sofic shift S is a coordinate-wise projection of configurations from Ŝ, we say that Ŝ is
a covering of S. Every sofic shift has a covering SFT such that the supports of all forbidden
patterns in this SFT are pairs of neighboring cells (see, e.g. [8]).

3 High resource-bounded Kolmogorov complexity is compatible with
low block complexity

The following theorem was proven implicitly in [2]:

I Theorem 7. In every non-empty sofic shift S there exists a configuration x such that for
all n× n-patterns P in x, we have CT (n)(P ) = O(n) for a time threshold T (n) = 2O(n2).

In [2] a weaker version of this theorem is stated: it is claimed only that the plain complexity
of n× n patterns is O(n). However, the argument from [2] implies a bound for a resource-
bounded version of Kolmogorov complexity. For the sake of self-containedness, we provide a
proof of this theorem in the full version of this paper.

I Theorem 8. For every ε > 0 and for every computable T (n) there exists an effective shift
on Z2 such that for every n and for every globally admissible pattern P of size n × n, we
have that
(i) C(P ) = O(logn), and
(ii) CT (n)(P ) = Ω(n2−ε).

Theorem 8 is proven is the full version of the paper. In what follows we prove a slightly
weaker version of this theorem, which is nevertheless strong enough for our main applications:

I Theorem 8′. For every computable T (n) there exists an effective shift on Z2 such that
(i) for every n and for every globally admissible pattern P of size n× n, we have C(P ) =

O(logn), and
(ii) for infinitely many n and for every globally admissible pattern P of size n× n, we have

that CT (n)(P ) = Ω(n1.5).

From Theorem 7 and Theorem 8′ we deduce the following corollary:

I Corollary 9. There exists an effective non-sofic shift on Z2 with block complexity poly(n),
i.e., with ≤ poly(n) globally admissible blocks of size n× n.

Proof. We take the shift from Theorem 8′ assuming that the threshold T (n) is much greater
than 2Ω(n2) (e.g., we can let T (n) = 2n3). On the one hand, property (ii) of Theorem 8′
and Theorem 7 guarantee that this shift is not sofic. On the other hand, property (i) of
Theorem 8′ implies that the number of globally admissible blocks of size n× n is not greater
than 2O(logn). J

I Remark 10. Our proof of Theorem 8 implies a stronger bound than property (i). In fact,
instead of the bound C(P ) = O(logn) we can prove that for every globally admissible n× n
pattern P in this shift,

CT̂ (n)(P ) ≤ λ logn, (1)

where λ is a (large enough) constant and T̂ (n) is a (large enough) computable function of n.
The constant λ and the threshold T̂ (n) can be defined quite explicitly given T (n) and ε.

When T̂ (n) (compatible with given ε and T (n)) is chosen, we can define another shift
ST,ε that consists of the configurations where all n×n patterns P satisfy (1). The shift from
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Theorem 8 is a proper subshift of ST,ε. Besides all configurations from Theorem 8, the shift
ST,ε contains also configurations with patterns of very low time bounded complexity (e.g.,
the configuration with all 0s and the configuration with all 1s). In the next section we use
this shift ST,ε to construct some other examples of effective non-sofic shifts.

Proof of Theorem 8′. In this proof we construct the required shift explicitly. Let us fix a
sequence (ni) where n0 is a large enough integer number, and

ni+1 := (n0 · . . . · ni)c for i = 0, 1, 2, . . . , (2)

where c ≥ 3 is a constant. We set Ni := n0 · . . . · ni. In what follows we construct for each i
a pair of standard binary patterns Q0

i and Q1
i of size Ni ×Ni such that

the plain Kolmogorov complexities of the standard patterns C(Q0
i ) and C(Q1

i ) are not
greater than O(logNi), and
the resource-bounded Kolmogorov complexities CT (Ni)(Q0

i ) and CT (Ni)(Q1
i ) are not less

than Ω(N1.5
i ).

The construction is hierarchical: both Q0
i and Q1

i are defined as ni × ni matrices composed
of patterns Q0

i−1 and Q1
i−1; for each i the blocks Q0

i and Q1
i are bitwise inversions of each

other.
When the standard patterns Q0

i and Q1
i are constructed for all i, we define the shift as

the closure of these patterns: we say that a finite pattern is globally admissible if and only if
it appears in some standard pattern Qji or at least in a 2× 2-block composed of Q0

i and Q1
i

(for some i).
I Remark 11. Due to the hierarchical structure of the standard patterns, we can guarantee
that every globally admissible pattern P of size Ni ×Ni appears in a 2× 2-block composed
of Q0

i and Q1
i (no need to try the blocks Qjs for s > i).

Since the construction of Qji is explicit, the resulting shift is effective. Properties (i) and (ii)
of the theorem will follow from the properties of the standard patterns.

In what follows we explain an inductive construction of Q0
i and Q1

i . Let Q0
0 and Q0

1 be
the squares composed of only 0s and only 1s respectively. Further, for every i we take the
lexicographically first binary matrix Ri of size ni × ni such that

Cti(Ri) ≥ n2
i (3)

(the time bound ti is fixed in the sequel). We claim that such a matrix exists. Indeed, there
exists a matrix of size ni × ni that is incompressible in the sense of the plain Kolmogorov
complexity. The resource-bounded Kolmogorov complexity of a matrix can be only greater
than the plain complexity. Therefore, there exists at least one matrix satisfying (3). If ti is a
computable function of i, then given i we can find Ri algorithmically.

Now we substitute in Ri instead of each zero and one entry the copies of Q0
i−1 and Q1

i−1
respectively, e.g.,

Ri =


0 0 0 0 1
0 1 0 0 1
1 1 1 1 0
0 1 1 0 0
0 1 0 1 0

 =⇒ Q0
i :=


Q0
i−1 Q0

i−1 Q0
i−1 Q0

i−1 Q1
i−1

Q0
i−1 Q1

i−1 Q0
i−1 Q0

i−1 Q1
i−1

Q1
i−1 Q1

i−1 Q1
i−1 Q1

i−1 Q0
i−1

Q0
i−1 Q1

i−1 Q1
i−1 Q0

i−1 Q0
i−1

Q0
i−1 Q1

i−1 Q0
i−1 Q1

i−1 Q0
i−1


The resulting matrix (of size Ni ×Ni) is denoted Q0

i . Matrix Q1
i is defined as the bitwise

inversion of Q0
i .

STACS 2019
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(a) (b)

Figure 2 A pattern of size Nk×Nk (shown in gray in fig. (a)) covered by a quadruple of standard
blocks of the same size contains enough information to reconstruct a standard pattern (fig. (b)).

B Claim 12. Assuming that t′i � ti (in what follows we discuss the choice of t′i in more
detail) we have

Ct
′
i(Q0

i ) = Ω(N1.5
i ) and Ct

′
i(Q1

i ) = Ω(N1.5
i ).

Proof of Claim 12. Given Qji (for j = 0, 1) we can retrieve the matrix Ri (this retrieval can
be implemented in polynomial time). Therefore, for every time bound t

Ct+poly(Ni)(Ri) ≤ Ct(Qji ) +O(1).

Therefore, if ti > t′i + poly(Ni) then

n2
i ≤ Cti(Ri) ≤ Ct

′
i(Qji ).

It remains to observe that our choice of parameters in (2) with c ≥ 3 implies n1/2
i ≥

(n0 · . . . · ni−1)3/2, and therefore

n2
i ≥ (n0 · . . . · ni)1.5 = (Ni)1.5.

Thus, we obtain Ct′i(Qji ) ≥ (Ni)1.5 −O(1), and the claim is proven. C

I Remark 13. By choosing a larger constant c in (2), we can achieve a lower bound Ct′i(Qji ) =
Ω(n2−ε) for any ε > 0.

B Claim 14. For every globally admissible pattern P of size Ni ×Ni (and not only for the
standard patterns, as it was in Claim 1) its time-bounded Kolmogorov complexity CT (Ni)(P )
is Ω(n1.5) (assuming that T (Ni)� t′i).

Proof of Claim 14. If a pattern P of size Ni ×Ni is globally admissible then it is covered by
a quadruple of standard patterns of rank i, see Remark 11 on p 7 above. Then P can be
divided into four rectangles which are “corners” of standard patterns of rank i, see Fig. 2 (a).
Since the standard blocks Q0

i and Q1
i are the inversions of each other, these four “corners”

(with a bitwise inversion if necessary) form together the entire standard pattern, as shown in
Fig. 2 (b). Therefore, we can reconstruct Qji from P given (a) the position of P with respect
to the grid of standard blocks (this involves O(logNi) bits) and (b) the four bits identifying
the standard blocks covering P (we need to know which of them is a copy of Q0

i and which
one is a copy of Q1

i ).
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The retrieval of Qji from P requires only poly(Ni) steps of computation (in addition to the
time we need to produce P ). Now the claim follows from the bound for the resource-bounded
Kolmogorov complexity of the standard patterns Q0

i and Q1
i . C

B Claim 15. For every k × k-pattern in Q0
i or Q1

i , its plain Kolmogorov complexity is at
most O(log k).

Proof of Claim 15. First of all, we observe that the standard patterns Q0
i or Q1

i can be
computed given i. Therefore, C(Q0

i ) = O(log i) and C(Q1
i ) = O(log i).

Every globally admissible k × k-pattern is covered by at most four standard patterns Q0
i

or Q1
i with

Ni−1 < k ≤ Ni,

see Remark 11 on p. 7. Therefore, to obtain a globally admissible pattern P of size k × k we
need to produce a quadruple of standard patterns of size Ni ×Ni and then to specify the
position of P with respect to the grid of standard blocks. This description consists of only
O(logNi) bits, and we conclude that C(P ) = O(log k). C

Given a computable threshold T (Ni), we choose a suitable t′i � T (Ni) and then a suitable
ti � t′i. The theorem follows from Claim 14 and Claim 15. J

I Remark 16. For all large enough i, the incompressible pattern Ri constructed in the proof
of Theorem 8′ contains copies of all 24 binary patterns of size 2 × 2. Therefore, we can
guarantee that every standard block Qji contains all globally admissible patterns of size
Ni−1 × Ni−1. It follows that the shift constructed in Theorem 8′ is transitive and even
minimal.

There exists a non-empty effective shift on Z2 where the Kolmogorov complexity of all
n × n patterns is Ω(n2) (see [2] and [14]). So a natural question arises: can we improve
Theorem 8 and strengthen condition (ii) to CT (n)(P ) = Ω(n2)? The answer is negative: we
cannot achieve the resource bounded complexity Ω(n2), even with a much weaker version of
property (i) for the plain complexity:

I Proposition 17. For all large enough time bounds T (n), there is no shift on Z2 such that
(i) for every globally admissible pattern P of size n× n, we have that C(P ) = o(n2), and
(ii) for infinitely many n and for every globally admissible pattern P of size n× n, we have

that CT (n)(P ) = Ω(n2).

Proof. Assume for the sake of contradiction that such a shift exists. For every k, the number
of globally admissible k × k patterns in this shift is not greater than

Lk ≤ 2o(k
2) � 2k

2
.

Therefore, for any N , every globally admissible pattern P of size (Nk)× (Nk) can be
specified by

the list of all globally admissible patterns of size k × k (which requires Lk · k2 bits),
by an array of N ×N indices of k×k blocks that constitute P (which requires N2 · logLk
bits).

Clearly, P can be reconstructed from such a description in polynomial time. It follows that

Cpoly(Nk)(P ) ≤ 2o(k
2) · k2 +N2 · o(k2).

For N � 2o(k2) this bound contradicts the condition CT (Nk)(P ) = Ω
(
(Nk)2). J
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4 Epitomes

The technique from Section 3 does not apply to the shifts that contain very simple configur-
ations (with low resource-bounded Kolmogorov complexity of all patterns). In particular,
it does not apply to Example 2 from Introduction. In this section we propose a different
technique (also based on resource-bounded Kolmogorov complexity) that helps to handle
these examples. The intuitive idea behind this technique is as follows: we try to capture the
“essential” information in each pattern (discarding irrelevant data) and then measure the
resource-bounded Kolmogorov complexity of an “epitome” of this essential information.

Let us fix some notation. We denote by Bn the set {0, . . . , n− 1}2 ⊂ Z2 and by Fn its
complement, Fn := Z2 \Bn. We say that two patterns with disjoint supports are compatible
(for a shift S) if the union of these patterns is globally admissible in S. In particular, a finite
pattern P with support Bn and an infinite pattern R with support Fn are compatible, if the
union of these patterns is a valid configuration of the shift.

4.1 Plain epitomes
I Definition 18. We say that a family of functions

En : [pattern of size n× n] 7→ [binary string]

is a family of epitomes for a shift S, if for every globally admissible pattern P with support
Bn there exists a pattern R on Fn compatible with P such that for all patterns P ′ with
support Bn compatible with R, we have

En(P ′) = En(P )

(i.e., the pattern R on the complement of Bn determines the En-epitome of the pattern on
Bn). We say that a family of epitomes is uniformly computable if there is an algorithm (one
algorithm for all n) that computes the mappings En. If, in addition, En are computable in
time 2O(n2), we say that this family of epitomes is exp-time computable.

I Proposition 19. For every sofic shift with an exp-time computable family of epitomes En,
for every globally admissible pattern P of size n× n, we have CT (n)(En(P )) = O(n) for a
time threshold T (n) = 2O(n2).

I Remark 20. If patterns P1, . . . , Pm with support Bn have pairwise distinct epitomes, then
these patterns have a union-increasing sequence of extenders in the sense of [5]. Thus, a
version of Proposition 19 with the plain (non time bounded) Kolmogorov complexity is a
special case of [5, Theorem 2.3].

Proof. Assume S is a sofic shift with a covering SFT Ŝ (S is a coordinate-wise π-projection
of Ŝ). Let P be a pattern with support Bn in S and R be the pattern on the complement of
Bn that enforces the value of the En-epitome of P (as specified in Definition 18). Denote by
y a configuration in Ŝ whose π-projection gives the union of P and R. Let Q be a pattern of
size n× n in y such that P is a coordinate-wise projection of Q, see Fig. 3. Denote by ∂Q
the border of Q.

We assume that the local constraints in Ŝ involve only pairs of neighboring nodes in Z2.
Then, every locally admissible pattern Q′ of size n× n that is compatible with the border
∂Q, must be compatible with the rest of configuration y. Therefore, the π-projections of
these Q′ are compatible with R. Thus, the En-epitomes of the projections of these Q′ must
be equal to the En-epitome of P .
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pattern Q
border of Q

π

pattern P

a configuration in an SFT

a configuration in a sofic shift

Figure 3 Projection of an n× n pattern from an SFT onto a sofic shift.

It follows that En(P ) can be computed in time 2O(n2) given only the coloring of the border
line ∂Q: we use the brute-force search to find one Q′ computable with this border, apply
projection π, and then compute the epitome. Observe that the computed projection π(Q′)
may be different from P , but the epitome must coincide with the epitome of P . Since the
size of ∂Q is linear in n, we conclude that C2O(n2)(P ) = O(n). J

Proposition 19 gives a necessary condition for soficness. To prove that a shift is not sofic,
we need to provide an exp-time computable family of epitomes with high resource-bounded
Kolmogorov complexities. In what follows we discuss a simple application of this technique.

Example 2 revisited

Let S be the shift from Example 2 in the Introduction (the mirror-symmetric configurations).
For this example we can define epitome functions En as follows:

if an n × n pattern P contains only black and white letters, then En(P ) maps it to a
binary string of length n2 that identifies P uniquely (roughly speaking, En does not
compress the patterns in black and white);
all patterns with red letters are mapped to the empty string.

It is not hard to see that En is an exp-time computable family of epitomes for this shift (since
a configuration below the red line determines all black-and-white patterns above this line).
Since for some patterns of size n× n we have C(P ) ≥ n2 (i.e., even the plain Kolmogorov
complexity of P is super-linear), we can apply Proposition 19 and conclude that the shift is
not sofic.

Example 2 with low plain Kolmogorov complexity

Let us consider a subshift of S: we still admit only symmetric configurations, but we now
allow only those n× n patterns P in black and white that are globally admissible for the
shift ST,ε defined in Remark 10 on p. 6, assuming T (n) = 2n3 . (We have chosen the time
threshold so that T (n)� 2O(n2).) A typical configuration of this shift looks as follows: there
is an infinite horizontal line in red, and the symmetric half-planes above and below this line
are areas in black and white, with n× n patterns P such that CT̂ (n)(P ) = O(logn).

The new shift is effective, and the number of globally admissible patterns is 2O(logn) =
poly(n). Due to Theorem 8 know that some n× n patterns in this shift satisfy the condition
C2n3

(P ) = Ω(n2−ε).
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We cannot apply Theorem 8 directly and conclude that the new shift is non-sofic. Indeed,
this shift also admits patterns with very low time-bounded complexity. For example, the
shift admits the configuration with an infinite horizontal line in red and only white cells
above and below this line.

Note that the functions En defined above provide for this shift an exp-time computable
family of epitomes. Since for some (though not for all) n× n patterns P we have

C2n3

(En(P )) = Ω(n2−ε),

it follows from Proposition 19 that the shift is not sofic.

4.2 Ordered epitomes
The argument based on Definition 18 does not apply to [5, Example 2.5] and similar examples.
To handle this class of (non-sofic) shifts we introduce a slightly more general version for
epitomes:

I Definition 21. Let En be a finite set with a partial order ≤n on it, and

En : [pattern of size n× n] 7→ [element of En]

be a partial function, for each integer n > 0. We say that (En,≤n) is a family of ordered
epitomes for a shift S, if for every globally admissible pattern P with support Bn such that
En(P ) is defined, there exists a pattern R on Fn such that
(i) R is compatible with P , i.e., the union of P and R forms a valid configuration in S,

and
(ii) for every pattern P ′ on support Bn compatible with R, if En(P ′) is defined then

En(P ′) ≤n En(P )

(i.e., this configuration R on the complement of Bn determines the maximum of the En-
epitomes over all valid P ′).

We say that a family of ordered epitomes is uniformly computable if there is an algorithm
(one algorithm for all n) that computes the relations ≤n and the mappings En. If, moreover,
En and ≤n are computable in time 2O(n2), we say that this family of ordered epitomes is
exp-time computable.

I Remark 22. When we say that a partial function is computable (or computable in bounded
time), we assume that its domain is decidable (respectively, decidable in bounded time).
Thus, for an exp-time computable family of epitomes we can decide effectively whether En(x)
is defined.

Definition 18 can be viewed as a special case of Definition 21. If En is a family of
exp-time computable epitomes in the sense of Definition 18 and ≤n is an arbitrary effectively
computable order on the En-epitomes, then (En,≤n) is an exp-time computable family of
ordered epitomes in the sense of Definition 21 (in Definition 18, the neighborhood R enforces
the exact value of En(P ′) over all P ′ compatible with R, while in Definition 21 we need to
enforce only the maximum of En(P ′)).

I Proposition 23. For every sofic shift with an exp-time computable ordered family of
epitomes (En,≤n), for every globally admissible pattern P of size n×n, CT (n)(En(P )) = O(n)
for a time threshold T (n) = 2O(n2).
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Proof. The proof is similar to the proof of Proposition 19, except for the last part. In the
previous proof, we use brute-force search to find one pattern Q′ compatible with the given
border line ∂Q, apply projection π, and then compute the epitome. Now we should find all
patterns Q′ compatible with ∂Q, apply to each of them the projection π, try to compute
their epitomes (En is partial), and then take the maximum of the obtained results. It remains
to notice that for an exp-time computable ordered family of epitomes this exhaustive search
runs in time 2O(n2). J

(a) Forbidden pat-
tern: a square with
a red top and a black
bottom.

(b) A pattern for which the epitome
En is defined: each row starts with a
few black cells on the left followed by
white cells on the right.

(c) A pair of incomparable patterns.

Figure 4

I Example 24 (the shift with no hidden red-black squares). Now we discuss an example
proposed by Kass and Madden in [5, Example 2.5], and reformulate the argument given in
[5] in the language of Kolmogorov complexity, in terms of ordered epitomes.

Let Σ be the alphabet with three letters (e.g., black, white, and red), and the forbidden
patterns be all squares (of all sizes) where the top side consists of red cells, and the bottom
one consists of black cells (hidden red-black squares), as shown in Fig. 4a.

I Proposition 25 ([5]). The shift on Z2 defined by the set of forbidden patterns specified
above is not sofic.

In [5] this proposition was proven with the technique of union-increasing sequence of extenders.
In what follows we propose a similar argument, but explain it in terms of ordered epitomes.

Proof of Proposition 25. We define for this shift a family of ordered epitomes. First of all,
we define a class of simple patterns: the simple patterns are all square patterns that (i) consist
of only black and white letters (with no red letters), where (ii) every row starts with a few
successive black letters followed by a sequence of white letters, as show in Fig. 4b. Every
simple pattern of size n× n can be specified by its profile – a tuple of integers (k1, . . . , kn),
where ki is the number of black cells in the i-th row of the pattern. (Thus, a simple pattern
with the profile (k1, . . . , kn) is an n×n square where each i-th row starts with ki black letters
followed by (n− ki) white letters.)

Let epitome En assign to each simple pattern its profile, and be undefined for all other
patterns. For example, for the pattern P show in Fig. 4b we have E8(P ) = (4, 3, 8, 5, 4, 2, 4, 6).

We introduce the natural order ≤n on the profiles of simple patterns of size n× n; we say
that the profile of P1 is not greater than the profile of P2, if the first profile is coordinate-wise
not greater than the second profile. For example, the profiles of the two patterns shown in
Fig. 4c are not greater than the profile of the pattern in Fig. 4b (and incomparable with
each other).

The introduced En and ≤n are obviously computable, even in polynomial time. Some
work is required to show that En and ≤n satisfy Definition 21:
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due to the bar of red cells on the top
this row of the 8× 8 frame can start
with at most 5 black cells

we control max of En for this n× n frame

line 1
line 2
line 3

.

.

.

line n

line 2n + 1
line 2n + 2

.

.

.

line 3n

3n

3n− 1

Figure 5 An n× n pattern P with a neighborhood that enforces the desired maximum of En.

I Lemma 26. The defined above (En,≤n) provide a family of exp-time computable ordered
epitomes for the shift under consideration.

This lemma is proven implicitly in [5]. In what follows, for the sake of self-containedness, we
sketch this proof.

Proof of Lemma 26. For every simple pattern P of size n× n we should construct a config-
uration R on the complement of Bn, so that
(i) P and R are compatible,
(ii) for every other simple pattern P ′ compatible with R we have En(P ′) ≤n En(P ).

We build R by following the construction from [5]. By definition, each row of P consists of a
contiguous sequence of black cells followed by a contiguous sequence of white cells, as shown
in Fig. 4b. The pattern R will consist of a finite number of black and red cells (the other
cells will be white).

Black cells in R. To construct R, we extend each stripes of black cells in P to the left, so
that in the first line we get a contiguous sequence of (3n− 1) black cells (including those
black cells that belong to P ), in the second line a contiguous sequence of (3n− 3) black cells,
in the third line a contiguous sequence of (3n− 5) black cells, etc. In the n-th line we obtain
a contiguous sequence of (n+ 1) black cell, see Fig. 5.

Red cells in R. Similarly, we put in R stripes of red cells: 3n contiguous red cells in
line 3n, (3n− 2) contiguous red cells in line 3n− 1, . . . , (n+ 2) contiguous red cells in line
(2n + 1). We place these stripes of red cells so that for each i = 1, . . . , n the leftmost red
cell in the line (3n− i+ 1) is vertically aligned with the leftmost black cell in the line i, as
shown in Fig. 5.

All other cells outside Bn are made white.

B Claim 27. The constructed R is compatible with P .

Proof of Claim 27. This fact is easy to verify: we have chosen the lengths of black and red
stripes so that they cannot form a forbidden pattern (as in Fig. 4a), regardless the horizontal
placement of each stripes. Indeed, on the one hand, the black cells of the i-th line cannot
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interfere with the red stripes in lines 3n, 3n−1, . . . , 3n−i, since this black stripe is too short to
form a forbidden pattern together with any of these red stripes; on the other hand, the black
cells of the i-th line cannot interfere with the red stripes in lines 3n−i−1, 3n−i−2, . . . , 2n+1,
since those red stripes are too short. C

B Claim 28. The constructed pattern R is compatible only with simple patterns P ′ such
that En(P ′) ≤n En(P ).

Proof of Claim 28. If R is compatible with an n × n pattern P ′, the profile of P ′ is not
determined uniquely. In fact, R can be compatible with simple patterns P ′ whose profiles
are strictly less than the profile of P (in each row of P ′ the number of black cells must be
not greater than the number of black cells in the corresponding row of P ), see Fig. 6 below.
On the other hand, if at least one row of P ′ contains more black cells that the same row in
P , than P ′ and R are incompatible, i.e., the joint of P ′ and R contains a forbidden pattern,
as shown in Fig. 7. C

The lemma follows from Claim 27 and Claim 28. For a more detailed argument we refer
the reader to [5]. J

I Remark 29. In the construction discussed above, pattern R does not determine uniquely
the epitomes of P ′ compatible with R (these epitomes can be different, though they must
be not greater than the epitome of the initial pattern P ). This is why we cannot apply
Proposition 19, and we have to employ the extended definition of partial epitomes.

To prove the proposition, it remains to observe that for every n there are (n+ 1)n simple
patterns of size n× n (in each row of a simple pattern the frontier between black and white
areas varies between 0 and n). Therefore, for some simple patterns P of size n × n the
Kolmogorov complexity of their profile is greater than n log(n + 1), i.e., even the plain
Kolmogorov complexity C(P ) is super-linear. We apply Proposition 23 and conclude that
the shift is not sofic. J

this n× n pattern P ′ is compatible with the neighborhood

Figure 6 A pattern P ′ with En(P ′) ≤n En(P ) matches the neighborhood.

I Open Problem 1. Is there any sufficient condition of soficness for effective shifts that can
be formulated in terms of resource-bounded Kolmogorov complexity?

STACS 2019



23:16 An Obstacle to Soficness

by adding one supplementary
black cell we get a forbidden
pattern

this n× n pattern P ′′ is incompatible with the neighborhood

Figure 7 A pattern P ′′ with En(P ′′) 6≤n En(P ) does not match the neighborhood.

I Open Problem 2. The shift in Example 24 has positive entropy, and in the argument
discussed above we could employ the definition of uniformly computable (but not exp-time
computable) ordered epitomes. It would be interesting to suggest a natural example of an
effective (but non-sofic) shift where the technique of exp-time computable ordered epitomes is
valid while uniformly computable but not exp-time computable ordered epitomes do not apply.
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