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Abstract

Model selection using likelihood-based criteria (e.g., AIC) is one of the first steps in phylogenetic analysis. One must select
both a substitution matrix and a model for rates across sites. A simple method is to test all combinations and select the
best one. We describe heuristics to avoid these extensive calculations. Runtime is divided by �2 with results remaining
nearly the same, and the method performs well compared with ProtTest and jModelTest2. Our software, “Smart Model
Selection” (SMS), is implemented in the PhyML environment and available using two interfaces: command-line (to be
integrated in pipelines) and a web server (http://www.atgc-montpellier.fr/phyml-sms/).

Key words: model selection, heuristic procedure, AIC and BIC criteria, web server, PhyML.

Current phylogenetic programs provide users with a wide
variety of models to represent both the variability of rates
across sites (RAS) and the substitution process. With proteins,
a large number of substitution matrices have been inferred for
various protein types (e.g., membrane and mitochondrial)
and origins (e.g., mammals and viruses). To select among
these many models, statistical criteria (e.g., AIC [Akaike
1973] and BIC [Schwarz 1978]) are used to find the best
likelihood/model-complexity tradeoff. A simple, standard ap-
proach is to test all models and then select the best one. This
forms the basis of widely used, user-friendly software pro-
grams such as ProtTest for proteins (Abascal et al. 2005).

Here, we introduce a new software tool to achieve this
task: SMS, which stands for “Smart Model Selection.” This tool
is very simple to use, as SMS is fully integrated into the PhyML
web server (fig. 1a and b; Guindon et al. 2010). SMS can also
be used as a standalone application and is freely available for
download (http://www.atgc-montpellier.fr/sms/). SMS uses
heuristic strategies to avoid testing all models and options.
These strategies are partly inspired by Posada and Crandall
(1998) and Darriba et al. (2012). Notably, the latter proposed
a fast method called “model filtering” to focus on the most
promising substitution matrices for DNA, whereas our heu-
ristic for proteins also ranks the matrices based on their prox-
imity to the data being analyzed. Moreover, SMS simplifies
some calculations to save computing time. This is especially
relevant in a pipeline context for running extensive phyloge-
netic analyses, for example, to study protein families. Below,
we summarize the main features of SMS and its performance
compared with the exhaustive approach, as well as to
jModelTest2 (Darriba et al. 2012) and ProtTest. Complete
details on algorithms, benchmark data sets, and comparison
results are available in Supplementary Material.

With proteins, all substitution matrices available in PhyML
are also available in SMS (fig. 1c, 17 matrices). Moreover, users
can add their own matrices. All matrices can be used with the

optionþF (amino-acid frequencies are estimated from the
data) and �F (preestimated frequencies). SMS only has two
options to model RAS:þC (gamma distribution) andþCþI
(one class of invariant sites is added). Extensive comparisons
(supplementary table S4, Supplementary Material online)
with 500 representative protein data sets showed that
theþI option alone is rarely selected (1/500 with AIC,
4/500 with BIC), and the same holds for the�C�I or “none”
option (3/500 with AIC, 4/500 with BIC). Protein multiple
sequence alignments (MSAs) usually have few constant sites
(median proportion in our data sets� 3%), and we expect a
high variability of site rates caused by the variability of func-
tional and structural constraints acting along protein se-
quences. These results and choices are thus biologically
consistent. SMS has a total of 17 (matrices) x 2 (þF/�F) x
2 (RAS)¼ 68 models. On average, SMS computes the likeli-
hood value for only�30 models. Computing time is divided by
�2 as compared with exhaustive calculations using the same
models, and �3.5 compared with ProtTest (table 1), which
explores a larger set of models exhaustively (120, supplemen-
tary table S5, Supplementary Material online). Based on the
user’s selected criterion (AIC/BIC), the basic principle in SMS is
as follows: i) using a BioNJ tree topology (Gascuel 1997), SMS
estimates the branch lengths and model parameters for LG (Le
and Gascuel 2008) and the two RAS options; ii) using the “most
promising” RAS option with LG, SMS selects the best substi-
tution matrix andþF/�F option; to avoid computing bothþF
and �F options systematically, the matrices are ranked based
on the similarity of the amino-acid frequencies in the data and
those preestimated in the matrix; iii) SMS selects the best
“decoration” (i.e., RAS andþF/�F options) for the best matrix.
The gain in computing time is explained by the fact that, for
most substitution matrices, SMS performs only 1 or 2 likeli-
hood evaluations per matrix (1.75 on average, corresponding to
different decorations), compared with four for the exhaustive
approach, which evaluates all decorations for all matrices.
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Computations with DNA are simpler than with proteins,
as today’s MSAs are most often large enough for GTR to be
best compared to other substitution matrices. Moreover, the
simplest matrices are not satisfactory because they do not
account for the transition/transversion ratio and/or unequal
base frequencies. Experiments with 500 representative MSAs
confirmed these hypotheses, and are congruent with the
large-scale study of (Arbiza et al. 2011). With AIC, GTR is
best for 343/500 MSAs, whereas JC69, K80, and F81 are all
best with 9/500 MSAs only (supplementary table S3,
Supplementary Material online). However, with BIC, K80 is
best for 48/500 MSAs. SMS thus uses four substitution ma-
trices: GTR, TN93, HKY85, and K80, which are combined
withþI,þC,þCþI, and “none” (all four RAS options are
useful, supplementary table S3, Supplementary Material

online), that is, a total of 4 x 4¼ 16 models. On average,
SMS computes the likelihood value of �6 models with AIC
and 7.5 with BIC, thus dividing the computing time by�2 as
compared to the exhaustive approach using the same mod-
els. Based on the user’s selected criterion (AIC/BIC), the basic
principle in SMS as follows: i) using a BioNJ tree topology, SMS
estimates the branch lengths and model parameters for GTR
and the four RAS options; ii) using the “most promising” RAS
option with GTR, SMS selects the best matrix in a stepwise
manner: SMS compares GTR and TN93; if GTR is better, then
SMS stops and keeps GTR; otherwise, SMS compares HKY85
to TN93, and so on (remember that GTR, TN93, HKY85, and
K80 are nested); iii) SMS selects the best RAS option for the
best matrix. This simple approach, combined with a relatively
small set of models, makes SMS nearly as fast as jModelTest2

FIG. 1. Interface, input, output, models, and options. (A) By default, the substitution model is selected by SMS using AIC; alternatively, the user may
choose BIC or select the model manually. (B) The output contains standard PhyML results and the model selected by SMS with detailed
information. (C) Models and options available in SMS.
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using the fast “model filtering” option (supplementary fig. S1,
Supplementary Material online).

Despite substantial gains in computing time, the results of
SMS are nearly the same as those obtained with the exhaus-
tive approach using the same models, and SMS performs well
compared with jModelTest2 and ProtTest (table 1). To
benchmark these methods, we used 500 DNA and 500 pro-
tein MSAs, corresponding to the first MSAs submitted to the
PhyML Web server since the beta test version of SMS was
made available (April 2015). No selection was performed, so
these data sets are representative of the MSAs commonly
used for phylogenetic analyses. Some of these MSAs are
very small (e.g., 231 amino acids in total, with 11 taxa, and
231 sites); some are very large (e.g., 14,160,098 amino acids);
some contain more than 1,000 taxa; and some have a huge
number of sites (e.g., 52,092 nucleotidic sites). To confirm our
findings, we also reused the 100 medium-size MSAs used to
benchmark PhyML 3.0 (Guindon et al. 2010). The results with
this second, independent set of MSAs, are fully congruent
(supplementary table S6, Supplementary Material online).
We launched jModelTest2 and ProtTest with fast options,
since SMS was designed to be fast. Moreover, we selected
the options to make these two programs as close as possible
to SMS in terms of substitution matrices, RAS modeling, and
equilibrium frequency estimation. The results are shown in
table 1. To summarize: SMS performs well compared with the
exhaustive approach, in most cases finding identical or similar
models regarding AIC/BIC values, whereas the gain in com-
puting time is quite substantial. Moreover, SMS tends to se-
lect better models than jModelTest2 with the fast “model
filtering” option, and is much faster than ProtTest, thanks
to tailored heuristics. The gains in AIC/BIC with SMS are
partly explained by its set of substitution matrices, notably
MtZoa for proteins and TN93 for DNA, which are not avail-
able in ProtTest and jModelTest2 (with default options). With
proteins, SMS and ProtTest find the same model in most
cases; when the models differ (35/500 MSAs), ProtTest finds
a better model than SMS in �60% of the cases, but the
average AIC/BIC difference is in favor of SMS. With DNA,
the sets of models are more different than with proteins,

and SMS and jModelTest2 differ for 120 and 192 MSAs
with AIC and BIC, respectively; when the models differ, SMS
finds a better model than jModelTest2 in �75% of the cases,
and the average AIC/BIC difference is clearly in favor of SMS.
The computing time gains of SMS with proteins are quite
substantial in practice (supplementary fig. S1, Supplementary
Material online). For example, ProtTest requires more than
100 h to process the largest MSA (1,151 taxa and 798 sites),
whereas SMS requires �20 h using the same computer.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Table 1. Method Comparison with 500 DNA, and 500 Protein Representative MSAs.

Methods Data Criterion Same
Model

SMS
Better

SMS
Worse

D AIC & D BIC
per taxon per site

# PhyML Runs
SMS/other

Speed
Increase

SMS versus Exhaustive DNA AIC 486 na 14 4.6 x 10�5 6.1/16 1.9–2.0
BIC 476 na 24 8.0 x 10�5 7.5/16 1.7–1.9

SMS versus Exhaustive Protein AIC 494 na 6 3.7 x 10�3 29.3/68 2.2–2.1
BIC 497 na 3 3.8 x 10�3 30.2/68 2.1–2.0

SMS versus jModelTest2 DNA AIC 380 85 35 �2.5 x 10�5 6.1/7.8 1.1–0.8
BIC 308 151 41 �1.1 x 10�4 7.5/7.8 0.9–0.8

SMS versus ProtTest Protein AIC 465 14 21 �8.9 x 10�4 29.3/120 3.7–3.4
BIC 465 12 23 �7.5 x 10�4 30.2/120 3.5–3.2

NOTE.—The “Exhaustive” approach uses the same set of models as SMS and evaluates all of them. “Same model”: number of times (among 500 MSAs) where both methods
return the same model; “SMS better”: number of times where the model returned by SMS has a lower AIC/BIC value; “SMS worse”: number of times where the model returned
by SMS has a higher AIC/BIC value; “D AIC and D BIC per taxon per site”: when both models were different, we computed the difference in AIC/BIC per taxon per site, and
averaged the results over all MSAs showing a model difference (a negative/positive value means that SMS’s model is better/worse in terms of AIC/BIC); “# PhyML runs”: number
of PhyML runs for one method versus the other; “Speed increase”: for each MSA, we computed the computing time ratio of the method being compared with respect to SMS
(e.g., 2 means that SMS is twice as fast), with the column displaying: i) the median value among the 500 speedup ratios for all MSAs, ii) the median value for the 50 largest MSAs
(number of sites x number of taxa; see supplementary fig. S1, Supplementary Material online for additional computing time results with large MSAs).
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