
HAL Id: lirmm-01794757
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01794757

Submitted on 17 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Finding Local Genome Rearrangements
Pijus Simonaitis, Krister M. Swenson

To cite this version:
Pijus Simonaitis, Krister M. Swenson. Finding Local Genome Rearrangements. 17th International
Workshop on Algorithms in Bioinformatics (WABI 2017), Aug 2017, Boston, United States. pp.24:1–
24:13, �10.4230/LIPIcs.WABI.2017.24�. �lirmm-01794757�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01794757
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Finding Local Genome Rearrangements�

Pijus Simonaitis

1
and Krister M. Swenson

2

1 ENS Lyon, Lyon, France

pijus.simonaitis@ens-lyon.fr

2 LIRMM, CNRS – Université Montpellier, Montpellier, France; and

Institut de Biologie Computationnelle (IBC), Montpellier, France

swenson@lirmm.fr

Abstract
The Double Cut and Join (DCJ) model of genome rearrangement is well studied due to its math-
ematical simplicity and power to account for the many events that transform genome architec-
ture. These studies have mostly been devoted to the understanding of minimum length scenarios
transforming one genome into another. In this paper we search instead for DCJ rearrangement
scenarios that minimize the number of rearrangements whose breakpoints are unlikely due to
some biological criteria. We establish a link between this Minimum Local Scenario (MLS)
problem and the problem of finding a Maximum Edge-disjoint Cycle Packing (MECP) on
an undirected graph. This link leads us to a 3/2-approximation for MLS, as well as an exact
integer linear program. From a practical perspective, we briefly report on the applicability of our
methods and the potential for computation of distances using a more general DCJ cost function.

1998 ACM Subject Classification G.2.1 Combinatorial Algorithms, G.2.2 Graph Algorithms,
J.3 Life and Medical Sciences

Keywords and phrases genome rearrangement, double cut and join, maximum edge-disjoint
cycle packing, Hi-C, NP-complete, approximation algorithm

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.24

1 Overview

The problem of sorting genomes by a prescribed set of biologically plausible rearrangements
has been a central problem in comparative genomics for roughly a quarter century. The
Double Cut and Join (DCJ) model covers a diverse set of these possible rearrangements
while being grounded in a very simple mechanism [15, 2]. An important step forward is
the development of methodology to find plausible rearrangement scenarios using biological
constraints.

We recently introduced a model for weighting DCJs that is suitable for representing
certain biological constraints. The model groups breakpoint regions between adjacent genes
(or syntenic blocks) into equivalence classes that are likely to participate in a rearrangement
[14]. The 3D spacial proximity of breakpoint regions could be used as such, and the data is
becoming increasingly available due to an experiment called Hi-C [9, 13]. (The pertinence of
this model is discussed in Section 7.) The model colors adjacencies for use with a binary
cost function, where a DCJ acting on adjacencies with the same color is of zero cost while
those acting on di�erent colors are of cost one. We showed that the problem of finding – out

� This work is partially supported by the IBC (Institut de Biologie Computationnelle) (ANR-11-BINF-
0002), by the Labex NUMEV flaship project GEM, and by the CNRS project Osez l’Interdisciplinarité.

© Pijus Simonaitis and Krister M. Swenson;

licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).

Editors: Russell Schwartz and Knut Reinert; Article No. 24; pp. 24:1–24:13

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

24:2 Finding Local Genome Rearrangements

of all minimum length rearrangement scenarios – a scenario that minimizes the number of
costly moves, takes polynomial time [14].

In this paper we disregard the length of the scenario and instead focus solely on the
number of costly moves. We show that the Minimum Local Scenario problem is NP-Hard,
while admitting a 3/2-approximation. This is done by exploiting a relationship to the
Maximum Edge-disjoint Cycle Packing problem, a problem which was first linked to
genome rearrangement in a di�erent way by Alberto Caprara (sorting by unsigned reversals
is NP-Hard [4]).

In our method, MLS is transformed into an edge elimination problem on a junction
graph, representing the transitions between colors encountered when traversing the connected
components of the adjacency graph. We give an exact formula for the number of costlyy
moves based solely on the number of edges and the number of cycles in the MECP of the
junction graph. We also propose an exact algorithm for MLS that is exponential in the
number of colors and not in the number of genes and discuss an example where this algorithm
is computationally feasible. Finally, we show how to bound the number of non-parsimonious
moves when using a more general cost function.

The paper is organized as follows. Section 2 introduces basic definitions. In Section 3
our main result, relating MLS to MECP by way of the junction graph, is described in the
simplified realm of sets of pairs. In this context, the junction graph is Eulerian. Section 4
extends the results to the general case where the junction graph is not Eulerian. Section 5
presents our algorithmic results. Finally, Section 6 discusses a more general cost function,
while Section 7 reports on practical aspects of coloring adjacencies.

2 Genome and DCJ rearrangements

A genome consists of chromosomes that are linear or circular molecules partitioned into
uniquely labeled directed genes (or equivalently syntenic blocks of genes) and intergenic
regions separating them.

1
2

3 4

The genome depicted above consists of a linear and a circular chromosome each having two
genes. Arrows in the picture indicate the head extremities of the genes. We can represent a
genome by a set of adjacencies between the gene extremities and such a set for a genome from
our example is

)
{1h}, {1t, 2t}, {2h}, {3h, 4t}, {4h, 3t}

*
. Here 1h denotes the head extremity

of a gene 1. An adjacency is either an unordered pair of gene extremities that are adjacent
on a chromosome, called internal adjacency, or a single gene extremity adjacent to one of
the two ends of a linear chromosome, called an external adjacency.

I Definition 1 (Double Cut and Join). DCJ move acts on one or two adjacencies as follows:
1. {a, b}, {c, d} æ {a, c}, {b, d} or {a, d}, {b, c}
2. {a, b}, {c} æ {a, c}, {b} or {b, c}, {a}
3. {a, b} æ {a}, {b}
4. {a}, {b} æ {a, b}

P. Simonaitis and K. M. Swenson 24:3

We first treat a simplified instance of sets of pairs where all the adjacencies are internal
and DCJs can only swap the elements between them in Section 3. Then in Section 4 we show
how genomes can be extended to the sets of pairs and use the previously obtained results to
solve the Minimum Local Scenario problem.

3 Minimum Local Scenario for sets of pairs

3.1 Cost of a DCJ scenario
Given two sets of pairs:

A =
)

{1, 2}, . . . , {2n ≠ 1, 2n}
*

, and
B =

)
{q

1

, q
2

}, . . . , {q
2n≠1

, q
2n}

*
,

with pairs being unordered and (q
1

, . . . , q
2n) being a permutation of (1, . . . , 2n), our goal

is to transform A into B with a sequence of DCJ moves {a, b}, {c, d} æ {a, c}, {b, d} and
{a, b}, {c, d} æ {a, d}, {b, c}.

A coloring of a set of pairs A over a set of colors � is a function col : A æ � partitioning
A into the subsets of di�erent colors. A coloring is used to define the cost of a DCJ move. A
move is local and of zero cost if it acts on the pairs with equal colors and it is non-local and
of cost 1 otherwise. The cost of a sequence of DCJ moves, a DCJ scenario, is the sum of the
costs of its constituent moves.

A DCJ move A æ AÕ transforming a set of pairs A into AÕ will also transform col into
colÕ, a coloring of AÕ. This means that a DCJ scenario transforming A into B will transform
A’s coloring col into B’s coloring colB. For a pair p œ A we use notation (p, col(p)) of a
colored pair. Four di�erent DCJ moves on colored pairs ({a, b}, x) and ({c, d}, y) are allowed
in our model giving four possible outcomes:

({a, c}, x), ({b, d}, y), or ({a, d}, x), ({b, c}, y), or
({a, c}, y), ({b, d}, x), or ({a, d}, y), ({b, c}, x).

The biological interpretation of this model is that intergenic regions are broken and repaired
at their borders with the gene extremities. We discuss the applicability of such a model in
Section 7.

In our previous work [14] we have treated the Minimum Local Parsimonious Scenario

problem.

I Problem 1 (MLPS). For two sets of pairs A, B and a coloring of A find a minimum cost
scenario among the DCJ scenarios of minimum length transforming A into B.

We have shown that MLPS takes polynomial time, however the real evolutionary scenario
might be non-parsimonious. In this paper we study the Minimum Local Scenario problem
which asks for such non-parsimonious scenarios.

I Problem 2 (MLS). For two sets of pairs A, B and a coloring of A find a minimum cost
DCJ scenario transforming A into B.

MLS has the following combinatorial interpretation. Pairs of uniquely labeled balls (set
of pairs A) are partitioned into the bins (coloring of A). Given a partition T of the balls into
pairs (set of pairs B), find a minimum length sequence of ball swaps between the bins (DCJ
moves) so that for all pairs {a, b} œ T , a and b end up in the same bin (A is transformed
into B).

WABI 2017

24:4 Finding Local Genome Rearrangements

3.2 Adjacency and junction graphs
The Adjacency graph was introduced in [2] for the study of DCJ rearrangements. We
introduce a transformation of the adjacency graph, called a junction graph, that incorporates
the information on a coloring.

I Definition 2 (Adjacency graph). For two sets of pairs A and B the adjacency graph
AG(A, B) is defined as a bipartite multi-graph whose vertices are A fi B and for each p œ A

and q œ B there are exactly |p fl q| edges joining these two vertices.

I Definition 3 (Junction graph). For two sets of pairs A, B and a coloring col of A over �
we define a multi-graph J(A, B, col) = (�, E). For every pair {a, b} œ B we add an edge
(x, y) to E such that x and y are the colors of the pairs of A adjacent to {a, b} in AG(A, B).

I Example 4. For two sets of pairs A, B and a coloring col of A we present below AG(A, B)
on the left and J(A, B, col) on the right.

A =
)

({1, 2}, t), ({3, 4}, x), ({5, 6}, y), ({7, 8}, z), ({9, 10}, x)
*

B =
)

{2, 3}, {4, 5}, {6, 7}, {8, 1}, {9, 10}
*

A

B

t
1 2

x
3 4

y
5 6

z
7 8

x
9 10

2 3 4 5 6 7 8 1 9 10 t

x y

z

A DCJ move ({1, 2}, t), ({5, 6}, y) æ ({5, 2}, t), ({1, 6}, y) transforming A into AÕ transforms
adjacency and junction graphs as follows.

AÕ

B

t
5 2

x
3 4

y
1 6

z
7 8

x
9 10

2 3 4 5 6 7 8 1 9 10 t

x y

z

All connected components of AG(B, B) are cycles of length 2 thus at the end of a DCJ
scenario transforming A into B we are left with a junction graph whose edges are all loops,
we call such a graph terminal.

I Definition 5 (A DCJ move on a graph). Edges (x, y) and (z, t) of a graph are deleted and
replaced by either (x, z) and (y, t) or (x, t) and (y, z).

I Lemma 6. For a DCJ scenario of cost w transforming A into B there exists a DCJ
scenario of length at most w transforming J(A, B, col) into a terminal graph and vice versa.

Proof. From Example 4 it should be clear that for every DCJ move A æ AÕ we have that
a transformation J(A, B, col) to J(AÕ, B, colÕ) is a DCJ move on a graph. If a DCJ move
A æ AÕ is of zero cost, then J(A, B, col) = J(AÕ, B, colÕ) and such moves will be omitted
from a DCJ scenario on a graph. This means that a DCJ scenario of cost w transforming A

(and its coloring col) into (B and its coloring colB) provides us with a DCJ scenario of length
at most w on a graph transforming J(A, B, col) into a terminal graph J(B, B, colB). On
the other hand for every DCJ move on a graph J æ J Õ a DCJ move A æ AÕ can be found
such that J(AÕ, B, colÕ) = J Õ. For any DCJ scenario on a graph of length w transforming

P. Simonaitis and K. M. Swenson 24:5

J(A, B, col) into a terminal graph we obtain a DCJ scenario of length w, thus of cost at most
w, transforming A and its coloring col into C and its coloring colC such that J(C, B, colC) is
terminal. This means that C’s pairs belonging to the same connected component of AG(C, B)
are of the same color. A DCJ scenario transforming C into B and only acting on the pairs
belonging to the same connected components of an adjacency graph can be easily found.
Such a scenario is of zero cost and at the end we obtain a DCJ scenario transforming A into
B of cost at most w. J

3.3 Linking DCJ scenarios and Maximum Edge-disjoint Cycle Packings
Using Lemma 6 we can shift our attention from a DCJ scenario on a set of pairs to a DCJ
scenario on a junction graph J . From now on we will shorten “DCJ move on a graph” to
“DCJ move”.

I Definition 7 (Maximum Edge-disjoint Cycle Packing (MECP)). Maximum Edge-

disjoint Cycle Packing of a graph G is a largest set of edge-disjoint cycles in G.

For a graph G = (V, E) we note E(G) = |E| and c(G) the size of its MECP. For a junction
graph J we write w(J) to indicate the minimum length of a DCJ scenario transforming J

into a terminal graph.

I Theorem 8. For a junction graph J we have w(J) = E(J) ≠ c(J).

Proof. It is easy to transform a cycle of length n > 1 into n loops in n≠1 DCJ moves. Given
a cycle packing C of J we construct a DCJ scenario transforming J into a terminal graph
while transforming all of its cycles separately. The length of such a scenario is E(J)≠ |C|, and
if we take a Maximum Edge-disjoint Cycle Packing we obtain w(J) Æ E(J) ≠ c(J).

Now take a scenario of m DCJ moves transforming J = J
0

into a terminal graph Jm,
with Jk being the junction graph after k Ø 0 moves of the scenario. We enumerate J ’s edges
E = {e

1

, . . . , eE(J)

} and define their partition into singletons P
0

= {{1}, . . . , {E(J)}}. A
move k of a scenario acts on two edges ei and ej of Jk≠1

, deleting them and introducing
two new edges to give Jk. We call one of these edges ei and another ej , preserving the
enumeration of the edges of Jk. Let Si and Sj be the subsets of a partition Pk≠1

including
ei and ej respectively. We define a partition Pk of {e

1

, . . . , eE(J)

} obtained from Pk≠1

by
merging Si and Sj into Si fi Sj . At the end we obtain a partition Pm of cardinality at least
E(J) ≠ m as there were at most m merges on the way. We will show that Pm is a cycle
packing of J .

For J ’s vertices V , a subset S µ {e
1

, . . . , eE(J)

} and k œ {0, . . . , m}, we define SJk = (V, S)
a subgraph of Jk. For any graph G and its vertex v we denote dG(v) the degree of v in G.

I Lemma 9. For k œ {0, . . . m}, a subset S in a partition Pk, and a vertex v of J we have

dSJ (v) = dSJk
(v).

Proof. J
0

= J , thus the equality is true for k = 0. We suppose that equality is true for every
S and v with k ≠ 1 and proceed by induction on k. We fix a vertex v and a subset S œ Pk.
The k-th move of a scenario acts on the edges ei and ej that by construction belongs to the
same subset SÕ œ Pk. There are three possibilities:
1. (SÕ ”= S) In this case S œ Pk≠1

and SJk = SJk≠1 , as the edges in S are una�ected by a
DCJ move. Using the inductive hypothesis we obtain

dSJk
(v) = dSJk≠1

(v) = dSJ (v) .

WABI 2017

24:6 Finding Local Genome Rearrangements

2. (SÕ = S and S = Si fi Sj with Si and Sj being the di�erent subsets in Pk≠1

including ei

and ej respectively) SJk is obtained from SJk≠1 via a DCJ move and, as a DCJ move
does not a�ect the degrees of the vertices we obtain, we use the inductive hypothesis and
the fact that S = Si fi Sj to get

dSJk
(v) = dSJk≠1

(v) = dSi
Jk≠1

(v) + dSj
Jk≠1

(v) = dSi
J
(v) + dSj

J
(v) = dSJ (v) .

3. (SÕ = S and ei, ej already present in the same subset S of Pk≠1

) SJk is obtained from
SJk≠1 via a DCJ move which does not a�ect the degrees of the vertices and thus we
obtain (using inductive hypothesis)

dSJk
(v) = dSJk≠1

(v) = dSJ (v) .

As equality is preserved by a DCJ move and true for k = 0 we obtain the result by
induction. J

All edges of Jm are loops, thus for every subset S in Pm and vertex v of J , dSJm
(v) is

even and so, using Lemma 9, we know that dSJ (v) is even as well. This means that the
connected components of SJ are Eulerian and thus S is a union of J ’s cycles. As Pm contains
at least E(J) ≠ m subsets, we know that it partitions the edges of J into at least E(J) ≠ m

cycles. If we take a scenario of length w(J) we obtain the inequality c(J) Ø E(J) ≠ w(J),
which ends the proof of Theorem 8. J

4 Minimum Local Scenario for genomes

4.1 Cost of a DCJ scenario
Given two genomes with enumerated extremities

A =
)

{1, 2}, . . . , {2n ≠ 1, 2n}, {2n + 1}, . . . , {2n + 2m}
*

,

B =
)

{q
1

, q
2

}, . . . , {q
2l≠1

, q
2l}, {q

2l+1

}, . . . , {q
2n+2m}

*
,

and (q
1

, . . . , q
2n+2m) being a permutation of (1, . . . , 2n + 2m). Our goal is to transform A

into B using DCJ moves defined in Definition 1. As in the case of pairs-only, we define a
coloring col : A æ � which is transformed by DCJ moves as follows:
1. ({a, b}, x), ({c, d}, y) æ ({a, c}, x), ({b, d}, y) or ({a, d}, x), ({b, c}, y) or

({a, c}, y), ({b, d}, x) or ({a, d}, y), ({b, c}, x)
2. ({a, b}, x), ({c}, y) æ ({a, c}, x), ({b}, y) or ({a, c}, y), ({b}, x) or

({b, c}, x), ({a}, y) or ({b, c}, y), ({a}, x)
3. ({a, b}, x) æ ({a}, x), ({b}, z) or ({a}, z), ({b}, x) with any color z

4. ({a}, x), ({b}, y) æ ({a, b}, x) or ({a, b}, y)

The cost of a DCJ move is equal to 0 if z = x or x = y, 1 otherwise.

4.2 Genome extensions
A genome can be extended into a set of pairs by adding artificial gene extremities that
represent telomeres marking the ends of each linear chromosome.

P. Simonaitis and K. M. Swenson 24:7

I Definition 10 (Genome extensions). For a genome A we define a set A
+

of the sets of pairs
that are genome extensions of A. Â œ A

+

is of a form:
)

{1, 2}, . . . , {2n ≠ 1, 2n}, {2n + 1, ¶
1

}, . . . , {2n + 2m, ¶
2m},

{¶
2m+1

, ¶
2m+2

}, . . . , {¶
2m+2l≠1

, ¶
2m+2l}

*

with l œ N and (¶
1

, . . . , ¶
2m+2l) being a permutation of (2n + 2m + 1, . . . , 2n + 4m + 2l).

A pair {i, j} with i, j > 2n + 2m will be called a telomeric pair. By construction,
adjacencies of a genome and non-telomeric pairs of a genome extension can be mapped one
to one as internal adjacencies of a genome are present in the genome extension, and external
adjacencies are simply complemented by an artificial gene extremity. A coloring col of A can be
trivially extended to a coloring ĉol of Â œ A

+

by keeping the same colors for the non-telomeric
pairs and choosing any colors for the telomeric ones. For every DCJ move A æ AÕ acting on
two adjacencies of a genome there is an induced DCJ move Â æ ÂÕ of the same cost with ÂÕ œ
AÕ

+

acting on the corresponding pairs of a genome extension. For example ({a}, x), ({b}, y) æ
({a, b}, x) induces ({a, ¶

1

}, x), ({b, ¶
2

}, y) æ ({a, b}, x), ({¶
1

, ¶
2

}, y) and ({a, b}, x)({c}, y) æ
({a, c}, x), ({b}, y) induces ({a, b}, x), ({c, ¶

1

}, y) æ ({a, c}, x), ({b, ¶
1

}, y). A DCJ move of
the form ({a, b}, x) æ ({a}, x), ({b}, z) or ({a}, z), ({b}, x) acting on a single adjacency is
di�erent, as in this case we need a telomeric adjacency of color z to be present in a genome
extension. For example ({a, b}, x) æ ({a}, x), ({b}, z) induces ({a, b}, x), ({¶

1

, ¶
2

}, z) æ
({a, ¶

1

}, x), ({b, ¶
2

}, z) on a genome extension including ({¶
1

, ¶
2

}, z).

I Lemma 11. For a DCJ scenario transforming genome A into B and a coloring of A there
exist genome extensions Â œ A

+

, B̂ œ B
+

and a scenario of the same cost transforming Â

into B̂.

Proof. In a DCJ scenario there is a certain number l of the DCJ moves acting on a single
adjacency. We take a genome extension Â œ A

+

with l telomeric pairs. Every DCJ move
({a, b}, x) æ ({a}, x), ({b}, z) or ({a}, z), ({b}, x) will induce a move acting on a di�erent
telomeric pair of a genome extension and its color will be a color z required by that DCJ
move on a genome. In this way every DCJ move on a genome will induce a move on a genome
extension and after a scenario of cost w we will end up with B̂, an extension of genome
B. J

I Lemma 12. For a DCJ scenario transforming Â œ A
+

into B̂ œ B
+

and a coloring of A

there exists a DCJ scenario of the same cost or smaller transforming A into B.

Proof. We start with a couple (A, Â) and apply a scenario transforming Â into B̂ step by
step, transforming A on the way. After the first k moves of a scenario whose cost is wk

we get a couple (Ak, Âk) with Âk œ Ak
+

and Ak obtainable from A by a scenario of cost at
most wk. A couple (Ak+1, Âk+1) is constructed as follows. The k + 1st move of a scenario is
Âk æ Âk+1.
1. If Âk+1 œ Ak

+

, then output (Ak, Âk+1).
2. If Âk+1 /œ Ak

+

, then we can easily find a genome C such that Âk+1 œ C
+

and there is a
DCJ move Ak æ C of the same cost as Âk æ Âk+1. Output (C, Âk+1).

Now Âk+1 œ Ak+1

+

and the scenario transforming A into Ak+1 is of cost at most wk+1

. We
continue until we obtain (B, B̂) with a scenario transforming A into B of cost at most w. J

I Definition 13 (Adjacency graph). For two genomes A and B the adjacency graph AG(A, B)
is defined as a bipartite multi-graph whose vertices are A fi B and for each p œ A and q œ B

there are exactly |p fl q| edges joining these two vertices.

WABI 2017

24:8 Finding Local Genome Rearrangements

I Definition 14 (Junction graph). For two genomes A, B and a coloring col of A over � we
define a multi-graph J(A, B, col) = (�, E). For every internal adjacency {a, b} œ B we add
an edge (x, y) to E such that x and y are the colors of the pairs of A adjacent to {a, b} in
AG(A, B).

We define an Eulerian extension of a graph to be an Eulerian graph obtained from the
initial one by adding some edges. By construction J(Â, B̂, ĉol) is an Eulerian extension of
J(A, B, col). We close this section by relating Eulerian extensions of J(A, B, col) to the
junction graphs of genome extensions, the proof is provided in the appendix.

I Lemma 15. For every Eulerian extension J Õ of J(A, B, col) there exists genome extensions
Â œ A

+

and B̂ œ B
+

such that J(Â, B̂, ĉol) and J Õ have exactly the same non-loop edges.
We say that such graphs are loop-equal.

4.3 Minimum Local Scenario
I Theorem 16. The minimum cost w of a DCJ scenario transforming genome A into B is
E(J) ≠ c(J) with J = J(A, B, col).

Proof. For a cycle packing C of J of cardinality c(J) we define an Eulerian extension J Õ

with every edge of J not belonging to C duplicated, we denote the number of such edges
by k. A union of C and k cycles of length 2 created by the added edges will be a cycle
packing C Õ of J Õ. Using Theorem 8 we obtain a DCJ scenario of length E(J Õ) ≠ |C Õ| =
E(J) + k ≠ c(J) ≠ k = E(J) ≠ c(J) transforming J Õ into a terminal graph. Using Lemma 15
we obtain the sets of pairs Â œ A

+

and B̂ œ B
+

such that J(Â, B̂, ĉol) is loop-equal to J Õ.
Using Lemma 6 we obtain a DCJ scenario of cost at most E(J) ≠ c(J) transforming Â into
B̂ from which we obtain a DCJ scenario of cost at most E(J) ≠ c(J) transforming A into B

while using Lemma 12, meaning that w Æ E(J) ≠ c(J).
For a DCJ scenario of cost w transforming A into B we use Lemma 11 to obtain the sets

of pairs Â œ A
+

and B̂ œ B
+

, and a scenario of cost w transforming Â into B̂. This leads to
a DCJ scenario transforming J Õ = J(Â, B̂, ĉol) into a terminal graph in at most w moves
using Lemma 6. Theorem 8 gives us a cycle packing C Õ of J Õ such that w Ø E(J Õ) ≠ |C Õ|.
We then define C to be the union of the cycles in C Õ consisting entirely of the edges of
J = J(A, B, colA). While counting edges and cycles we obtain

w Ø E(J Õ) ≠ |C Õ| = E(J) ≠ |C| + E(J Õ) ≠ E(J) ≠ |C Õ \ C|.

Due to the construction of C every cycle in C Õ \ C admits at least one edge from J Õ not
belonging to J and thus E(J Õ) ≠ E(J) Ø |C Õ \ C|. So we have inequality w Ø E(J) ≠ |C| Ø
E(J) ≠ c(J), which ends the proof. J

5 Algorithms for MLS

5.1 NP-completeness of MLS
I Theorem 17. The decision version of Minimum Local Scenario is NP-complete.

Proof. The decision version of MLS is clearly in NP. We reduce the decision version of
MECP on Eulerian graphs, which is NP-hard [7] (and APX-hard [5]), to MLS. Without loss
of generality, take an instance G = (V, E) and a bound k of MECP, where G is Eulerian

P. Simonaitis and K. M. Swenson 24:9

and connected. Consider an Eulerian cycle u
1

, u
2

, . . . , un, u
1

of G and construct genomes

A =
)

{1, 2}, {3, 4}, . . . , {2n ≠ 1, 2n}
*

, and
B =

)
{2, 3}, {4, 5}, . . . , {2n, 1}

*
,

and a coloring col over the set V such that col
!
{2i ≠ 1, 2i}

"
= ui for all i œ {1, . . . , n} to

obtain J(A, B, col) = G. Theorem 16 says that an optimal solution to MLS of cost w(G)
implies the existence of a cycle packing of size E(G) ≠ w(G). Thus there is an MECP of
size k if and only if E(G) ≠ w(G) Ø k. J

5.2 3/2-approximation for MLS
For a graph G we denote the number of edges by E(G), the number length one and two
cycles by L(G) and B(G) respectively. A simple counting argument leads to the following
theorem proved in the appendix.

I Theorem 18. For genomes A, B and a coloring col of A, the cost w
MLS

of a MLS

transforming A into B respects

w
MLS

Ø 2
3E(J) ≠ 1

3B(J) ≠ 2
3L(J), where J = J(A, B, col).

In Theorem 16 we have shown how a cycle packing C of J = J(A, B, col) gives a DCJ
scenario of cost w Æ E(J) ≠ |C| transforming A into B. If we take C consisting of B(J)
pairwise edge-disjoint cycles of length two and L(J) loops, we obtain a scenario of cost
w Æ E(J) ≠ B(J) ≠ L(J) = wÕ. Using Theorem 18 we have

w
MLS

Ø 2
3E(J) ≠ 1

3B(J) ≠ 2
3L(J) = 2

3(wÕ + 1
2B(J))

and obtain

– = w

w
MLS

Æ 3
2

w

wÕ + 1

2

B(J)
Æ 3

2 .

5.3 An exact algorithm for MLS
Consider a junction graph J with L(J) loops and B(J) length two cycles. A simple observation
that there exists a MECP of J that includes all of these cycles allows us to simplify the
problem by removing them from J . This leaves us with a simple graph J̄ such that the cost
of MLS is equal to E(J) ≠ L(J) ≠ B(J) ≠ c(J̄). A straightforward way to compute c(J̄) is
to take all of J̄ ’s simple cycles and solve the Maximum Set Packing problem on their sets
of edges formulated as an integer linear program. The number of simple cycles might be
exponential, but it depends on the size of a simple graph J̄ having |�| vertices and not the
number of genes. We see in Section 7 that our algorithm solves MLS on instances between
drosophila melanogaster and yakuba.

6 Towards a more general cost function

Our work opens the door to the development of a more general model for genome rear-
rangements with positional constraints, where local moves are attributed nonzero cost. In
such a model the costs of local and non-local moves would be respectively ÊL and ÊN with
0 < ÊL < ÊN . For any DCJ scenario fl we will denote Ê(fl), N(fl) and L(fl) as its cost, its

WABI 2017

24:10 Finding Local Genome Rearrangements

number of non-local, and local moves respectively. We categorize the di�erent DCJ problems
based on the cost pair (ÊL, ÊN) with 0 Æ ÊL Æ ÊN where we look for a fl that minimizes the
cost function Ê(fl) = ÊLL(fl) + ÊN N(fl):

(0, 1) is the Minimum Local Scenario problem,
(1, 1) is the traditional Double Cut and Join problem,
(ÊL, ÊN) with ÊL

ÊN ≠ÊL
> n, where n is the number of adjacencies, is the Minimum Local

Parsimonious Scenario problem,
(ÊL, ÊN) with 0 < ÊL < ÊN is the problem that we consider in this section.

It is clear that for positive k the cost pairs (ÊL, ÊN) and (kÊL, kÊN) define the same
minimum scenarios, thus for 0 < ÊL < ÊN it su�ces to treat the normalized pair (1, 1 + –)
with a positive –. For a scenario fl we denote ”(fl) = N(fl) + L(fl) ≠ dDCJ the di�erence of
its length and the length of a parsimonious DCJ scenario. If ” were small we would have an
algorithmic tool in the search for the genomic distances. For (ÊL, ÊN) = (1, 1 + –), we have

Ê(fl) = L(fl) + N(fl) + N(fl)– = ”(fl) + dDCJ + N(fl)–,

By dMLP S and dMLS we denote the numbers of non-local moves in Minimum Local

Parsimonious Scenario and Minimum Local Scenario respectively. For a scenario flú

minimizing the cost L(fl)+(1+–)N(fl) we have dDCJ +dMLP S– Ø Ê(flú) as dDCJ +dMLP S–

is the cost of a MLPS and subtracting dDCJ we obtain dMLP S– Ø ”(flú) + N(flú)–. By
definition N(flú) Ø dMLS and thus we obtain

(dMLP S ≠ dMLS)– Ø ”(flú).

In general dMLP S ≠ dMLS can be large. For the experiments in Section 7, however, it was
found to be smaller than 0.8 on average. This means that finding a scenario of minimum
cost among those with a small ”, for example ” = 1, might be of interest in practice.

7 The practice of coloring adjacencies

In this section we address the applicability of our model that colors adjacencies. We summarize
our experimental results on drosophila melanogaster and yakuba reported in [12].

We use the Hi-C data for drosophila as a similarity function on the pairs of the adjacencies
of a genome. We generate colorings using a centroid-based clustering [10]; the adjacencies
are clustered based on Hi-C similarity, and two adjacencies get the same color if they are in
the same cluster. Weights are assigned to the colorings based on how well they respect the
within-clusters similarity. MLS is then computed on the colorings.

The first positive result reported in [12] is that, despite the NP-hardness of the Minimum

Local Scenario problem, it can be computed exactly (using our algorithms from Section 5.3)
for all of the colorings encountered between drosophila melanogaster and yakuba (the DCJ
distance being roughly 90).

We find that colorings created uniformly at random have high MLS cost, while colorings
created using the Hi-C data have low MLS cost. As we introduce randomness to the good
colorings, a significant correlation between MLS and the weights of the colorings is observed
no matter how many clusters are created. Indeed, the Pearson’s correlation is better than
0.77 for all reasonable k, and is as high as 0.92 in some cases.

A significant correlation is also found between the di�erences dMLP S ≠ dMLS , and the
weights of the colorings. Further, for the colorings that were optimized on the similarity
function this di�erence never exceeded 4, and no matter the number of colors assigned, it is

P. Simonaitis and K. M. Swenson 24:11

less than 0.8 on average for both species. The implication is that in many cases MLPS is an
optimal solution for both MLS and the problem considered in Section 6. In all cases J̄ has
less than 25 simple cycles on average, and never more than 300. The hope is that MLS will
remain tractable for the more distant genomes.

8 Conclusion and further work

Aside from problems that consider rearrangement length, little is known about weighted
rearrangement problems [3, 11, 8, 1, 6]. In [14], we showed that with a simple cost function
based on a partition of the adjacencies of one of the genomes into equivalence classes,
one can choose – from the exponentially large set of shortest scenarios – a scenario that
minimizes the number of moves acting across classes. In this paper we showed that the
genome rearrangement problem with an objective function based solely on the cost of DCJs
is NP-Hard, even for a simple binary cost function. We gave a 3/2-approximation derived
from bounds on the sizes of cycles in a cycle packing of the junction graph. We also presented
an exact algorithm and found that an exact solution can be computed between drosophila.

This work opens the door to the development of more complex models of genome
rearrangement with positional constraints, where local moves would be attributed nonzero
cost. To this end we established a useful link between the weighted distance, and the di�erence
between Minimum Local Parsimonious Scenario and Minimum Local Scenario.
Experimental results indicate that a problem of finding a minimum cost scenario among those
of length only slightly greater than that of a parsimonious scenario might be of practical
interest, however further experiments must be conducted to confirm this.

References
1 M. A. Bender, D. Ge, S. He, H. Hu, R. Y. Pinter, S. Skiena, and F. Swidan. Improved bounds

on sorting by length-weighted reversals. J. of Comp. and System Sciences, 74(5):744–774,
2008.

2 Anne Bergeron, Julia Mixtacki, and Jens Stoye. A Unifying View of Genome Rearrange-
ments, pages 163–173. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

3 M. Blanchette, T. Kunisawa, and D. Sanko�. Parametric genome rearrangement. Gene,
172(1):GC11–GC17, 1996.

4 Alberto Caprara. Sorting by reversals is di�cult. In Proceedings of the First Annual
International Conference on Computational Molecular Biology, RECOMB ’97, pages 75–
83, New York, NY, USA, 1997. ACM.

5 Alberto Caprara, Alessandro Panconesi, and Romeo Rizzi. Packing cycles in undirected
graphs. J. of Algorithms, 48(1):239–256, 2003.

6 G. R. Galvão and Z. Dias. Approximation algorithms for sorting by signed short reversals.
In Proc. of the 5th ACM Conf. on Bioinformatics, Comp. Biology, and Health Informatics,
pages 360–369. ACM, 2014.

7 Ian Holyer. The NP-completeness of some edge-partition problems. SIAM Journal on
Computing, 10(4):713–717, 1981.

8 J.-F. Lefebvre, N. El-Mabrouk, E. R. M. Tillier, and D. Sanko�. Detection and validation
of single gene inversions. In Proc. 11th Int’l Conf. on Intelligent Systems for Mol. Biol.
(ISMB’03), volume 19 of Bioinformatics, pages i190–i196. Oxford U. Press, 2003.

9 Erez Lieberman-Aiden, Nynke L. van Berkum, Louise Williams, Maxim Imakaev, Tobias
Ragoczy, Agnes Telling, Ido Amit, Bryan R. Lajoie, Peter J. Sabo, Michael O. Dorschner,
Richard Sandstrom, Bradley Bernstein, M. A. Bender, Mark Groudine, Andreas Gnirke,

WABI 2017

24:12 Finding Local Genome Rearrangements

John Stamatoyannopoulos, Leonid A. Mirny, Eric S. Lander, and Job Dekker. Compre-
hensive mapping of long-range interactions reveals folding principles of the human genome.
Science, 326(5950):289–293, Oct 2009.

10 Hae-Sang Park and Chi-Hyuck Jun. A simple and fast algorithm for k-medoids clustering.
Expert Systems with Applications, 36(2, Part 2):3336 – 3341, 2009.

11 R. Y. Pinter and S. Skiena. Genomic sorting with length-weighted reversals. Genome
Informatics, 13:103–111, 2002.

12 Sylvain Pulicani, Pijus Simonaitis, and Krister M. Swenson. Rearrangement scenarios
guided by chromatin structure. Uploaded to bioRxiv, 2017.

13 Tom Sexton, Eitan Ya�e, Ephraim Kenigsberg, Frédéric Bantignies, Benjamin Leblanc,
Michael Hoichman, Hugues Parrinello, Amos Tanay, and Giacomo Cavalli. Three-
dimensional folding and functional organization principles of the drosophila genome. Cell,
148(3):458–472, Feb 2012.

14 Krister M. Swenson, Pijus Simonaitis, and Mathieu Blanchette. Models and algorithms
for genome rearrangement with positional constraints. Algorithms for Molecular Biology,
11(1):13, 2016.

15 S. Yancopoulos, O. Attie, and R. Friedberg. E�cient sorting of genomic permutations by
translocation, inversion and block interchange. Bioinformatics, 21(16):3340–3346, 2005.

A Proof of Lemma 15

Proof. We will demonstrate with a help of an example how to obtain such Â œ A
+

and
B̂ œ B

+

. We will augment AG(A, B) with adjacencies to obtain a graph AGÕ which at the
end will turn out to be AG(Â, B̂). Our working example will consist of the following graphs:

x y x yA

B

x y z

x

y

z

x

y

z

Figure 1 AG(A, B), J(A, B, col) = J and J

Õ.

We first include into AGÕ every cycle of AG(A, B). Other connected components of AG(A, B)
are paths and to these we add new adjacencies at their end points copying their colors to
obtain the paths for AGÕ. In our example AG(A, B) has no cycles and its three paths give
paths for AGÕ

x x y z z x x y y xxyy

For graphs GÕ = (V, E fi EÕ) and G = (V, E) we will note GÕ ≠ G = (V, EÕ). We take an
Eulerian subgraph H of J Õ ≠ J such that F = (J Õ ≠ J) ≠ H is a forest. For H we create
a union of cycles in AGÕ giving H as its junction graph. F can be partitioned into paths
joining the vertices of an odd degree and for each path in F we create a path consisting of
new adjacencies of corresponding colors in AGÕ. In our example H is a cycle (z, y, z) and F

has a single path (z, x) and these add a cycle and a path to AGÕ.

z y z x

P. Simonaitis and K. M. Swenson 24:13

The vertices of J Õ have even degrees as it is an Eulerian graph. This guarantees that for
every color the number of the pairs added at the ends of the paths in AGÕ is even. We can
group these pairs at the ends of the paths into monochromatic couples and merging these
couples we obtain an AGÕ which is an Eulerian extension of AG(A, B) giving a junction
graph loop-equal to J Õ. A possible grouping of the added end points into monochromatic
couples and their merge leads to AGÕ

x x y z z x x y xyy z y

x

y

z

Figure 2 A junction graph obtained from AG

Õ is loop-equal to J

Õ.

Now it is easy to reconstruct B̂ œ B
+

, Â œ A
+

and its coloring ĉol such that AGÕ =
AG(Â, B̂, ĉol), which guarantees that J(Â, B̂, ĉol) is loop-equal to J Õ. J

B Proof of Theorem 18

Proof. For a cycle packing C, we denote the number of loops in it by L(C), the number
of the cycles of length 2 by B(C) and the number of longer cycles by R(C). We start by
proving Lemma 19

I Lemma 19. For every Eulerian graph G

w(G) Ø 2
3E(G) ≠ 1

3B(G) ≠ 2
3L(G).

Proof. Using Theorem 8 we obtain a cycle packing C of G such that w(G) = E(G) ≠ |C|.
We have |C| = L(C) + B(C) + R(C) and E(G) Ø L(C) + 2B(C) + 3R(C) and from this we
get

w(G) ≠ 2
3E(G) = 1

3E(G) ≠ |C| Ø ≠1
3B(C) ≠ 2

3L(C), so

w(G) Ø 2
3E(G) ≠ 1

3B(C) ≠ 2
3L(C) Ø 2

3E(G) ≠ 1
3B(G) ≠ 2

3L(G). J

Now we take a MECP C of J . It covers an Eulerian subgraph J Õ of J . Using Theorem 16
we have w

MLS

= E(J) ≠ |C| and by counting edges and using Theorem 8 we obtain

w
MLS

= E(J) ≠ |C| = E(J Õ) ≠ |C| + E(J) ≠ E(J Õ) = w(J Õ) + E(J) ≠ E(J Õ)

from which using Lemma 19 and a simple counting argument we obtain

w
MLS

Ø 2
3E(J Õ) ≠ 1

3B(J Õ) ≠ 2
3L(J Õ) + E(J) ≠ E(J Õ) Ø 2

3E(J) ≠ 1
3B(J) ≠ 2

3L(J). J

WABI 2017

