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Atomistic- to Circuit-Level Modeling of Doped
SWCNT for On-Chip Interconnects

Jie Liang, Jaehyun Lee, Salim Berrada, Vihar P. Georgiev, Member, IEEE, Reeturaj Pandey,
Rongmei Chen, Member, IEEE, Asen Asenov, Fellow, IEEE and Aida Todri-Sanial, Member, IEEE

Abstract—In this article, we present a hierarchical model
for doped single-walled carbon nanotube (SWCNT) for on-
chip interconnect application. Our model aims to study CVD
grown SWCNTs while considering defects and contacts to metal
electrodes. Both defects and poor contacts can worsen CNT
conductivities and ultimately deteriorate their interconnect per-
formance. We investigate the fundamental physical mechanism
of charge based doping with the purpose of improving SWCNT
electrical conductivity as well as a potential solution to alleviating
the impact of defects and contact resistances. We present an
atomistic model to study the number of conducting channels
of doped SWCNT with different vacancy defect configurations.
Circuit-level electrical modeling and simulations are performed
on SWCNT interconnect while considering the impact of doping,
defects and contact resistance. Simulation results show up to 80%
resistance reduction by doping where 17% of delay increases
due to defects. Additionally, we observe doping can mitigate the
impact of defects by more than 12%, but there is almost no
improvement in the contact resistance.

Index Terms—carbon nanotubes, defective SWCNT, doped
SWCNT, on-chip interconnect.

I. INTRODUCTION

W ITH technology node scaling down, the performance
of on-chip interconnects is degrading due to increased

parasitics and becoming even more critical for ultra large-scale
integrated (ULSI) circuit performance. Conventional copper
(Cu) interconnects have started to reach their limits by the
continuous shrinking of dimensions and high aspect ratio
requirements [1], [2]. The large current flows and elevated
on-chip temperatures introduce severe electromigration issues
which are worsening with sub 10nm scaling [3]. Finding
a new material to replace Cu as on-chip back-end-of-line
interconnect material has attracted a lot of research interest
and is an on-going quest [4], [5]. Carbon nanotubes (CNTs)
due to their ballistic transport and high thermal conductivity
are considered as a potential candidate for future on-chip
interconnects [6]. Nevertheless, controlling the chirality of
CNTs is still not trivial and under many investigations [7]–
[9].
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Fig. 1. Atomistic simulation geometry of SWCNT (24,0) for interconnect
configuration. Two semi-infinite electrodes, and length of defective region
Lch is set as 42.6 nm.

In this work, we investigate charge-based doping of CNTs
as a means to alleviate the impact of random chirality dis-
tribution. Based on the atomistic simulation, it was shown
that doping degenerates semiconducting to metallic CNTs
which are suitable for interconnect application [10]. We further
investigate doping on CNTs to understand its impact on CNT
conductance and performance. Additionally, we study defects
which might be introduced during the CNT growth process
[11] and consequently can impact the CNT performance and
power dissipation for on-chip interconnects. Moreover, the
metal-CNT contact resistance is also an essential factor for
fast, and reliable interconnect application. In this paper, we
investigate doped, and defective SWCNT including contact re-
sistances for back-end-of-line (BEOL) on-chip interconnects.

II. HIERARCHICAL MODEL

A. Atomistic modeling

Atomistix ToolKit (ATK) [12] implemented by the frame-
work of tight-binding (TB) Non-Equilibrium Greens Function
(NEGF) has been used for atomistic modeling. An extended
TB approach, which includes the third nearest neighbor hop-
ping is used for describing the CNTs Hamiltonian [13]. We
use the ballistic approximation for all transport calculations.

Figure 1 shows the geometry of metallic zigzag SWCNT
(24,0) for an interconnect configuration. Left and right elec-
trodes are semi-infinite electrodes with the defective region
(central region) in between. We only consider vacancy type of
defects where several carbon atoms can be missing from the
SWCNT. In the central region, we distribute vacancy defects
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TABLE I
STATISTICAL VALUES OF DEFECTIVE RESISTANCE FOR

SWCNT (24,0)

Length of SWCNT SWCNT Number of Defective
defective region (nm) Diameter (Ang) defects resistance (kΩ)

42.6 (100UC) 18.8 1 4.028

42.6 (100UC) 18.8 2 12.469

42.6 (100UC) 18.8 3 15.241

42.6 (100UC) 18.8 4 26.380

42.6 (100UC) 18.8 5 31.268

42.6 (100UC) 18.8 6 39.499

randomly from 1 to 6. We compute the defective resistance as
Rdefect=Rtotal-Rballistic where Rtotal is calculated by TB-
NEGF. Please note that the length of the defective region does
not impact the defective SWCNT resistance as was shown in
[14]. The length of the defective region is set to 42.6 nm
and we observe that distribution of defective resistance varies
slightly with the length, however the defective resistance mean
values remain almost unchanged. This is because the inter-
action between defects is shorter than their phase relaxation
length in our atomistic configuration.

Fig. 2 shows a statistical analysis and derivation of the
median value of defective resistance for each configuration.
80 samples were used for the calculation. Specific values are
shown in Table 1. Defective resistance mean value varies from
4 to 40 kΩ with 1 to 6 defects, respectively. In [14], it was
shown a small variation of defective resistance mean value for
both metallic zigzag and armchair SWCNT. Our models and
simulation approach are suitable for both zigzag and armchair
type of SWCNTs.

Density Functional Theory (DFT) with Generalized Gradi-
ent Approximation (GGA) is used to calculate the conductance
G of SWCNT with respect to the different position of Fermi
energy level. We assume a) there are no additional states
due to dopant; b) there is no change of Density of State
(DOS) or energy band structure due to dopant. The number
of conducting channels NC is derived by G/G0, where G0

is the quantum conductance 2e2/h (G0 = 7.748 10−5 S). Fig.
3 shows the results of DFTGGA calculation for deriving the
number of conducting channels as a function of Fermi-level
energy.

B. Electrical compact modeling

Electrical models of CNT for interconnect application have
already been developed and widely used by our community.
Most notably, [15] and [16] have investigated modeling and
simulation of pristine single-walled (SW) and multi-walled
(MW) CNTs for on-chip interconnects. Based on their work,
we explore here the number of conducting channels NC on
CNTs as an important physical parameter for doped CNTs. We
also take into account the resistance due to defects. We develop
a hierarchical model and simulation method to assess the
performance of fabricated SWCNTs (i.e., defects, impurities,
contacts) realistically for on-chip interconnect applications.

Fig. 2. Dependence of resistance on the number of vacancy defects for a
pristine SWCNT (24,0) with 80 samples used for statistical results.

Controlling of the chirality and variability of CVD grown
CNTs (i.e., variations on diameter, contacts, number of shells,
defects, etc.) remains a challenge. In this paper, we investigate
doping as a way to enhance metallic CNTs behavior while
alleviating the impact of defects and poor contacts. Large
doping concentrations introduce more conducting channels
for CNTs [17]. From semiconductor physics and atomistic
simulations, we understand that doping shifts the Fermi-
level of SWCNT. Moreover, we know from quantum physics
that the electron transport (i.e., conducting property) occurs
around the Fermi-level. Hence, the Fermi-level shifting by
doping introduces more electron subbands available for charge
transport on SWCNTs with respect to the particular Fermi-
Dirac energy band. From Fig. 3, a pristine metallic SWCNT
has two conducting channels (at 0 eV) and after shifting
the Fermi-level position to 1 eV (due to doping), up to 8
conducting channels are introduced.

We also consider defects that occur during the CNT growth
process. Defects on SWCNT are modeled as a defective
resistance. Based on the atomistic simulation results, we
incorporate the defective resistance into our compact SWCNT
electrical model. We also investigate the contact resistance on
SWCNTs. Contact resistance plays a critical role in intercon-
nect performance and reliability. By taking into account, the
impact of doping, defects and contact resistance, our compact
model for SWCNT electrical resistance is as:

RSWCNT =
h

2e2NC
(1 +

L

Lmfp
) +Rdefect +Rcontact (1)

where Lmfp is the electron mean free path [18]. We model
the SWCNT interconnect as a RC-model where parasitic
resistance R is given by equation (1), and parasitic capacitance
C is modeled as quantum capacitance CQ connected in series
with electrostatic capacitance CE , as shown in equation (2),
similar to [15]. Doped CQ is linearly dependent on NC . If NC

gets larger, CE will have the tendency to dominate CSWCNT .

CSWCNT =
CQCE

CQ + CE
(2)



3

-1 -0.5 0 0.5 1
Energy (eV)

1

2

3

4

5

6

7

8
N

u
m

b
er

 o
f 

co
n

d
u

ct
in

g
 c

h
an

n
el

s 
(N

c) DFTGGA Calculation of Nc for SWCNT(24,0)

Fig. 3. DFTGGA calculation of number of conducting channels Nc for
SWCNT (24,0) over different Fermi-level energy positions.

Fig. 4. Circuit level ”driver-interconnect-receiver” benchmark for delay
simulation.

To evaluate the performance of a defective doped SWCNT
with contact resistance, we use a circuit benchmark as shown
in Fig. 4. Specific values of Rdriver, Cdriver and Cload used
in our simulations are 24 kΩ, 450 aF and 10 fF respectively,
which are values extracted from the logic gates implemented
in CMOS 45 nm technology node.

III. SIMULATION RESULTS

We perform our circuit simulations using the Cadence
environment with Verilog-A models to represent the SWCNT
interconnects between logic gates. We vary the number of
SWCNT conducting channels from 2 to 8 to represent different
doping concentrations. We also study vacancy-type defects by
varying SWCNT resistance as given in Table 1. Additionally,
we include the contact resistance varying from 0 to 10 kΩ to
represent side contact with different contacting lengths [19].

Figure 5 shows the pristine SWCNT resistance varying with
length and diameter. There are no defects and contact resis-
tance. We note that the resistance increases dramatically with
lengths longer than 1 µm. From theoretical understanding, we
know that the mean free path of a SWCNT with D = 1 nm is
about 1 µm; above this length, the scattering resistance starts to
impact the total SWCNT resistance. We also see that resistance
decreases for larger diameter SWCNTs as larger diameters
provide more metallic conducting property.

Figure 6 shows the resistance of doped SWCNT (24,0)
with D = 18.8 Ang as a function of length and number
of conducting channels NC . With NC increasing to 8, the
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Fig. 5. Resistance of pristine SWCNT varying with length for different
diameters.

Fig. 6. Resistance of doped SWCNT (24,0) varying with length with different
numbers of conducting channels NC . inset: resistance ration after increasing
NC (doping level).

resistance is reduced up to 80% (see Fig. 6 inset). Having a
fixed diameter over different lengths, we note that doping can
reduce the overall resistance. In this plot, we do not consider
the defects and contact resistance.

Figure 7 shows the delay ratio of a pristine SWCNT with
and without defects over different lengths. Contact resistance
is set to 0. This plot is derived based on the values of defective
resistance from Table 1. We can see the maximum delay ratio
happens on SWCNT length around 15 µm regardless of the
number of defects. Delay ratio increases before L = 15 µm,
but stays steady or decreases when SWCNT lengths get longer.
To understand this phenomenon, we note from equation (1),
the total SWCNT resistance depends on scattering resistance
(first part where Lmfp is included) and defective resistance
with same impacts on delay. For shorter length, the delay is
strongly influenced by defective resistance, while scattering
resistance gets more dominant when SWCNT length is much
longer than the electron mean free path Lmfp, where the delay
ratio remains steady or decreasing.

In Fig. 8, we compare a doped (24,0) SWCNT (L = 1
µm) with defects to a pristine SWCNT. No contact resis-
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Fig. 8. Delay ratio of defective doped SWCNT vs. pristine ideal SWCNT.

tance is used here. Fig. 8 shows the delay ratio. We know
that increasing the doping concentration (i.e., larger NC)
can reduce the resistance, but it will increase the quantum
capacitance CQ, whereas the electrostatic capacitance CE

will remain constant, therefore, the total capacitance remains
unchanged. Hence, doping could reduce the propagation delay
as shown in the straight blue line where no-defect SWCNT
delay ratio decreases with doping concentration. However,
additional defective resistance will increase the delay. We can
see 6% of delay is increased with 6 defects, but by introducing
doping (NC = 8), delay ratio is reduced by 1%. We also note
that occurrence of a single (1) defect with doping of (NC =
3) can remain the delay ratio equal to 1.

Figure 9 shows the delay ratio between doped (24,0)
SWCNT with contact resistance and pristine SWCNT. In
these plots, we do not take into account the defects. Fig.
9 (a) shows the delay ratio for SWCNT length L = 1 µm
and we observe some trade-off phenomena. If delay ratio
keeps inferior to 1, we can tolerate up to 4 kΩ of contact
resistance with doping of NC ≥ 3; whereas we need doping
to compensate a contact resistance of 8 kΩ. We observe a
few overlapping parts between different configurations, which
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Fig. 9. Delay ratio of doped SWCNT with contact vs. ideal SWCNT without
contact. (a) SWCNT length L = 1µm. (b) SWCNT length L = 10µm.

can be quite interesting for interconnect architecture design
with short lengths. Fig. 9 (b) shows the same delay ratio
comparison but with a length L = 10 µm. Overlapping parts are
disappearing, but with doping of NC ≥ 3 a contact resistance
of 10 kΩ can be tolerated to keep the delay ratio under 1.
Comparing to Fig. 9 (a), doping has much stronger impacts
on delay for longer SWCNT. With contact resistance as great
as 10 kΩ and doping of NC = 8, short SWCNT has a delay
ratio slightly larger than 1, whereas 5% of delay reduction is
observed for longer SWCNT.

Overall, we observe that large diameter SWCNTs (≥ 5nm)
will be more suitable for on-chip interconnects thanks to its
lower resistance. Moreover, doping can be applied to reduce
further SWCNT resistance. Presence of vacancy (i.e., mono-
or di-vacancies) defects induces a large defective resistance,
especially on short SWCNTs. Poor contacts which exhibit a
large contact resistance worsen SWCNT interconnect perfor-
mance. Charge-based doping helps to mitigate some of the
impacts of defects and poor contacts. However, as resistance
due to defects and poor contacts increases, doping becomes
less efficient.
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IV. CONCLUSION

A hierarchical model, from atomistic- to circuit-level, has
been developed and investigated. We study the defective
resistance and number of conducting channels by doping for
a metallic zigzag (24,0) SWCNT by using TB-NEGF and
DFTGGA on atomistic simulations. We investigate circuit-
level electrical compact modeling and simulations to evaluate
the SWCNT interconnect propagation delay with multiple
dependencies (defects, doping, contacts). We observed up to
17% of delay can be increased by defects. However, 80%
of SWCNT resistance can be reduced by doping as well as
more than 10% of defective SWCNT delay is mitigated by
doping. Some trade-offs are also observed between the impact
of defects, contact resistance and doping on interconnect
performance, which can be of interest for circuit level intercon-
nect architecture design. By introducing doping and carefully
choosing SWCNT lengths, interconnect performance can be
improved while alleviating defects and contact resistances.
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